1
|
Schikora J, Dort A, Wolf HN, Józsi M, Pouw RB, Bertelmann T, Bahlmann D, van Oterendorp C, Feltgen N, Hoerauf H, Pauly D, Klemming J. Decreased complement 4 and interleukin-10 as biomarkers in aqueous humour for non-exudative age-related macular degeneration: a case control study. J Transl Med 2025; 23:317. [PMID: 40075380 PMCID: PMC11905602 DOI: 10.1186/s12967-024-05909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/21/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The development of age-related macular degeneration (AMD) is influenced by risk factors that contribute to inflammatory processes, cellular stress responses, and a dysregulation of the complement system. Given the incomplete understanding of the pathogenesis of AMD and the necessity for novel therapeutics, biomarker studies investigating aqueous humour from the anterior chamber of the eye serve as a valuable tool. This pilot study aimed to assess inflammatory mediators and complement components in aqueous humour of non-exudative AMD patients in comparison with a control group. METHODS The aqueous humour of 12 non-exudative AMD patients and 21 control subjects was collected during cataract surgery. Levels of 78 inflammatory proteins and complement components were measured using multiplex immunoassays. The influence of sex or smoking on the AMD status was assessed using Pearson's chi-square test. Biomarker levels between AMD patients vs. controls, smokers vs. non-smokers, and females vs. males were compared. Parametric datasets were analysed using independent-means t-test, while non-parametric data analysis was conducted utilising Wilcoxon's rank-sum test. Spearman's correlation investigated associations between drusen volume and biomarker levels, as well as biomarker levels and subject age. RESULTS All examined 78 immunological factors were detectable in aqueous humour. The proteins were categorised into high, medium, and low level groups. Aqueous humour contained high levels of complement proteins, including iC3b, FH/FHL-1, C4B, and FI. Non-exudative AMD patients exhibited decreased levels of C4 (P = 0.020), IL-10 (P = 0.033), and FI (P = 0.082). A positive correlation was observed between drusen volume and CCL4 levels (rS = 0.78, P = 0.013). Furthermore, smokers demonstrated significantly increased levels of pro-inflammatory proteins (CCL7, IL-7; P = 0.027, P = 0.030). MMP-1 was positively correlated with age (rS = 0.44, P = 0.010), while sex differences were observed in FB (P = 0.027) and C4B (P = 0.036) levels. CONCLUSIONS This pilot study presents an initial overview of inflammation-associated biomarkers in the aqueous humour, highlighting potential roles for C4 and IL-10 in the development of non-exudative AMD. A larger, more-focused follow-up study is in progress to further investigate biomarkers localised to the eye and refine our understanding of AMD.
Collapse
Affiliation(s)
- Juliane Schikora
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | - Aaron Dort
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | - Hannah N Wolf
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Richard B Pouw
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Bertelmann
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Bahlmann
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Basel, Basel, Switzerland
| | - Hans Hoerauf
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Diana Pauly
- Experimental Ophthalmology, University Marburg, Marburg, Germany.
| | - Jannis Klemming
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Lizama BN, Keeling E, Cho E, Malagise EM, Knezovich N, Waybright L, Watto E, Look G, Di Caro V, Caggiano AO, Ratnayaka JA, Hamby ME. Sigma-2 receptor modulator CT1812 alters key pathways and rescues retinal pigment epithelium (RPE) functional deficits associated with dry age-related macular degeneration (AMD). Sci Rep 2025; 15:4256. [PMID: 39929889 PMCID: PMC11810999 DOI: 10.1038/s41598-025-87921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Trafficking defects in retinal pigmented epithelial (RPE) cells contribute to RPE atrophy, a hallmark of geographic atrophy (GA) in dry age-related macular degeneration (AMD). Dry AMD pathogenesis is multifactorial, including amyloid-β (Aβ) accumulation and oxidative stress-common features of Alzheimer's disease (AD). The Sigma-2 receptor (S2R) regulates lipid and protein trafficking, and S2R modulators reverse trafficking deficits in neurodegeneration in vitro models. Given overlapping mechanisms contributing to AD and AMD, S2R modulator effects on RPE function were investigated. The S2R modulator CT1812 is in clinical trials for AD, dementia with Lewy bodies, and GA. Leveraging AD trials testing CT1812, unbiased analyses of patient biofluid proteomes revealed that proteins altered by CT1812 associated with GA and macular degeneration disease ontologies and overlapped with proteins altered in dry AMD. Differential expression analysis of RPE transcripts from APP-Swedish/London mutant transgenic mice, a model featuring Aβ accumulation, revealed reversal of autophagy/trafficking transcripts in S2R modulator-treated animals versus vehicle toward healthy control levels. Photoreceptor outer segment (POS) trafficking in human RPE cells showed deficits in response to Aβ1-42 or hydrogen peroxide compared to vehicle. S2R modulators normalized stressor-induced POS trafficking deficits, resembling healthy control. Taken together, S2R modulation may provide a novel therapeutic strategy for dry AMD.
Collapse
Affiliation(s)
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Eunah Cho
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | - Evi M Malagise
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | - Emily Watto
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | | | | | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Biswas P, Woodard DR, Hollingsworth T, Khan NW, Lazaro DR, Berry AM, Dagar M, Pan Y, Garland D, Shaw PX, Oka C, Iwata T, Jablonski MM, Ayyagari R. Ablation of Htra1 leads to sub-RPE deposits and photoreceptor abnormalities. JCI Insight 2025; 10:e178827. [PMID: 39927462 PMCID: PMC11948579 DOI: 10.1172/jci.insight.178827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/13/2024] [Indexed: 02/11/2025] Open
Abstract
The high-temperature requirement A1 (HTRA1), a serine protease, has been demonstrated to play a pivotal role in the extracellular matrix (ECM) and has been reported to be associated with the pathogenesis of age-related macular degeneration (AMD). To delineate its role in the retina, the phenotype of homozygous Htra1-KO (Htra1-/-) mice was characterized to examine the effect of Htra1 loss on the retina and retinal pigment epithelium (RPE) with age. The ablation of Htra1 led to a significant reduction in rod and cone photoreceptor function, primary cone abnormalities followed by rods, and atrophy in the RPE compared with WT mice. Ultrastructural analysis of Htra1-/- mice revealed RPE and Bruch's membrane (BM) abnormalities, including the presence of sub-RPE deposits at 5 months (m) that progressed with age accompanied by increased severity of pathology. Htra1-/- mice also displayed alterations in key markers for inflammation, autophagy, and lipid metabolism in the retina. These results highlight the crucial role of HTRA1 in the retina and RPE. Furthermore, this study allows for the Htra1-/- mouse model to be utilized for deciphering mechanisms that lead to sub-RPE deposit phenotypes including AMD.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, UCSD, La Jolla, California, USA
| | | | - T.J. Hollingsworth
- The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Naheed W. Khan
- Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Manisha Dagar
- Shiley Eye Institute, UCSD, La Jolla, California, USA
| | - Yang Pan
- The National Institute of Sensory Organs (NISO), NHO Tokyo Medical Center, Tokyo, Japan
| | | | - Peter X. Shaw
- Shiley Eye Institute, UCSD, La Jolla, California, USA
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Iwata
- The National Institute of Sensory Organs (NISO), NHO Tokyo Medical Center, Tokyo, Japan
| | - Monica M. Jablonski
- The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
4
|
Lim RR, Chao JR. Ocular Localization of Complement Factor H and Its Association with Diseases in the Eye. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:435-439. [PMID: 39930234 DOI: 10.1007/978-3-031-76550-6_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The complement system is a well-documented element of the immune system that protects the body from external pathogens. Although the majority of complement components are produced by the liver and secreted into the circulation, ocular tissues also produce several complement components, thereby contributing to local complement activity in specific regions of the eye. Regulation of complement cascade activation is crucial for preventing unintended cellular damage. In the alternative pathway of the complement system, complement factor H (CFH) plays an important role in inhibitory regulation. Certain genetic polymorphisms that result in defective CFH are associated with rare diseases where the self is attacked by an overactive complement system. This review will focus on the expression and localization of CFH in human ocular tissues and highlight its association with several diseases in the anterior and posterior chambers of the eye.
