1
|
Kapp KL, Garcia-Marques F, Totten SM, Bermudez A, Tanimoto C, Brooks JD, Pitteri SJ. Intact glycopeptide analysis of human prostate tissue reveals site-specific heterogeneity of protein glycosylation in prostate cancer. Glycobiology 2025; 35:cwaf010. [PMID: 40036572 PMCID: PMC11899575 DOI: 10.1093/glycob/cwaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Approximately 300,000 American men were diagnosed with prostate cancer in 2024. Existing screening approaches based on measuring levels of prostate-specific antigen in the blood lack specificity for prostate cancer. Studying the glycans attached to proteins has the potential to generate new biomarker candidates and/or increase the specificity of existing protein biomarkers, and studying protein glycosylation changes in prostate cancer could also add new information to our understanding of prostate cancer biology. Here, we present the analysis of N-glycoproteins in clinical prostate cancer tissue and patient-matched, non-cancerous adjacent tissue using LC-MS/MS-based intact N-linked glycopeptide analysis. This analysis allowed us to characterize protein N-linked glycosylation changes in prostate cancer at the glycoprotein, glycopeptide, and glycosite levels. Overall, 1894 unique N-glycosites on 7022 unique N-glycopeptides from 1354 unique glycoproteins were identified. Importantly, we observed an overall increase in glycoprotein, glycopeptide, and glycosite counts in prostate cancer tissue than non-cancerous tissue. We identified biological functions enriched in prostate cancer that relate to cancer development. Additionally, we characterized N-glycosite-specific changes in prostate cancer, demonstrating significant meta- and micro-heterogeneity in N-glycan composition in prostate cancer in comparison to non-cancerous tissue. Our findings support the idea that protein glycosylation is heavily impacted and aberrant in prostate cancer and provide examples of N-glycosite-specific changes that could be exploited for more specific markers of prostate cancer.
Collapse
Affiliation(s)
- Kathryn L Kapp
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Center of Academic Medicine, 453 Quarry Rd, Urology-5656, Palo Alto, California 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Wang Z, Zhang J, Li L. Recent Advances in Labeling-Based Quantitative Glycomics: From High-Throughput Quantification to Structural Elucidation. Proteomics 2025; 25:e202400057. [PMID: 39580675 PMCID: PMC11735667 DOI: 10.1002/pmic.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Glycosylation, a crucial posttranslational modification (PTM), plays important roles in numerous biological processes and is linked to various diseases. Despite its significance, the structural complexity and diversity of glycans present significant challenges for mass spectrometry (MS)-based quantitative analysis. This review aims to provide an in-depth overview of recent advancements in labeling strategies for N-glycomics and O-glycomics, with a specific focus on enhancing the sensitivity, specificity, and throughput of MS analyses. We categorize these advancements into three major areas: (1) the development of isotopic/isobaric labeling techniques that significantly improve multiplexing capacity and throughput for glycan quantification; (2) novel methods that aid in the structural elucidation of complex glycans, particularly sialylated and fucosylated glycans; and (3) labeling techniques that enhance detection ionization efficiency, separation, and sensitivity for matrix-assisted laser desorption/ionization (MALDI)-MS and capillary electrophoresis (CE)-based glycan analysis. In addition, we highlight emerging trends in single-cell glycomics and bioinformatics tools that have the potential to revolutionize glycan quantification. These developments not only expand our understanding of glycan structures and functions but also open new avenues for biomarker discovery and therapeutic applications. Through detailed discussions of methodological advancements, this review underscores the critical role of derivatization methods in advancing glycan identification and quantification.