Collapse
Affiliation(s)
- Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
Shelton DA, Papania JT, Getz TE, Sellers JT, Giradot PE, Chrenek MA, Grossniklaus HE, Boatright JH, Nickerson JM. Loss of Pigment Epithelium Derived Factor Sensitizes C57BL/6J Mice to Light-Induced Retinal Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626802. [PMID: 39679905 PMCID: PMC11643041 DOI: 10.1101/2024.12.04.626802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Purpose Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in PEDF are associated with increased inflammation and retinal degeneration in aging and diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-mediated inflammatory signaling. Methods C57BL/6J mice expressing the RPE65 M450/M450 allele were crossed to PEDF KO/KO and wildtype (PEDF +/+) littermates. Mice were exposed to 50,000 lux light for 5 hours to initiate acute damage. Changes in visual function outcomes were tracked via electroretinogram (ERG), confocal scanning laser ophthalmoscopy(cSLO), and spectral domain optical coherence tomography (SD-OCT) on days 3, 5, and 7 post-light exposure. Gene and protein expression of Galectin-3 were measured by digital drop PCR (ddPCR) and western blot. To further investigate the role of galectin-3 on visual outcomes and PEDF expression after damage, we also used a small-molecule inhibitor to reduce its activity. Results Following light damage, PEDF KO/KO mice showed more severe retinal thinning, impaired visual function (reduced a-, b-, and c-wave amplitudes), and increased Galectin-3 expressing immune cell infiltration compared to PEDF +/+. PEDF KO/KO mice had suppressed damage-associated increases in IGF-1 expression. Additionally, baseline Galectin-3 mRNA and protein expression were reduced in PEDF KO/KO mice compared to PEDF +/+. However, after light damage, Galectin-3 expression decreases in PEDF +/+ mice but increases in PEDF KO/KO mice without reaching PEDF +/+ levels. Galectin-3 inhibition worsens retinal degeneration, reduces PEDF expression in PEDF +/+ mice, and mimics the effects seen in PEDF knockouts. Conclusions Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF +/+. PEDF deficiency reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3 worsens outcomes and suppresses PEDF expression in PEDF +/+, suggesting a novel co-regulatory relationship between the two proteins in mitigating light-induced retinal damage.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Tatiana E. Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Preston E. Giradot
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | | | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Wu D, Liu Y, Luo X, Chen Z, Fu Q, Yao K. Involvement of Lgals3/Galectin-3 in Choroidal Neovascularization and Subretinal Fibrosis Formation. Biomedicines 2024; 12:2649. [PMID: 39595213 PMCID: PMC11592115 DOI: 10.3390/biomedicines12112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background:Lgals3/galectin-3 plays a pivotal role in many vascular diseases. However, the involvement of Lgals3/galectin-3 in eyes with neovascular age-related macular degeneration (nAMD) remains unknown. Methods: In the laser-induced CNV model, a whole mount retina stained with Isolectin B4 and collagen type I revealed the vascular bed and CNV-associated subretinal fibrosis on day 7 after laser treatment. Results: We show that the expression levels of Lgals3/galectin-3 were significantly increased in the RPE/choroidal complex of CNV mice. An intravitreal injection of Lgals3-siRNA significantly suppressed the area of CNV and subretinal fibrosis, together with Mcp-1 decline. The mixture of Lgals3-siRNA and Ranibizumab showed more efficiency than each drug used separately. Hypoxia induced Lgals3/galectin-3 production in ARPE-19 cells, which was reduced by the silencing hypoxia-inducible factor -1α (Hif-1a). Conclusions: Our data indicated that Lgals3/galectin-3 is involved in the pathogenesis of CNV and subretinal fibrosis, and Lgals3/galectin-3 could be a potential therapeutic target for nAMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310051, China; (D.W.); (Y.L.); (X.L.); (Z.C.); (Q.F.)
| |
Collapse
|
7
|
Mullins RF, Flamme-Wiese MJ, Navratil EM, Boese EA, Varzavand K, Riker MJ, Wang K, Stone EM, Tucker BA. Ghost vessels in the eye: Cell free choriocapillaris domains in atrophic age-related macular degeneration. Exp Eye Res 2024; 248:110128. [PMID: 39419369 PMCID: PMC11532014 DOI: 10.1016/j.exer.2024.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The choriocapillaris is a dense vascular bed in the inner choroid that supplies the photoreceptor cells and retinal pigment epithelium (RPE). While loss of choriocapillaris density has been described in association with age-related macular degeneration (AMD), whether these changes are primary or secondary to RPE degenerative changes in AMD has been debated. In this study we characterized choriocapillaris loss by quantifying "ghost" vessels in a series of 99 human donor maculae labeled with the UEA-I lectin, and found significant increases in early-intermediate AMD and a greater difference in geographic atrophy in areas with intact RPE. Eyes were genotyped at the CFH Tyr402His locus, and those homozygous for the His allele showed significantly more ghost vessels than those with other genotypes. When only non-AMD eyes were evaluated, His homozygotes had increased ghost vessel density but this trend did not reach statistical significance. These results support the notion that choriocapillaris death often precedes RPE degeneration in AMD and that this loss is an important therapeutic consideration for AMD.
Collapse
Affiliation(s)
- Robert F Mullins
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States.
| | - Miles J Flamme-Wiese
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States
| | - Emma M Navratil
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States; The University of Iowa Interdisciplinary Graduate Program in Genetics, United States
| | - Erin A Boese
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States
| | - Katayoun Varzavand
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States
| | - Megan J Riker
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States
| | - Kai Wang
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Biostatistics, United States
| | - Edwin M Stone
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States
| | - Budd A Tucker
- The University of Iowa Institute for Vision Research, United States; The University of Iowa Department of Ophthalmology and Visual Sciences, United States
| |
Collapse
|
8
|
Jang GF, Crabb JS, Grenell A, Wolk A, Campla C, Luo S, Ali M, Hu B, Willard B, Anand-Apte B. Quantitative proteomic profiling reveals sexual dimorphism in the retina and RPE of C57BL6 mice. Biol Sex Differ 2024; 15:87. [PMID: 39478535 PMCID: PMC11526624 DOI: 10.1186/s13293-024-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Sex as a biological variable is not a common consideration in molecular mechanistic or preclinical studies of retinal diseases. Understanding the sexual dimorphism of adult RPE and retina under physiological conditions is an important first step in improving our understanding of sex-based physio-pathological mechanisms. METHODS Isobaric tags for relative and absolute quantitation (iTRAQ) were used for quantitative proteomics of male and female mouse retina and RPE (10 mice of each sex for each tissue type). Differentially expressed proteins were subjected to Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA). RESULTS Differential expression analysis identified 21 differentially expressed proteins in the retina and 58 differentially expressed proteins in the RPE. Ingenuity pathway analysis identified the top canonical pathways differentially activated in the retina to be calcium transport I, nucleotide excision repair, molecular transport and cell death and survival. In the RPE, the top canonical pathways were calcium signaling, dilated cardiomyopathy signaling, actin cytoskeletal signaling and cellular assembly and organization. CONCLUSIONS These results provide insights into sex differences in the retina and RPE proteome of mice and begin to shed clues into the sexual dimorphism seen in retinal diseases.
Collapse
Affiliation(s)
- Geeng-Fu Jang
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John S Crabb
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Allison Grenell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Alyson Wolk
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christie Campla
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shiming Luo
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mariya Ali
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Grenell A, Singh C, Raju M, Wolk A, Dalvi S, Jang GF, Crabb JS, Hershberger CE, Manian KV, Hernandez K, Crabb JW, Singh R, Du J, Anand-Apte B. Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells. Mol Metab 2024; 88:101995. [PMID: 39047907 PMCID: PMC11344013 DOI: 10.1016/j.molmet.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Mutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD), a dominantly inherited, rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells, which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients, such as glucose, to the retina. Recently, metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis. METHODS Quantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3, known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways, processes, and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U-13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U-13C6] glucose and [U-13C5] glutamine isotopic tracing in SFD iRPE cells. RESULTS Quantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U-13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly, [U-13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally, [U-13C5] glutamine tracing found evidence of altered malic enzyme activity. CONCLUSIONS This study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases, emphasizing RPE cellular metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Allison Grenell
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Monisha Raju
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sonal Dalvi
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Geeng-Fu Jang
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John S Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Courtney E Hershberger
- Cleveland Clinic Lerner Research Institute, Department of Quantitative Health Sciences, USA
| | - Kannan V Manian
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Karen Hernandez
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ruchira Singh
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Jianhai Du
- West Virginia University, Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, Morgantown, WV, USA
| | - Bela Anand-Apte
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Dept. of Ophthalmology, Cleveland, OH, USA.
| |
Collapse
|
10
|
Lunding BS, Bassi MR, Christensen JP, Thomsen AR, Sørensen TL, Vorum H, Honoré B, Nissen MH, Steffensen MA. Systemic infection in aged mice causes upregulation of crystallin alpha A in the RPE/choroid. Exp Eye Res 2024; 245:109984. [PMID: 38945517 DOI: 10.1016/j.exer.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina. In this study, we sought to investigate the impact of systemic infection on the RPE/c in aged mice to evaluate whether infection in old age could play a role in the pathogenesis of AMD. We found that systemic infection in mice led to upregulation of genes from the crystallin family in the RPE/c from aged mice, but not in the RPE/c from young mice. Crystallin alpha A (CRYAA) was the most upregulated gene, and increased amounts of CRYAA protein were also detected in the aged RPE/c. Increased CRYAA gene and protein expression has previously been found in drusen and choroid from AMD patients, and this protein has also been linked to neovascularization. Since both drusen and neovascularization are important hallmarks of advanced AMD, it is interesting to speculate if upregulation of crystallins in response to infection in old age could be relevant for the pathogenesis of AMD.