Collapse
Affiliation(s)
- Zicong Wang
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jingwei Zhang
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lingjun Li
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Lachman Institute for Pharmaceutical DevelopmentSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Khorshed AA, Savchenko O, Liu J, Shoute L, Zeng J, Ren S, Gu J, Jha N, Yang Z, Wang J, Jin L, Chen J. Development of an impedance-based biosensor for determination of IgG galactosylation levels. Biosens Bioelectron 2024; 245:115793. [PMID: 37984315 DOI: 10.1016/j.bios.2023.115793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
The glycan profile of immunoglobulin G (IgG) molecule and its changes are associated with a number of different diseases. Galactosylation of IgG was recently suggested as a potential biomarker for rheumatoid arthritis, inflammatory bowel disease and many cancers. In this paper, we propose a portable impedance-based biosensor that utilizes lectin array technology to detect glycans in IgG. Biotinylated Griffonia simplicifolia (GSL II) and Ricinus communis agglutinin I (RCA I) lectins were used in our biosensor design for determination of the ratio of N-acetyl glucosamine (GlcNAc) to galactose (Gal) respectively, which is termed agalactosylation factor (AF). Streptavidin gold nanoparticles (GNP) were conjugated to biotinylated lectin bonded to the carbohydrate in the glycoprotein to magnify the change in impedance signal and enhance detection sensitivity. The method was successfully applied to differentiation of the galactosylation levels in human and rat IgG. In addition, we present proof of concept use of our biosensor for differentiation of COVID-19 positive patient samples from negative patients. Consequently, the sensor can be useful in future applications to distinguish between glycan profiles of IgG from healthy and patient samples in disease studies. Our biosensor permits analysis of human serum without conventional time-consuming IgG purification steps or pretreatment using enzyme digestion to cut the sugars from the glycoprotein molecule. The results suggest that the proposed point of care (POC) biosensor can be used for evaluating disease progression and treatment efficacy via monitoring changes in the galactosylation profiles of IgG in patients.
Collapse
Affiliation(s)
- Ahmed A Khorshed
- Department of Biomedical Engineering, University of Alberta, Canada; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Oleksandra Savchenko
- Department of Biomedical Engineering, University of Alberta, Canada; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lian Shoute
- Department of Biomedical Engineering, University of Alberta, Canada
| | - Jie Zeng
- Department of Biomedical Engineering, University of Alberta, Canada
| | - Shifang Ren
- Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxing Gu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Naresh Jha
- Cross-cancer Institute, Edmonton, Alberta, Canada
| | - Zhong Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Shanghai, China
| | - Jie Chen
- Department of Biomedical Engineering, University of Alberta, Canada; Department of Electrical and Computer Engineering, University of Alberta, Canada.
| |
Collapse
|
4
|
Wallace EN, West CA, McDowell CT, Lu X, Bruner E, Mehta AS, Aoki-Kinoshita KF, Angel PM, Drake RR. An N-glycome tissue atlas of 15 human normal and cancer tissue types determined by MALDI-imaging mass spectrometry. Sci Rep 2024; 14:489. [PMID: 38177192 PMCID: PMC10766640 DOI: 10.1038/s41598-023-50957-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.
Collapse
Affiliation(s)
- Elizabeth N Wallace
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
5
|
Cheng H, Wang S, Gao D, Yu K, Chen H, Huang Y, Li M, Zhang J, Guo K. Nucleotide sugar transporter SLC35A2 is involved in promoting hepatocellular carcinoma metastasis by regulating cellular glycosylation. Cell Oncol (Dordr) 2023; 46:283-297. [PMID: 36454514 DOI: 10.1007/s13402-022-00749-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Recently, aberrant glycosylation has been recognized to be relate to malignant behaviors of cancer and outcomes of patients with various cancers. SLC35A2 plays an indispensable role on glycosylation as a nucleotide sugar transporter. However, effects of SLC35A2 on malignant behaviors of cancer cells and alteration of cancer cells surface glycosylation profiles are still not fully understood, particularly in hepatocellular carcinoma (HCC). Hence, from a glycosylation perspective, we investigated the effects of SLC35A2 on metastatic behaviors of HCC cells. METHODS SLC35A2 expression in clinical samples and HCC cells was examined by immunohistochemical staining or Western blot/quantitative PCR and was regulated by RNA interference or vectors-mediated transfection. Effects of SLC35A2 expression alteration on metastatic behaviors and membrane glycan profile of HCC cells were observed by using respectively invasion, migration, cell adhesion assay, in vivo lung metastatic nude mouse model and lectins microarray. Co-location among proteins in HCC cells was observed by fluorescence microscope and detected by an in vitro co-immunoprecipitation assay. RESULTS SLC35A2 was upregulated in HCC tissues, and is associated with poor prognosis of HCC patients. SLC35A2 expression alteration significantly affected the invasion, adhesion, metastasis and membrane glycan profile and led to the dysregulated expressions or glycosylation of cell adhesion-related molecules in HCC cells. Mechanistically, the maintenance of SLC35A2 activity is critical for the recruitment of the key galactosyltransferase B4GalT1, which is responsible for complex glycoconjugate and lactose biosynthesis, to Golgi apparatus in HCC cells. CONCLUSION SLC35A2 plays important roles in promoting HCC metastasis by regulating cellular glycosylation modification and inducing the cell adhesive ability of HCC cells.