Collapse
Affiliation(s)
| | | | | | | | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark; Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Denmark; Department of Ophthalmology, Aalborg University Hospital, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | | |
Collapse
|
11
|
Borjini N, Lun Y, Jang GF, Crabb J, Chen Y, Crabb J, Fox DA, Ivanov AI, Lin F. CD6 triggers actomyosin cytoskeleton remodeling after binding to its receptor complex. J Leukoc Biol 2024; 115:450-462. [PMID: 37820034 PMCID: PMC10890838 DOI: 10.1093/jleuko/qiad124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
The T cell marker CD6 regulates both T cells and target cells during inflammatory responses by interacting with its receptors. However, only a few receptors binding to the extracellular domains of CD6 have been identified, and cellular events induced by CD6 engagement with its receptors in target cells remain poorly understood. In this study, we identified CD44 as a novel CD6 receptor by proximity labeling and confirmed the new CD6-CD44 interaction by biochemical and biophysical approaches. CD44 and the other 2 known CD6 receptors, CD166 and CDCP1, were distributed diffusely on resting retinal pigment epithelium (RPE) cells but clustered together to form a receptor complex upon CD6 binding. CD6 stimulation induced dramatic remodeling of the actomyosin cytoskeleton in RPE cells mediated by activation of RhoA, and Rho-associated kinase signaling, resulting in increased myosin II phosphorylation. Such actomyosin activation triggered the disassembly of tight junctions responsible for RPE barrier integrity in a process that required all components of the tripartite CD6 receptor complex. These data provided new insights into the mechanisms by which CD6 mediates T cell-driven disruption of tissue barriers during inflammation.
Collapse
Affiliation(s)
- Nozha Borjini
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Yu Lun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Geen-Fu Jang
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| | - Jack Crabb
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, 2210 Circle Dr Robbins Building, Cleveland, OH 44106, United States
| | - John Crabb
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| |
Collapse
|
12
|
Naaman E, Qarawani A, Ben-Zvi Elimelech R, Harel M, Sigal-Dror S, Safuri S, Smirnovas V, Baronaite I, Romanova NV, Morozova-Roche LA, Zayit-Soudry S. The Surprising Nonlinear Effects of S100A9 Proteins in the Retina. ACS Chem Neurosci 2024; 15:735-744. [PMID: 38324770 DOI: 10.1021/acschemneuro.3c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease in which inflammation is implicated as a key factor but the precise molecular mechanisms are poorly understood. AMD lesions contain an excess of the pro-inflammatory S100A9 protein, but its retinal significance was yet unexplored. S100A9 was shown to be intrinsically amyloidogenic in vitro and in vivo. Here, we hypothesized that the retinal effects of S100A9 are related to its supramolecular conformation. ARPE-19 cultures were treated with native dimeric and fibrillar S100A9 preparations, and cell viability was determined. Wild-type rats were treated intravitreally with the S100A9 solutions in the right eye and with the vehicle in the left. Retinal function was assessed longitudinally by electroretinography (ERG), comparing the amplitudes and configurations for each intervention. Native S100A9 had no impact on cellular viability in vitro or on the retinal function in vivo. Despite dispersed intracellular uptake, fibrillar S100A9 did not decrease ARPE-19 cell viability. In contrast, S100A9 fibrils impaired retinal function in vivo following intravitreal injection in rats. Intriguingly, low-dose fibrillar S100A9 induced contrasting in vivo effects, significantly increasing the ERG responses, particularly over 14 days postinjection. The retinal effects of S100A9 were further characterized by glial and microglial cell activation. We provide the first indication for the retinal effects of S100A9, showing that its fibrils inflicted retinal dysfunction and glial activation in vivo, while low dose of the same assemblies resulted in an unpredicted enhancement of the ERG amplitudes. These nonlinear responses highlight the consequences of self-assembly of S100A9 and provide insight into its pathophysiological and possibly physiological roles in the retina.
Collapse
Affiliation(s)
- Efrat Naaman
- Department of Ophthalmology, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Amanda Qarawani
- Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 69094, Israel
| | - Rony Ben-Zvi Elimelech
- Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 69094, Israel
| | - Michal Harel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 69094, Israel
| | - Shahaf Sigal-Dror
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 69094, Israel
| | - Shadi Safuri
- Department of Ophthalmology, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Ieva Baronaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Nina V Romanova
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-90781, Sweden
| | | | - Shiri Zayit-Soudry
- Department of Ophthalmology, Rambam Health Care Campus, Haifa 3109601, Israel
- Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 69094, Israel
| |
Collapse
|
13
|
Zhou Z, Feng Z, Sun X, Wang Y, Dou G. The Role of Galectin-3 in Retinal Degeneration and Other Ocular Diseases: A Potential Novel Biomarker and Therapeutic Target. Int J Mol Sci 2023; 24:15516. [PMID: 37958500 PMCID: PMC10649114 DOI: 10.3390/ijms242115516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Galectin-3 is the most studied member of the Galectin family, with a large range of mediation in biological activities such as cell growth, proliferation, apoptosis, differentiation, cell adhesion, and tissue repair, as well as in pathological processes such as inflammation, tissue fibrosis, and angiogenesis. As is known to all, inflammation, aberrant cell apoptosis, and neovascularization are the main pathophysiological processes in retinal degeneration and many ocular diseases. Therefore, the review aims to conclude the role of Gal3 in the retinal degeneration of various diseases as well as the occurrence and development of the diseases and discuss its molecular mechanisms according to research in systemic diseases. At the same time, we summarized the predictive role of Gal3 as a biomarker and the clinical application of its inhibitors to discuss the possibility of Gal3 as a novel target for the treatment of ocular diseases.
Collapse
Affiliation(s)
| | | | | | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| |
Collapse
|
14
|
Borchert GA, Shamsnajafabadi H, Hu ML, De Silva SR, Downes SM, MacLaren RE, Xue K, Cehajic-Kapetanovic J. The Role of Inflammation in Age-Related Macular Degeneration-Therapeutic Landscapes in Geographic Atrophy. Cells 2023; 12:2092. [PMID: 37626902 PMCID: PMC10453093 DOI: 10.3390/cells12162092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss and visual impairment in people over 50 years of age. In the current therapeutic landscape, intravitreal anti-vascular endothelial growth factor (anti-VEGF) therapies have been central to the management of neovascular AMD (also known as wet AMD), whereas treatments for geographic atrophy have lagged behind. Several therapeutic approaches are being developed for geographic atrophy with the goal of either slowing down disease progression or reversing sight loss. Such strategies target the inflammatory pathways, complement cascade, visual cycle or neuroprotective mechanisms to slow down the degeneration. In addition, retinal implants have been tried for vision restoration and stem cell therapies for potentially a dual purpose of slowing down the degeneration and restoring visual function. In particular, therapies focusing on the complement pathway have shown promising results with the FDA approved pegcetacoplan, a complement C3 inhibitor, and avacincaptad pegol, a complement C5 inhibitor. In this review, we discuss the mechanisms of inflammation in AMD and outline the therapeutic landscapes of atrophy AMD. Improved understanding of the various pathway components and their interplay in this complex neuroinflammatory degeneration will guide the development of current and future therapeutic options, such as optogenetic therapy.
Collapse
Affiliation(s)
- Grace A. Borchert
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Monica L. Hu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Samantha R. De Silva
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
15
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Tsui MC, Liu HY, Chu HS, Chen WL, Hu FR, Kao WWY, Wang IJ. The versatile roles of lumican in eye diseases: A review. Ocul Surf 2023; 29:388-397. [PMID: 37327869 DOI: 10.1016/j.jtos.2023.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Lumican is a keratan sulfate proteoglycan that belongs to the small leucine-rich proteoglycan family. Research has lifted the veil on the versatile roles of lumican in the pathogenesis of eye diseases. Lumican has pivotal roles in the maintenance of physiological tissue homogenesis and is often upregulated in pathological conditions, e.g., fibrosis, scar tissue formation in injured tissues, persistent inflammatory responses and immune anomaly, etc. Herein, we will review literature regarding the role of lumican in pathogenesis of inherited congenital and acquired eye diseases, e.g., cornea dystrophy, cataract, glaucoma and chorioretinal diseases, etc.
Collapse
Affiliation(s)
- Mei-Chi Tsui
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hsin-Yu Liu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Winston W-Y Kao
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
18
|
Künzel SE, Flesch LTM, Frentzel DP, Knecht VA, Rübsam A, Dreher F, Schütte M, Dubrac A, Lange B, Yaspo ML, Lehrach H, Joussen AM, Zeitz O. Systemic Blood Proteome Patterns Reflect Disease Phenotypes in Neovascular Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:10327. [PMID: 37373474 DOI: 10.3390/ijms241210327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
There is early evidence of extraocular systemic signals effecting function and morphology in neovascular age-related macular degeneration (nAMD). The prospective, cross-sectional BIOMAC study is an explorative investigation of peripheral blood proteome profiles and matched clinical features to uncover systemic determinacy in nAMD under anti-vascular endothelial growth factor intravitreal therapy (anti-VEGF IVT). It includes 46 nAMD patients stratified by the level of disease control under ongoing anti-VEGF treatment. Proteomic profiles in peripheral blood samples of every patient were detected with LC-MS/MS mass spectrometry. The patients underwent extensive clinical examination with a focus on macular function and morphology. In silico analysis includes unbiased dimensionality reduction and clustering, a subsequent annotation of clinical features, and non-linear models for recognition of underlying patterns. The model assessment was performed using leave-one-out cross validation. The findings provide an exploratory demonstration of the link between systemic proteomic signals and macular disease pattern using and validating non-linear classification models. Three main results were obtained: (1) Proteome-based clustering identifies two distinct patient subclusters with the smaller one (n = 10) exhibiting a strong signature for oxidative stress response. Matching the relevant meta-features on the individual patient's level identifies pulmonary dysfunction as an underlying health condition in these patients. (2) We identify biomarkers for nAMD disease features with Aldolase C as a putative factor associated with superior disease control under ongoing anti-VEGF treatment. (3) Apart from this, isolated protein markers are only weakly correlated with nAMD disease expression. In contrast, applying a non-linear classification model identifies complex molecular patterns hidden in a high number of proteomic dimensions determining macular disease expression. In conclusion, so far unconsidered systemic signals in the peripheral blood proteome contribute to the clinically observed phenotype of nAMD, which should be examined in future translational research on AMD.
Collapse
Affiliation(s)
- Steffen E Künzel
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Leonie T M Flesch
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Dominik P Frentzel
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Vitus A Knecht
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anne Rübsam
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Felix Dreher
- Alacris Theranostics, Max-Planck-Straße 3, 12489 Berlin, Germany
| | - Moritz Schütte
- Alacris Theranostics, Max-Planck-Straße 3, 12489 Berlin, Germany
| | - Alexandre Dubrac
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Bodo Lange
- Alacris Theranostics, Max-Planck-Straße 3, 12489 Berlin, Germany
| | - Marie-Laure Yaspo
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans Lehrach
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Oliver Zeitz
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
19
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
20
|
Calcagni A, Howells O, Bartlett H, Denniston AKO, Gibson JM, Hogg CR, Matthews TD, Eperjesi F. Comparison of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration with and without subsequent choroidal neovascular membrane development. Eye (Lond) 2023; 37:297-302. [PMID: 35058600 PMCID: PMC9873808 DOI: 10.1038/s41433-021-01875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD) is a leading cause of blind registrations in the elderly. Unfortunately, it is difficult to detect the early stage of the disease, when treatment is more likely to be successful. Subjects with very early disease are likely to have abnormal macular function, even in the pre-symptomatic stage. In this study, colour vision was evaluated to establish if subjects at high risk of developing nAMD can be identified, thus allowing earlier diagnosis and possible treatment. METHODS Colour contrast sensitivity (CCS) was evaluated over time in the fellow unaffected eye of subjects with unilateral nAMD. Participants were divided into Group 1 (182 participants) or Group 2 (15 participants) according to whether nAMD did not or did develop in the study period respectively and the two groups were compared. RESULTS CCS was increased (i.e. worse colour vision) compared with the age-matched reference range in a high proportion of fellow eyes in both Groups 1 and 2. Global mean CCS values did not show statistically significant differences between the two groups. However, there was a statistically significant difference between mean Group 1 CCS values and the last CCS value prior to nAMD diagnosis from Group 2 subjects. CONCLUSION This study shows that in patients with unilateral nAMD, colour vision is frequently abnormal in the fellow unaffected eye. Abnormal CCS does not predict the development of nAMD within the 12 month period of the study and therefore it is not a viable screening tool for this pathology.
Collapse
Affiliation(s)
- Antonio Calcagni
- grid.7273.10000 0004 0376 4727Aston University, School of Life and Health Sciences, Birmingham, UK ,grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK ,grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Olivia Howells
- grid.7273.10000 0004 0376 4727Aston University, School of Life and Health Sciences, Birmingham, UK ,grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Hannah Bartlett
- grid.7273.10000 0004 0376 4727Aston University, School of Life and Health Sciences, Birmingham, UK
| | - Alastair K. O. Denniston
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK ,grid.6572.60000 0004 1936 7486Academic Unit of Ophthalmology, University of Birmingham, Birmingham, UK
| | - Jonathan M. Gibson
- grid.7273.10000 0004 0376 4727Aston University, School of Life and Health Sciences, Birmingham, UK ,grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Christopher R. Hogg
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Timothy D. Matthews
- grid.412563.70000 0004 0376 6589University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Frank Eperjesi
- grid.7273.10000 0004 0376 4727Aston University, School of Life and Health Sciences, Birmingham, UK ,grid.440578.a0000 0004 0631 5812Department of Health Science, Arab American University, Ramallah, Palestine
| |
Collapse
|
21
|
Andrade FEC, Correia-Silva RD, Covre JL, Lice I, Gomes JÁP, Gil CD. Effects of galectin-3 protein on UVA-induced damage in retinal pigment epithelial cells. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:21-32. [PMID: 36036336 DOI: 10.1007/s43630-022-00294-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023]
Abstract
Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.
Collapse
Affiliation(s)
- Frans E C Andrade
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - Joyce L Covre
- Department of Ophthalmology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04023-062, Brazil
| | - Izabella Lice
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - José Álvaro P Gomes
- Department of Ophthalmology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04023-062, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil.
| |
Collapse
|
22
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
23
|
Tear Proteome Revealed Association of S100A Family Proteins and Mesothelin with Thrombosis in Elderly Patients with Retinal Vein Occlusion. Int J Mol Sci 2022; 23:ijms232314653. [PMID: 36498980 PMCID: PMC9736253 DOI: 10.3390/ijms232314653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Tear samples collected from patients with central retinal vein occlusion (CRVO; n = 28) and healthy volunteers (n = 29) were analyzed using a proteomic label-free absolute quantitative approach. A large proportion (458 proteins with a frequency > 0.6) of tear proteomes was found to be shared between the study groups. Comparative proteomic analysis revealed 29 proteins (p < 0.05) significantly differed between CRVO patients and the control group. Among them, S100A6 (log (2) FC = 1.11, p < 0.001), S100A8 (log (2) FC = 2.45, p < 0.001), S100A9 (log2 (FC) = 2.08, p < 0.001), and mesothelin ((log2 (FC) = 0.82, p < 0.001) were the most abundantly represented upregulated proteins, and β2-microglobulin was the most downregulated protein (log2 (FC) = −2.13, p < 0.001). The selected up- and downregulated proteins were gathered to customize a map of CRVO-related critical protein interactions with quantitative properties. The customized map (FDR < 0.01) revealed inflammation, impairment of retinal hemostasis, and immune response as the main set of processes associated with CRVO ischemic condition. The semantic analysis displayed the prevalence of core biological processes covering dysregulation of mitochondrial organization and utilization of improperly or topologically incorrect folded proteins as a consequence of oxidative stress, and escalating of the ischemic condition caused by the local retinal hemostasis dysregulation. The most significantly different proteins (S100A6, S100A8, S100A9, MSLN, and β2-microglobulin) were applied for the ROC analysis, and their AUC varied from 0.772 to 0.952, suggesting probable association with the CRVO.
Collapse
|
24
|
Vladimirov VI, Shchannikova MP, Baldin AV, Kazakov AS, Shevelyova MP, Nazipova AA, Baksheeva VE, Nemashkalova EL, Frolova AS, Tikhomirova NK, Philippov PP, Zamyatnin AA, Permyakov SE, Zinchenko DV, Zernii EY. Redox Regulation of Signaling Complex between Caveolin-1 and Neuronal Calcium Sensor Recoverin. Biomolecules 2022; 12:1698. [PMID: 36421712 PMCID: PMC9687869 DOI: 10.3390/biom12111698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 09/29/2023] Open
Abstract
Caveolin-1 is a cholesterol-binding scaffold protein, which is localized in detergent-resistant membrane (DRM) rafts and interacts with components of signal transduction systems, including visual cascade. Among these components are neuronal calcium sensors (NCSs), some of which are redox-sensitive proteins that respond to calcium signals by modulating the activity of multiple intracellular targets. Here, we report that the formation of the caveolin-1 complex with recoverin, a photoreceptor NCS serving as the membrane-binding regulator of rhodopsin kinase (GRK1), is a redox-dependent process. Biochemical and biophysical in vitro experiments revealed a two-fold decreased affinity of recoverin to caveolin-1 mutant Y14E mimicking its oxidative stress-induced phosphorylation of the scaffold protein. At the same time, wild-type caveolin-1 demonstrated a 5-10-fold increased affinity to disulfide dimer of recoverin (dRec) or its thiol oxidation mimicking the C39D mutant. The formation of dRec in vitro was not affected by caveolin-1 but was significantly potentiated by zinc, the well-known mediator of redox homeostasis. In the MDCK cell model, oxidative stress indeed triggered Y14 phosphorylation of caveolin-1 and disulfide dimerization of recoverin. Notably, oxidative conditions promoted the accumulation of phosphorylated caveolin-1 in the plasma membrane and the recruitment of recoverin to the same sites. Co-localization of these proteins was preserved upon depletion of intracellular calcium, i.e., under conditions reducing membrane affinity of recoverin but favoring its interaction with caveolin-1. Taken together, these data suggest redox regulation of the signaling complex between recoverin and caveolin-1. During oxidative stress, the high-affinity interaction of thiol-oxidized recoverin with caveolin-1/DRMs may disturb the light-induced translocation of the former within photoreceptors and affect rhodopsin desensitization.