Collapse
Affiliation(s)
- Hongxia Cheng
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China
| | - Sikai Wang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yilan Huang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China
| | - Miaomiao Li
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Kun Guo
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Zhongshan Hospital, Building19, No. 180, Fenglin Road, 20032, Shanghai, People's Republic of China.
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Jiang S, Wang T, Behren S, Westerlind U, Gawlitza K, Persson JL, Rurack K. Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core-Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells. ACS APPLIED NANO MATERIALS 2022; 5:17592-17605. [PMID: 36583127 PMCID: PMC9791662 DOI: 10.1021/acsanm.2c03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core-fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes.
Collapse
Affiliation(s)
- Shan Jiang
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| | - Tianyan Wang
- Department
of Molecular Biology, Umeå University, S-901 87Umeå, Sweden
| | - Sandra Behren
- Department
of Chemistry, Umeå University, S-901 87Umeå, Sweden
| | | | - Kornelia Gawlitza
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| | - Jenny L. Persson
- Department
of Molecular Biology, Umeå University, S-901 87Umeå, Sweden
- Division
of Experimental Cancer Research, Department of Translational Medicine,
Clinical Research Centre, Lund University, S-214 28Malmö, Sweden
| | - Knut Rurack
- Chemical
and Optical Sensing Division (1.9), Bundesanstalt
für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße
11, D-12489Berlin, Germany
| |
Collapse
|
7
|
Lee YR, Briggs MT, Young C, Condina MR, Kuliwaba JS, Anderson PH, Hoffmann P. Mass spectrometry imaging spatially identifies complex-type N-glycans as putative cartilage degradation markers in human knee osteoarthritis tissue. Anal Bioanal Chem 2022; 414:7597-7607. [PMID: 36125541 PMCID: PMC9587078 DOI: 10.1007/s00216-022-04289-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
N-Glycan alterations contribute to the pathophysiology and progression of various diseases. However, the involvement of N-glycans in knee osteoarthritis (KOA) progression at the tissue level, especially within articular cartilage, is still poorly understood. Thus, the aim of this study was to spatially map and identify KOA-specific N-glycans from formalin-fixed paraffin-embedded (FFPE) osteochondral tissue of the tibial plateau relative to cadaveric control (CTL) tissues. Human FFPE osteochondral tissues from end-stage KOA patients (n=3) and CTL individuals (n=3), aged >55 years old, were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, it was revealed that 22 N-glycans were found in the cartilage region of KOA and CTL tissue. Of those, 15 N-glycans were more prominent in KOA cartilage than CTL cartilage. We then compared sub-regions of KOA and CTL tissues based on the Osteoarthritis Research Society International (OARSI) histopathological grade (1 to 6), where 1 is an intact cartilage surface and 6 is cartilage surface deformation. Interestingly, three specific complex-type N-glycans, (Hex)4(HexNAc)3, (Hex)4(HexNAc)4, and (Hex)5(HexNAc)4, were found to be localized to the superficial fibrillated zone of degraded cartilage (KOA OARSI 2.5-4), compared to adjacent cartilage with less degradation (KOA OARSI 1-2) or relatively healthy cartilage (CTL OARSI 1-2). Our results demonstrate that N-glycans specific to degraded cartilage in KOA patients have been identified at the tissue level for the first time. The presence of these N-glycans could further be evaluated as potential diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
- Discipline of Orthopedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia Australia
| | - Matthew T. Briggs
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| | - Mark R. Condina
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| | - Julia S. Kuliwaba
- Discipline of Orthopedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia Australia
| | - Paul H. Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia Australia
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000 Australia
| |
Collapse
|
8
|
Tena J, Maezawa I, Barboza M, Wong M, Zhu C, Alvarez MR, Jin LW, Zivkovic AM, Lebrilla CB. Regio-Specific N-Glycome and N-Glycoproteome Map of the Elderly Human Brain With and Without Alzheimer's Disease. Mol Cell Proteomics 2022; 21:100427. [PMID: 36252735 PMCID: PMC9674923 DOI: 10.1016/j.mcpro.2022.100427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The proteins in the cell membrane of the brain are modified by glycans in highly interactive regions. The glycans and glycoproteins are involved in cell-cell interactions that are of fundamental importance to the brain. In this study, the comprehensive N-glycome and N-glycoproteome of the brain were determined in 11 functional brain regions, some of them known to be affected with the progression of Alzheimer's disease. N-glycans throughout the regions were generally highly branched and highly sialofucosylated. Regional variations were also found with regard to the glycan types including high mannose and complex-type structures. Glycoproteomic analysis identified the proteins that differed in glycosylation in the various regions. To obtain the broader representation of glycan compositions, four subjects with two in their 70s and two in their 90s representing two Alzheimer's disease subjects, one hippocampal sclerosis subject, and one subject with no cognitive impairment were analyzed. The four subjects were all glycomically mapped across 11 brain regions. Marked differences in the glycomic and glycoproteomic profiles were observed between the samples.
Collapse
Affiliation(s)
- Jennyfer Tena
- Department of Chemistry, University of California, Davis, California, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA,UC Davis MIND Institute, Sacramento, California, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, California, USA,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, California, USA
| | - Chenghao Zhu
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | | | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA,UC Davis MIND Institute, Sacramento, California, USA
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, California, USA,For correspondence: Carlito B. Lebrilla
| |
Collapse
|
9
|
Lyman DF, Bell A, Black A, Dingerdissen H, Cauley E, Gogate N, Liu D, Joseph A, Kahsay R, Crichton DJ, Mehta A, Mazumder R. Modeling and integration of N-glycan biomarkers in a comprehensive biomarker data model. Glycobiology 2022; 32:855-870. [PMID: 35925813 PMCID: PMC9487899 DOI: 10.1093/glycob/cwac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hampers their use in research and clinical application. Mass spectrometry measures of fifty N-glycans, on seven serum proteins in liver disease, were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized FDA-supported BioCompute Object. Using the biomarker data model allows capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers, can integrate N-glycan biomarker data with multi-source biomedical data, and can foster discovery and insight within a unified data framework for glycan biomarker representation thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/).
Collapse
Affiliation(s)
- Daniel F Lyman
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Amanda Bell
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Alyson Black
- The Department of Cell & Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29403, United States of America
| | - Hayley Dingerdissen
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Edmund Cauley
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| | - Nikhita Gogate
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - David Liu
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States of America
| | - Ashia Joseph
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Robel Kahsay
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Daniel J Crichton
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States of America
| | - Anand Mehta
- The Department of Cell & Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29403, United States of America
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| |
Collapse
|
10
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
11
|
Increased levels of acidic free-N-glycans, including multi-antennary and fucosylated structures, in the urine of cancer patients. PLoS One 2022; 17:e0266927. [PMID: 35413075 PMCID: PMC9004742 DOI: 10.1371/journal.pone.0266927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022] Open
Abstract
We recently reported increased levels of urinary free-glycans in some cancer patients. Here, we focused on cancer related alterations in the levels of high molecular weight free-glycans. The rationale for this study was that branching, elongation, fucosylation and sialylation, which lead to increases in the molecular weight of glycans, are known to be up-regulated in cancer. Urine samples from patients with gastric cancer, pancreatic cancer, cholangiocarcinoma and colorectal cancer and normal controls were analyzed. The extracted free-glycans were fluorescently labeled with 2-aminopyridine and analyzed by multi-step liquid chromatography. Comparison of the glycan profiles revealed increased levels of glycans in some cancer patients. Structural analysis of the glycans was carried out by performing chromatography and mass spectrometry together with enzymatic or chemical treatments. To compare glycan levels between samples with high sensitivity and selectivity, simultaneous measurements by reversed-phase liquid chromatography-selected ion monitoring of mass spectrometry were also performed. As a result, three lactose-core glycans and 78 free-N-glycans (one phosphorylated oligomannose-type, four sialylated hybrid-type and 73 bi-, tri- and tetra-antennary complex-type structures) were identified. Among them, glycans with α1,3-fucosylation ((+/− sialyl) Lewis X), triply α2,6-sialylated tri-antennary structures and/or a (Man3)GlcNAc1-core displayed elevated levels in cancer patients. However, simple α2,3-sialylation and α1,6-core-fucosylation did not appear to contribute to the observed increase in the level of glycans. Interestingly, one tri-antennary free-N-glycan that showed remarkable elevation in some cancer patients contained a unique Glcβ1-4GlcNAc-core instead of the common GlcNAc2-core at the reducing end. This study provides further insights into free-glycans as potential tumor markers and their processing pathways in cancer.