Collapse
Affiliation(s)
- Vasiliy I. Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Margarita P. Shchannikova
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Aliya A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Viktoriia E. Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Natalia K. Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Pavel P. Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey A. Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Dmitry V. Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Evgeni Yu. Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
25
|
Karunadharma PP, Kapphahn RJ, Stahl MR, Olsen TW, Ferrington DA. Dissecting Regulators of Aging and Age-Related Macular Degeneration in the Retinal Pigment Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6009787. [PMID: 36439688 PMCID: PMC9683958 DOI: 10.1155/2022/6009787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD), the leading cause of blindness in elderly populations, involves the loss of central vision due to progressive dysfunction of the retinal pigment epithelium (RPE) and subsequent loss of light-sensing photoreceptors. While age is a key risk factor, not every aged individual develops AMD. Thus, the critical question is what specific cellular changes tip the balance from healthy aging to disease. To distinguish between changes associated with aging and AMD, we compared the RPE proteome in human eye bank tissue from nondiseased donors during aging (n = 50, 29-91 years) and in donors with AMD (n = 36) compared to age-matched donors without disease (n = 28). Proteins from RPE cells were separated on two-dimensional gels, analyzed for content, and identified using mass spectrometry. A total of 58 proteins displayed significantly altered content with either aging or AMD. Proteins involved in metabolism, protein turnover, stress response, and cell death were altered with both aging and AMD. However, the direction of change was predominantly opposite. With aging, we detected an overall decrease in metabolism and reductions in stress-associated proteins, proteases, and chaperones. With AMD, we observed upregulation of metabolic proteins involved in glycolysis, TCA, and fatty acid metabolism, with a concurrent decline in oxidative phosphorylation, suggesting a reprogramming of energy utilization. Additionally, we detected upregulation of proteins involved in the stress response and protein turnover. Predicted upstream regulators also showed divergent results, with inhibition of inflammation and immune response with aging and activation of these processes with AMD. Our results support the idea that AMD is not simply advanced aging but rather the culmination of perturbed protein homeostasis, defective bioenergetics, and increased oxidative stress within the aging RPE, exacerbated by environmental factors and the genetic background of an individual.
Collapse
Affiliation(s)
- Pabalu P. Karunadharma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Twin Cities, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, And Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rebecca J. Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Twin Cities, MN 55455, USA
| | - Madilyn R. Stahl
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Twin Cities, MN 55455, USA
| | - Timothy W. Olsen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Twin Cities, MN 55455, USA
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Twin Cities, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, And Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Lehmann GL, Ginsberg M, Nolan DJ, Rodríguez C, Martínez-González J, Zeng S, Voigt AP, Mullins RF, Rafii S, Rodriguez-Boulan E, Benedicto I. Retinal Pigment Epithelium-Secreted VEGF-A Induces Alpha-2-Macroglobulin Expression in Endothelial Cells. Cells 2022; 11:2975. [PMID: 36230937 PMCID: PMC9564307 DOI: 10.3390/cells11192975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
Alpha-2-macroglobulin (A2M) is a protease inhibitor that regulates extracellular matrix (ECM) stability and turnover. Here, we show that A2M is expressed by endothelial cells (ECs) from human eye choroid. We demonstrate that retinal pigment epithelium (RPE)-conditioned medium induces A2M expression specifically in ECs. Experiments using chemical inhibitors, blocking antibodies, and recombinant proteins revealed a key role of VEGF-A in RPE-mediated A2M induction in ECs. Furthermore, incubation of ECs with RPE-conditioned medium reduces matrix metalloproteinase-2 gelatinase activity of culture supernatants, which is partially restored after A2M knockdown in ECs. We propose that dysfunctional RPE or choroidal blood vessels, as observed in retinal diseases such as age-related macular degeneration, may disrupt the crosstalk mechanism we describe here leading to alterations in the homeostasis of choroidal ECM, Bruch's membrane and visual function.
Collapse
Affiliation(s)
- Guillermo L. Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Cristina Rodríguez
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Shemin Zeng
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52246, USA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52246, USA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52246, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
27
|
Tabel M, Wolf A, Szczepan M, Xu H, Jägle H, Moehle C, Chen M, Langmann T. Genetic targeting or pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal degeneration. J Neuroinflammation 2022; 19:229. [PMID: 36115971 PMCID: PMC9482176 DOI: 10.1186/s12974-022-02589-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Dysfunctional humoral and cellular innate immunity are key components in the development and progression of age-related macular degeneration (AMD). Specifically, chronically activated microglia and their disturbed regulatory system contribute to retinal degeneration. Galectin-3, a β-galactose binding protein, is a potent driver of macrophage and microglia activation and has been implicated in neuroinflammation, including neurodegenerative diseases of the brain. Here, we hypothesized that genetic deficiency of galectin-3 or its modulation via TD139 dampens mononuclear phagocyte reactivity and delays retinal degeneration. Methods Galectin-3 expression in AMD patients was analyzed by immunohistochemical stainings. Galectin-3 knockout and BALB/cJ mice were exposed to white bright light with an intensity of 15,000 lux for 1 h and Cx3cr1GFP/+ mice to focal blue light of 50,000 lux for 10 min. BALB/cJ and Cx3cr1GFP/+ mice received intraperitoneal injections of 15 mg/kg TD139 or vehicle for five consecutive days, starting one day prior to light exposure. The effects of galectin-3 deficiency or inhibition on microglia were analyzed by immunohistochemical stainings and in situ hybridization of retinal sections and flat mounts. Pro-inflammatory cytokine levels in the retina and retinal pigment epithelium (RPE) were quantified by qRT-PCR and transcriptomic changes were analyzed by RNA-sequencing. Retinal thickness and structure were evaluated by optical coherence tomography. Results We found that galectin-3 expression was strongly upregulated in reactive retinal mononuclear phagocytes of AMD patients and in the two related mouse models of light-induced retinal degeneration. The experimental in vivo data further showed that specific targeting of galectin-3 by genetic knockout or administration of the small-molecule inhibitor TD139 reduced microglia reactivity and delayed retinal damage in both light damage conditions. Conclusion This study defines galectin-3 as a potent driver of retinal degeneration and highlights the protein as a drug target for ocular immunomodulatory therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02589-6.
Collapse
|
28
|
Martins TGDS, Sipahi AM, Mendes MA, Fowler SB, Schor P. Metaboloma use in ophthalmology. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022; 81. [DOI: 10.37039/1982.8551.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
|
29
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
30
|
Mcharg S, Booth L, Perveen R, Riba Garcia I, Brace N, Bayatti N, Sergouniotis PI, Phillips AM, Day AJ, Black GCM, Clark SJ, Dowsey AW, Unwin RD, Bishop PN. Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. Proc Natl Acad Sci U S A 2022; 119:e2118510119. [PMID: 35561216 PMCID: PMC9171765 DOI: 10.1073/pnas.2118510119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights. Therefore, we used mass spectrometry–based quantitative proteomics to compare the proteins in human submacular stromal tissue punches from donors who were homozygous for high-risk alleles at either Chr1 or Chr10 with those from donors who had protective haplotypes at these loci, all without clinical features of AMD. Additional comparisons were made with tissue from donors who were homozygous for high-risk Chr1 alleles and had early AMD. The Chr1 and Chr10 risk groups shared common changes compared with the low-risk group, particularly increased levels of mast cell–specific proteases, including tryptase, chymase, and carboxypeptidase A3. Histological analyses of submacular tissue from donors with genetic risk of AMD but without clinical features of AMD and from donors with Chr1 risk and AMD demonstrated increased mast cells, particularly the tryptase-positive/chymase-negative cells variety, along with increased levels of denatured collagen compared with tissue from low–genetic risk donors. We conclude that increased mast cell infiltration of the inner choroid, degranulation, and subsequent extracellular matrix remodeling are early events in AMD pathogenesis and represent a unifying mechanistic link between Chr1- and Chr10-mediated AMD.
Collapse
Affiliation(s)
- Selina Mcharg
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Laura Booth
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Rahat Perveen
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS (National Health Service) Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Isabel Riba Garcia
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NY, United Kingdom
| | - Nicole Brace
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Nadhim Bayatti
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Panagiotis I. Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS (National Health Service) Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS (National Health Service) Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Alexander M. Phillips
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom
| | - Anthony J. Day
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Graeme C. M. Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS (National Health Service) Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Simon J. Clark
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
- University Eye Clinic, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen 72076, Germany
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen 72076, Germany
| | - Andrew W. Dowsey
- Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol BS8 2BN, United Kingdom
| | - Richard D. Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NY, United Kingdom
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Paul N. Bishop
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS (National Health Service) Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| |
Collapse
|
31
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
32
|
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic target in eye disease. Eye (Lond) 2022; 36:328-340. [PMID: 34987199 PMCID: PMC8807626 DOI: 10.1038/s41433-021-01807-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Retinal and choroidal diseases are major causes of blindness and visual impairment in the developed world and on the rise due to an ageing population and diabetes epidemic. Standard of care is centred around blockade of vascular endothelial growth factor (VEGF), but despite having halved the number of patients losing sight, a high rate of patient non-response and loss of efficacy over time are key challenges. Dysregulation of vascular homoeostasis, coupled with fibrosis and inflammation, are major culprits driving sight-threatening eye diseases. Improving our knowledge of these pathological processes should inform the development of new drugs to address the current clinical challenges for patients. Leucine-rich α-2 glycoprotein 1 (LRG1) is an emerging key player in vascular dysfunction, inflammation and fibrosis. Under physiological conditions, LRG1 is constitutively expressed by the liver and granulocytes, but little is known about its normal biological function. In pathological scenarios, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD), its expression is ectopically upregulated and it acquires a much better understood pathogenic role. Context-dependent modulation of the transforming growth-factor β (TGFβ) pathway is one of the main activities of LRG1, but additional roles have recently been emerging. This review aims to highlight the clinical and pre-clinical evidence for the pathogenic contribution of LRG1 to vascular retinopathies, as well as extrapolate from other diseases, functions which may be relevant to eye disease. Finally, we will provide a current update on the development of anti-LRG1 therapies for the treatment of nvAMD.
Collapse
Affiliation(s)
- Giulia De Rossi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
33
|
Brinks J, van Dijk EHC, Klaassen I, Schlingemann RO, Kielbasa SM, Emri E, Quax PHA, Bergen AA, Meijer OC, Boon CJF. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Prog Retin Eye Res 2021; 87:100994. [PMID: 34280556 DOI: 10.1016/j.preteyeres.2021.100994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The choroid is a key player in maintaining ocular homeostasis and plays a role in a variety of chorioretinal diseases, many of which are poorly understood. Recent advances in the field of single-cell RNA sequencing have yielded valuable insights into the properties of choroidal endothelial cells (CECs). Here, we review the role of the choroid in various physiological and pathophysiological mechanisms, focusing on the role of CECs. We also discuss new insights regarding the phenotypic properties of CECs, CEC subpopulations, and the value of measuring transcriptomics in primary CEC cultures derived from post-mortem eyes. In addition, we discuss key phenotypic, structural, and functional differences that distinguish CECs from other endothelial cells such as retinal vascular endothelial cells. Understanding the specific clinical and molecular properties of the choroid will shed new light on the pathogenesis of the broad clinical range of chorioretinal diseases such as age-related macular degeneration, central serous chorioretinopathy and other diseases within the pachychoroid spectrum, uveitis, and diabetic choroidopathy. Although our knowledge is still relatively limited with respect to the clinical features and molecular pathways that underlie these chorioretinal diseases, we summarise new approaches and discuss future directions for gaining new insights into these sight-threatening diseases and highlight new therapeutic strategies such as pluripotent stem cell‒based technologies and gene therapy.
Collapse
Affiliation(s)
- J Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - E H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - I Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - R O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - S M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - E Emri
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - P H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A A Bergen
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - O C Meijer
- Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, the Netherlands
| | - C J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Proteomics of Primary Uveal Melanoma: Insights into Metastasis and Protein Biomarkers. Cancers (Basel) 2021; 13:cancers13143520. [PMID: 34298739 PMCID: PMC8307952 DOI: 10.3390/cancers13143520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Uveal melanoma metastases are lethal and remain incurable. A quantitative proteomic analysis of 53 metastasizing and 47 non-metastasizing primary uveal melanoma (pUM) was pursued for insights into UM metastasis and protein biomarkers. The metastatic status of the pUM specimens was defined based on clinical data, survival histories, prognostic analyses, and liver histopathology. LC MS/MS iTRAQ technology, the Mascot search engine, and the UniProt human database were used to identify and quantify pUM proteins relative to the normal choroid excised from UM donor eyes. The determined proteomes of all 100 tumors were very similar, encompassing a total of 3935 pUM proteins. Proteins differentially expressed (DE) between metastasizing and non-metastasizing pUM (n = 402) were employed in bioinformatic analyses that predicted significant differences in the immune system between metastasizing and non-metastasizing pUM. The immune proteins (n = 778) identified in this study support the immune-suppressive nature and low abundance of immune checkpoint regulators in pUM, and suggest CDH1, HLA-DPA1, and several DE immune kinases and phosphatases as possible candidates for immune therapy checkpoint blockade. Prediction modeling identified 32 proteins capable of predicting metastasizing versus non-metastasizing pUM with 93% discriminatory accuracy, supporting the potential for protein-based prognostic methods for detecting UM metastasis.
Collapse
|
35
|
Delaunay K, Sellam A, Dinet V, Moulin A, Zhao M, Gelizé E, Canonica J, Naud MC, Crisanti-Lassiaz P, Behar-Cohen F. Meteorin Is a Novel Therapeutic Target for Wet Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10132973. [PMID: 34279457 PMCID: PMC8268911 DOI: 10.3390/jcm10132973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the potential anti-angiogenic effect of MTRN (meteorin) in the laser-induced CNV rat model and explore its mechanisms of action. MTRN, thrompospondin-1, glial cell markers (GFAP, vimentin), and phalloidin were immuno-stained in non-human primate flat-mounted retinas and human retina cross sections. The effect of MTRN at different doses and time points was evaluated on laser-induced CNV at 14 days using in vivo fluorescein angiography and ex vivo quantification of CNV. A pan transcriptomic analysis of the retina and the RPE/choroid complex was used to explore MTRN effects mechanisms. In human retina, MTRN is enriched in the macula, expressed in and secreted by glial cells, and located in photoreceptor cells, including in nuclear bodies. Intravitreal MTRN administered preventively reduced CNV angiographic scores and CNV size in a dose-dependent manner. The highest dose, administered at day 7, also reduced CNV. MTRN, which is regulated by mineralocorticoid receptor modulators in the rat retina, regulates pathways associated with angiogenesis, oxidative stress, and neuroprotection. MTRN is a potential novel therapeutic candidate protein for wet AMD.
Collapse
Affiliation(s)
- Kimberley Delaunay
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Alexandre Sellam
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Virginie Dinet
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
- Biology of Cardiovascular Diseases, INSERM U1034, Pessac, Université de Bordeaux, 33000 Bordeaux, France
| | - Alexandre Moulin
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, 1000 Lausanne, Switzerland;
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Emmanuelle Gelizé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Jérémie Canonica
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, 1000 Lausanne, Switzerland;
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Patricia Crisanti-Lassiaz
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (K.D.); (A.S.); (V.D.); (M.Z.); (E.G.); (J.C.); (M.-C.N.); (P.C.-L.)
- Hôpital Cochin Ophthalmopole, Assistance Publique—Hôpitaux de Paris, 75014 Paris, France
- INSERM UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, 75006 Paris, France
- Correspondence:
| |
Collapse
|
36
|
Dhooge PPA, Runhart EH, Li CHZ, de Kat Angelino CM, Hoyng CB, van der Molen RG, den Hollander AI. Systemic complement activation levels in Stargardt disease. PLoS One 2021; 16:e0253716. [PMID: 34170959 PMCID: PMC8232401 DOI: 10.1371/journal.pone.0253716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose Preclinical research provides evidence for the complement system as a potential common pathway in Stargardt disease (STGD1) and age-related macular degeneration (AMD) leading to retinal pigment epithelium (RPE) loss. However, systemic complement activation has not yet been assessed in STGD1 patients. We conducted a cross-sectional case-control study to assess systemic complement activation in STGD1 patients and its association with disease severity. Methods Systemic concentrations of complement component C3 and its degradation product C3d were compared between 80 STGD1 patients and 80 controls that were frequency matched for age and sex. The C3d/C3 ratio was used as parameter of systemic complement activation. Within the STGD1 cohort, we additionally examined the association between the C3d/C3 ratio, demographic and behavioural factors (age, sex, smoking and BMI), and measures of disease severity (age at onset, visual acuity, and area of atrophy). Results The C3d/C3 ratio did not significantly differ between patients (mean C3d/C3 ratio 3.5±1.4) and controls (mean C3d/C3 ratio 3.6±1.0), mean difference -0.156 (p = 0.804, independent samples t-test). The overall effect size was 8% (95% confidence interval, 3–15%). Elevated C3d/C3 ratios (>8.1) were found in three patients who all had a concomitant inflammatory condition at the time of blood draw. Within the patient cohort, C3 levels were associated with sex (mean difference -134, p = 0.001, independent samples t-test) and BMI (correlation coefficient 0.463, p<0.001, Spearman’s Correlation). Conclusions Systemic complement levels were not elevated in STGD1 patients compared to age and sex matched controls and was not associated with STGD1 severity. Considering the continued absent proof of a systemic contribution of the complement system to RPE loss in STGD1 patients, we hypothesize that complement activation in STGD1 is more likely a local process. In light of upcoming complement-targeted therapies, further studies are needed that measure complement levels in the eye of STGD1 patients.
Collapse
Affiliation(s)
- Patty P. A. Dhooge
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Esmee H. Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Corrie M. de Kat Angelino
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Sivagurunathan S, Selvan LDN, Khan AA, Parameswaran S, Bhattacharjee H, Gogoi K, Gowda H, Keshava Prasad TS, Pandey A, Kumar SA, Rishi P, Rishi E, Ratra D, Bhende M, Janakiraman N, Biswas J, Krishnakumar S. Proteomics-based approach for differentiation of age-related macular degeneration sub-types. Indian J Ophthalmol 2021; 69:647-654. [PMID: 33595494 PMCID: PMC7942106 DOI: 10.4103/ijo.ijo_470_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: Age-related macular degeneration (AMD) is one of the leading causes of irreversible central vision loss in the elderly population. The current study aims to find non-invasive prognostic biomarkers in the urine specimens of the AMD patients. Methods: Peripheral blood and urine samples were collected from 23 controls and 61 AMD patients. Genomic DNA was extracted from the buffy coat of peripheral blood. Allele specific PCR was used to assay SNPs in complement factor H (CFH), complement component 3 (C3). Comparative proteomic analysis of urine samples from early AMD, choroidal neovascular membrane (CNVM), geographic atrophy (GA), and healthy controls was performed using isobaric labelling followed by mass spectrometry. Validation was performed using enzyme-linked immunosorbent assay (ELISA). Results: Comparative proteomic analysis of urine samples identified 751 proteins, of which 383 proteins were found to be differentially expressed in various groups of AMD patients. Gene ontology classification of differentially expressed proteins revealed the majority of them were involved in catalytic functions and binding activities. Pathway analysis showed cell adhesion molecule pathways (CAMs), Complement and coagulation cascades, to be significantly deregulated in AMD. Upon validation by ELISA, SERPINA-1 (Alpha1 antitrypsin), TIMP-1 (Tissue inhibitor of matrix metaloprotease-1), APOA-1 (Apolipoprotein A-1) were significantly over-expressed in AMD (n = 61) patients compared to controls (n = 23). A logistic model of APOA-1 in combination with CFH and C3 polymorphisms predicted the risk of developing AMD with 82% accuracy. Conclusion: This study gives us a preliminary data on non-invasive predictive biomarkers for AMD, which can be further validated in a large cohort and translated for diagnostic use.