Collapse
|
12
|
Integrated N- and O-Glycomics of Acute Myeloid Leukemia (AML) Cell Lines. Cells 2021; 10:cells10113058. [PMID: 34831278 PMCID: PMC8616353 DOI: 10.3390/cells10113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by a dysregulated expansion of poorly differentiated myeloid cells. Although patients are usually treated effectively by chemotherapy, a high rate of relapsed or refractory disease poses a major hurdle in its treatment. Recently, several studies have proposed implications of protein glycosylation in the pathobiology of AML including chemoresistance. Accordingly, associations have been found between specific glycan epitopes and the outcome of the disease. To advance this poorly studied field, we performed an exploratory glycomics study characterizing 21 widely used AML cell lines. Exploiting the benefits of porous graphitized carbon chromatography coupled to tandem mass spectrometry (PGC nano-LC-MS2), we qualitatively and quantitatively profiled N- and O-linked glycans. AML cell lines exhibited distinct glycan fingerprints differing in relevant glycan traits correlating with their cellular phenotype as classified by the FAB system. By implementing transcriptomics data, specific glycosyltransferases and hematopoietic transcription factors were identified, which are candidate drivers of the glycan phenotype of these cells. In conclusion, we report the varying expression of glycan structures across a high number of AML cell lines, including those associated with poor prognosis, identified underlying glycosyltransferases and transcription factors, and provide insights into the regulation of the AML glycan repertoire.
Collapse
|
13
|
Chuzel L, Fossa SL, Boisvert ML, Cajic S, Hennig R, Ganatra MB, Reichl U, Rapp E, Taron CH. Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microb Cell Fact 2021; 20:162. [PMID: 34419057 PMCID: PMC8379841 DOI: 10.1186/s12934-021-01652-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.
Collapse
Affiliation(s)
- Léa Chuzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- New England Biolabs, Ipswich, MA, 01938, USA
| | | | | | - Samanta Cajic
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- glyXera GmbH, 39120, Magdeburg, Germany
| | | |
Collapse
|
14
|
Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer. Glycoconj J 2021; 38:213-231. [PMID: 33835347 DOI: 10.1007/s10719-021-09994-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a highly malignant tumor of the digestive tract that is difficult to diagnose and treat. It is more common in developed countries and has become one of the main causes of death in some countries and regions. Currently, pancreatic cancer generally has a poor prognosis, partly due to the lack of symptoms in the early stages of pancreatic cancer. Therefore, most cases are diagnosed at advanced stage. With the continuous in-depth research of glycoproteomics in precision medical diagnosis, there have been some reports on quantitative analysis of cancer-related cells, plasma or tissues to find specific biomarkers for targeted therapy. This research is based on the developed complete N-linked glycopeptide database search engine GPSeeker, combined with liquid-mass spectrometry and stable diethyl isotope labeling, providing a benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers. With spectrum-level FDR ≤1%, 20,038 intact N-Glycopeptides corresponding to 4518 peptide backbones, 228 N-glycan monosaccharide compositions 1026 N-glycan putative structures, 4460 N-glycosites and 3437 intact N-glycoproteins were identified. With the criteria of ≥1.5-fold change and p value<0.05, 52 differentially expressed intact N-glycopeptides (DEGPs) were found in pancreatic cancer tussues relative to control, where 38 up-regulated and 14 down-regulated, respectively.