Collapse
Affiliation(s)
- Sivapriya Sivagurunathan
- L&T Opthalmic Pathology, Vision Research Foundation, Sankara Nethralaya; Centre for Biotechnology, Anna University, Chennai, India
| | | | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Krishna Gogoi
- Sri Sankaradeva Nethralaya, Beltola, Guwahati, Assam, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - S Ashok Kumar
- Centre for Biotechnology, Anna University, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Ekta Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Dhanashree Ratra
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Jyotirmay Biswas
- L&T Opthalmic Pathology, Vision Research Foundation; Department of Uvea, Sankara Nethralaya, Chennai, India
| | | |
Collapse
|
38
|
Caridi B, Doncheva D, Sivaprasad S, Turowski P. Galectins in the Pathogenesis of Common Retinal Disease. Front Pharmacol 2021; 12:687495. [PMID: 34079467 PMCID: PMC8165321 DOI: 10.3389/fphar.2021.687495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diseases of the retina are major causes of visual impairment and blindness in developed countries and, due to an ageing population, their prevalence is continually rising. The lack of effective therapies and the limitations of those currently in use highlight the importance of continued research into the pathogenesis of these diseases. Vascular endothelial growth factor (VEGF) plays a major role in driving vascular dysfunction in retinal disease and has therefore become a key therapeutic target. Recent evidence also points to a potentially similarly important role of galectins, a family of β-galactoside-binding proteins. Indeed, they have been implicated in regulating fundamental processes, including vascular hyperpermeability, angiogenesis, neuroinflammation, and oxidative stress, all of which also play a prominent role in retinopathies. Here, we review direct evidence for pathological roles of galectins in retinal disease. In addition, we extrapolate potential roles of galectins in the retina from evidence in cancer, immune and neuro-biology. We conclude that there is value in increasing understanding of galectin function in retinal biology, in particular in the context of the retinal vasculature and microglia. With greater insight, recent clinical developments of galectin-targeting drugs could potentially also be of benefit to the clinical management of many blinding diseases.
Collapse
Affiliation(s)
- Bruna Caridi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Dilyana Doncheva
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sobha Sivaprasad
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
39
|
Hadziahmetovic M, Malek G. Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Front Cell Dev Biol 2021; 8:612812. [PMID: 33569380 PMCID: PMC7868387 DOI: 10.3389/fcell.2020.612812] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease of the aging retina, in which patients experience severe vision loss. Therapies available to patients are limited and are only effective in a sub-population of patients. Future comprehensive clinical care depends on identifying new therapeutic targets and adopting a multi-therapeutic approach. With this goal in mind, this review examines the fundamental concepts underlying the development and progression of AMD and re-evaluates the pathogenic pathways associated with the disease, focusing on the impact of injury at the cellular level, with the understanding that critical assessment of the literature may help pave the way to identifying disease-relevant targets. During this process, we elaborate on responses of AMD vulnerable cells, including photoreceptors, retinal pigment epithelial cells, microglia, and choroidal endothelial cells, based on in vitro and in vivo studies, to select stressful agents, and discuss current therapeutic developments in the field, targeting different aspects of AMD pathobiology.
Collapse
Affiliation(s)
- Majda Hadziahmetovic
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States.,Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
40
|
Edwards M, Lutty GA. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:89-119. [PMID: 33847999 DOI: 10.1007/978-3-030-66014-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Collapse
Affiliation(s)
- Malia Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
41
|
Single-cell RNA sequencing in vision research: Insights into human retinal health and disease. Prog Retin Eye Res 2020; 83:100934. [PMID: 33383180 DOI: 10.1016/j.preteyeres.2020.100934] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Gene expression provides valuable insight into cell function. As such, vision researchers have frequently employed gene expression studies to better understand retinal physiology and disease. With the advent of single-cell RNA sequencing, expression experiments provide an unparalleled resolution of information. Instead of studying aggregated gene expression across all cells in a heterogenous tissue, single-cell technology maps RNA to an individual cell, which facilitates grouping of retinal and choroidal cell types for further study. Single-cell RNA sequencing has been quickly adopted by both basic and translational vision researchers, and single-cell level gene expression has been studied in the visual systems of animal models, retinal organoids, and primary human retina, RPE, and choroid. These experiments have generated detailed atlases of gene expression and identified new retinal cell types. Likewise, single-cell RNA sequencing investigations have characterized how gene expression changes in the setting of many retinal diseases, including how choroidal endothelial cells are altered in age-related macular degeneration. In addition, this technology has allowed vision researchers to discover drivers of retinal development and model rare retinal diseases with induced pluripotent stem cells. In this review, we will overview the growing number of single-cell RNA sequencing studies in the field of vision research. We will summarize experimental considerations for designing single-cell RNA sequencing experiments and highlight important advancements in retinal, RPE, choroidal, and retinal organoid biology driven by this technology. Finally, we generalize these findings to genes involved in retinal degeneration and outline the future of single-cell expression experiments in studying retinal disease.
Collapse
|
42
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Saikia P, Crabb JS, Dibbin LL, Juszczak MJ, Willard B, Jang GF, Shiju TM, Crabb JW, Wilson SE. Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep 2020; 10:16717. [PMID: 33028893 PMCID: PMC7541534 DOI: 10.1038/s41598-020-73686-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myofibroblasts are fibroblastic cells that function in wound healing, tissue repair and fibrosis, and arise from bone marrow (BM)-derived fibrocytes and a variety of local progenitor cells. In the cornea, myofibroblasts are derived primarily from stromal keratocytes and from BM-derived fibrocytes after epithelial-stromal and endothelial-stromal injuries. Quantitative proteomic comparison of mature alpha-smooth muscle actin (α-SMA)+ myofibroblasts (verified by immunocytochemistry for vimentin, α-SMA, desmin, and vinculin) generated from rabbit corneal fibroblasts treated with transforming growth factor (TGF) beta-1 or generated directly from cultured BM treated with TGF beta-1 was pursued for insights into possible functional differences. Paired cornea-derived and BM-derived α-SMA+ myofibroblast primary cultures were generated from four New Zealand white rabbits and confirmed to be myofibroblasts by immunocytochemistry. Paired cornea- and BM-derived myofibroblast specimens from each rabbit were analyzed by LC MS/MS iTRAQ technology using an Orbitrap Fusion Lumos Tribrid mass spectrometer, the Mascot search engine, the weighted average quantification method and the UniProt rabbit and human databases. From 2329 proteins quantified with ≥ 2 unique peptides from ≥ 3 rabbits, a total of 673 differentially expressed (DE) proteins were identified. Bioinformatic analysis of DE proteins with Ingenuity Pathway Analysis implicate progenitor-dependent functional differences in myofibroblasts that could impact tissue development. Our results suggest BM-derived myofibroblasts may be more prone to the formation of excessive cellular and extracellular material that are characteristic of fibrosis.
Collapse
Affiliation(s)
- Paramananda Saikia
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jack S Crabb
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Luciana L Dibbin
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Madison J Juszczak
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | | | - Geeng-Fu Jang
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Thomas Michael Shiju
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - John W Crabb
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Lerner Research Institute, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
44
|
Nita M, Grzybowski A. Interplay between reactive oxygen species and autophagy in the course of age-related macular degeneration. EXCLI JOURNAL 2020; 19:1353-1371. [PMID: 33192217 PMCID: PMC7658465 DOI: 10.17179/excli2020-2915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Pathological biomolecules such as lipofuscin, methylglyoxal-modified proteins (the major precursors of advanced glycationend products), misfolding protein deposits and dysfunctional mitochondria are source of oxidative stress and act as strong autophagic stimulators in age-related macular degeneration. Disturbed autophagy accelerates progression of the disease, since it leads to retinal cells' death and activates inflammation by the interplay with the NLRP3 inflammasome complex. Vascular dysfunction and hypoxia, as well as circulating autoantibodies against autophagy regulators (anti-S100A9, anti-ANXA5, and anti-HSPA8, A9 and B4) compromise an autophagy-mediated mechanism as well. Metformin, the autophagic stimulator, may act as a senostatic drug to inhibit the senescent phenotype in the age-related macular degeneration. PGC-1α , Sirt1 and AMPK represent new therapeutic targets for interventions in this disease.
Collapse
Affiliation(s)
- Malgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed" Katowice, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmolgy, Medical Faculty, University of Warmia and Mazury, Olsztyn, Poland.,Institute for Research in Ophthalmology, Poznań, Poland
| |
Collapse
|
45
|
Wang Q, Henry TAN, Pronin AN, Jang GF, Lubaczeuski C, Crabb JW, Bernal-Mizrachi E, Slepak VZ. The regulatory G protein signaling complex, Gβ5-R7, promotes glucose- and extracellular signal-stimulated insulin secretion. J Biol Chem 2020; 295:7213-7223. [PMID: 32229584 PMCID: PMC7247291 DOI: 10.1074/jbc.ra119.011534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5-R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M-stimulated glucose-stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5-/- islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gβ5-R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gβ5-R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Taylor A N Henry
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Camila Lubaczeuski
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - John W Crabb
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136.
| |
Collapse
|
46
|
Transcriptomic Characterization of Human Choroidal Neovascular Membranes Identifies Calprotectin as a Novel Biomarker for Patients with Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1632-1642. [PMID: 32339498 DOI: 10.1016/j.ajpath.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Recent studies deciphering the transcriptional profile of choroidal neovascularization (CNV) in body donor eyes with neovascular age-related macular degeneration are limited by the time span from death to preservation and the associated 5'-RNA degradation. This study therefore used CNV and control specimens that were formalin-fixed and paraffin-embedded immediately after surgical extraction and analyzed them by a 3'-RNA sequencing approach. Transcriptome profiles were analyzed to estimate content of immune and stromal cells and to define disease-associated gene signatures by using statistical and bioinformatics methods. This study identified 158 differentially expressed genes (DEGs) that were significantly increased in CNV compared with control tissue. Cell type enrichment analysis revealed a diverse cellular landscape with an enrichment of endothelial cells, macrophages, T cells, and natural killer T cells in the CNV. Gene ontology enrichment analysis found that DEGs contributed to blood vessel development, extracellular structure organization, response to wounding, and several immune-related terms. The S100 calcium-binding proteins A8 (S100A8) and A9 (S100A9) emerged among the top DEGs, as confirmed by immunohistochemistry on CNV tissue and protein analysis of vitreous samples. This study provides a high-resolution RNA-sequencing-based transcriptional signature of human CNV, characterizes its compositional pattern of immune and stromal cells, and reveals S100A8/A9 to be a novel biomarker and promising target for therapeutics and diagnostics directed at age-related macular degeneration.
Collapse
|
47
|
Mammadzada P, Corredoira PM, André H. The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective. Cell Mol Life Sci 2020; 77:819-833. [PMID: 31893312 PMCID: PMC7058677 DOI: 10.1007/s00018-019-03422-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms that underlie age-related macular degeneration (AMD) has led to the identification of key molecules. Hypoxia-inducible transcription factors (HIFs) have been associated with choroidal neovascularization and the progression of AMD into the neovascular clinical phenotype (nAMD). HIFs regulate the expression of multiple growth factors and cytokines involved in angiogenesis and inflammation, hallmarks of nAMD. This knowledge has propelled the development of a new group of therapeutic strategies focused on gene therapy. The present review provides an update on current gene therapies in ocular angiogenesis, particularly nAMD, from both basic and clinical perspectives.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Pablo M Corredoira
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Helder André
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
48
|
Jorba G, Aguirre-Plans J, Junet V, Segú-Vergés C, Ruiz JL, Pujol A, Fernández-Fuentes N, Mas JM, Oliva B. In-silico simulated prototype-patients using TPMS technology to study a potential adverse effect of sacubitril and valsartan. PLoS One 2020; 15:e0228926. [PMID: 32053711 PMCID: PMC7018085 DOI: 10.1371/journal.pone.0228926] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Unveiling the mechanism of action of a drug is key to understand the benefits and adverse reactions of a medication in an organism. However, in complex diseases such as heart diseases there is not a unique mechanism of action but a wide range of different responses depending on the patient. Exploring this collection of mechanisms is one of the clues for a future personalized medicine. The Therapeutic Performance Mapping System (TPMS) is a Systems Biology approach that generates multiple models of the mechanism of action of a drug. Each molecular mechanism generated could be associated to particular individuals, here defined as prototype-patients, hence the generation of models using TPMS technology may be used for detecting adverse effects to specific patients. TPMS operates by (1) modelling the responses in humans with an accurate description of a protein network and (2) applying a Multilayer Perceptron-like and sampling strategy to find all plausible solutions. In the present study, TPMS is applied to explore the diversity of mechanisms of action of the drug combination sacubitril/valsartan. We use TPMS to generate a wide range of models explaining the relationship between sacubitril/valsartan and heart failure (the indication), as well as evaluating their association with macular degeneration (a potential adverse effect). Among the models generated, we identify a set of mechanisms of action associated to a better response in terms of heart failure treatment, which could also be associated to macular degeneration development. Finally, a set of 30 potential biomarkers are proposed to identify mechanisms (or prototype-patients) more prone of suffering macular degeneration when presenting good heart failure response. All prototype-patients models generated are completely theoretical and therefore they do not necessarily involve clinical effects in real patients. Data and accession to software are available at http://sbi.upf.edu/data/tpms/.
Collapse
Affiliation(s)
- Guillem Jorba
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Joaquim Aguirre-Plans
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Valentin Junet
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | | | | | - Albert Pujol
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
| | - Narcís Fernández-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic, Catalonia, Spain
| | | | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
49
|
Pool FM, Kiel C, Serrano L, Luthert PJ. Repository of proposed pathways and protein-protein interaction networks in age-related macular degeneration. NPJ Aging Mech Dis 2020; 6:2. [PMID: 31934346 PMCID: PMC6946811 DOI: 10.1038/s41514-019-0039-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the commonest causes of sight loss in the elderly population and to date there is no intervention that slows or prevents early AMD disease progressing to blinding neovascularization or geographic atrophy. AMD is a complex disease and factors proposed to contribute to the development and progression of disease include aging, genetics, epigenetics, oxidative stress, pro-inflammatory state, and life-style factors such as smoking, alcohol, and high fat diet. Here, we generate a knowledge repository of pathways and protein–protein interaction (PPI) networks likely to be implicated in AMD pathogenesis, such as complement activation, lipid trafficking and metabolism, vitamin A cycle, oxidative stress, proteostasis, bioenergetics, autophagy/mitophagy, extracellular matrix (ECM) turnover, and choroidal vascular dropout. Two disctinct clusters ermerged from the networks for parainflamation and ECM homeostasis, which may represent two different disease modules underlying AMD pathology. Our analyses also suggest that the disease manifests primarily in RPE/choroid and less in neural retina. The use of standardized syntax when generating maps of these biological processes (SBGN standard) and networks (PSI standard) enables visualization of complex information in graphical programs such as CellDesigner and Cytoscape and enhances reusability and extension of data. The ability to focus onto subnetworks, multiple visualizations and simulation options will enable the AMD research community to computationally model subnetworks or to test experimentally new hypotheses arising from connectivities in the AMD pathway map.
Collapse
Affiliation(s)
- Fran M Pool
- 1UCL Institute of Ophthalmology, and NIHR Moorfields Biomedical Research Centre, University College London, 11-43 Bath Street, London, EC1V 9EL UK
| | - Christina Kiel
- 2Systems Biology Ireland & Charles Institute of Dermatology & School of Medicine, University College Dublin, Belfield Dublin, 4 Ireland
| | - Luis Serrano
- 3Centre for Genomic Regulation (CRG), Systems Biology Programme. The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003 Spain.,4Universitat Pompeu Fabra (UPF), Barcelona, 08003 Spain.,5Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010 Spain
| | - Philip J Luthert
- 1UCL Institute of Ophthalmology, and NIHR Moorfields Biomedical Research Centre, University College London, 11-43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
50
|
McFadyen JD, Zeller J, Potempa LA, Pietersz GA, Eisenhardt SU, Peter K. C-Reactive Protein and Its Structural Isoforms: An Evolutionary Conserved Marker and Central Player in Inflammatory Diseases and Beyond. Subcell Biochem 2020; 94:499-520. [PMID: 32189313 DOI: 10.1007/978-3-030-41769-7_20] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) is an evolutionary highly conserved member of the pentraxin superfamily of proteins. CRP is widely used as a marker of inflammation, infection and for risk stratification of cardiovascular events. However, there is now a large body of evidence, that continues to evolve, detailing that CRP directly mediates inflammatory reactions and the innate immune response in the context of localised tissue injury. These data support the concept that the pentameric conformation of CRP dissociates into pro-inflammatory CRP isoforms termed pCRP* and monomeric CRP. These pro-inflammatory CRP isoforms undergo conformational changes that facilitate complement binding and immune cell activation and therefore demonstrate the ability to trigger complement activation, activate platelets, monocytes and endothelial cells. The dissociation of pCRP occurs on the surface of necrotic, apoptotic, and ischaemic cells, regular β-sheet structures such as β-amyloid, the membranes of activated cells (e.g., platelets, monocytes, and endothelial cells), and/or the surface of microparticles, the latter by binding to phosphocholine. Therefore, the deposition and localisation of these pro-inflammatory isoforms of CRP have been demonstrated to amplify inflammation and tissue damage in a broad range of clinical conditions including ischaemia/reperfusion injury, Alzheimer's disease, age-related macular degeneration and immune thrombocytopaenia. Given the potentially broad relevance of CRP to disease pathology, the development of inhibitors of CRP remains an area of active investigation, which may pave the way for novel therapeutics for a diverse range of inflammatory diseases.
Collapse
Affiliation(s)
- James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia.
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre, Freiburg, Germany
| | | | - Geoffrey A Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, Australia.
- Heart Centre, The Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|