Collapse
|
15
|
Shen Y, Xiao K, Tian Z. Site- and structure-specific characterization of the human urinary N-glycoproteome with site-determining and structure-diagnostic product ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8952. [PMID: 32965048 DOI: 10.1002/rcm.8952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE N-glycosylation is one of the most common protein post-translational modifications; it is extremely complex with multiple glycoforms from different monosaccharide compositions, sequences, glycosidic linkages, and anomeric positions. Each glycoform functions with a particular site- and structure-specific N-glycan that can be fully characterized using state-of-the-art tandem mass spectrometry (MS/MS) and the intact N-glycopeptide database search engine GPSeeker that we recently developed. Urine has recently gained increasing attention as a non-invasive source for disease marker discovery. In this study, we report our structure-specific N-glycoproteomics study of human urine. METHODS We performed trypsin digestion, Zwitterionic Hydrophilic Interaction chromatography (ZIC-HILIC) enrichment, C18-RPLC/nano-ESI-MS/MS using HCD with stepped normalized collisional energies, and GPSeeker database search for a comprehensive site- and structure-specific N-glycoproteomics characterization of the human urinary N-glycoproteome at the intact N-glycopeptide level. For this, we used b/y product ion pairs from the GlcNAc-containing site-determining peptide backbone and structure-diagnostic product ions from the N-glycan moieties, respectively. RESULTS We identified 2986 intact N-glycopeptides with comprehensive site and structure information for the peptide backbones (amino acid sequences and N-glycosites) and the N-glycan moieties (monosaccharide compositions, sequences/linkages). The 2986 intact N-glycopeptide IDs corresponded to 754 putative N-glycan linkage structures on 419 N-glycosites of 450 peptide backbones from 327 intact N-glycoproteins. Next, 146 linkage structures and 200 N-glycosites were confirmed with structure-diagnostic and GlcNAc-containing site-determining product ions, respectively. CONCLUSIONS We found 106 new N-glycosites not annotated in the current UniProt database. The elution-abundance patterns of urinary intact N-glycopeptide oxonium ions (m/z 138 and 204) of the same subject were temporally stable during the day and over 6 months. These patterns are rather different among different subjects. The results implied an interesting possibility that glycopeptide oxonium ion patterns could serve as distinguishing markers between individuals and/or between physiological and pathological states.
Collapse
Affiliation(s)
- Yun Shen
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Kaijie Xiao
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Zhixin Tian
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| |
Collapse
|
16
|
Oswald DM, Jones MB, Cobb BA. Modulation of hepatocyte sialylation drives spontaneous fatty liver disease and inflammation. Glycobiology 2020; 30:346-359. [PMID: 31742330 DOI: 10.1093/glycob/cwz096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Circulatory protein glycosylation is a biomarker of multiple disease and inflammatory states and has been applied in the clinic for liver dysfunction, heart disease and diabetes. With the notable exception of antibodies, the liver produces most of the circulatory glycoproteins, including the acute phase proteins released as a function of the inflammatory response. Among these proteins is β-galactoside α2,6-sialyltransferase (ST6Gal1), an enzyme required for α2,6-linked sialylation of glycoproteins. Here, we describe a hepatocyte-specific conditional knockout of ST6Gal1 (H-cKO) using albumin promoter-driven Cre-lox recombination. We confirm the loss of circulatory glycoprotein α2,6 sialylation and note no obvious dysfunction or pathology in young H-cKO mice, yet these mice show robust changes in plasma glycoprotein fucosylation, branching and the abundance of bisecting GlcNAc and marked changes in a number of metabolic pathways. As H-cKO mice aged, they spontaneously developed fatty liver disease characterized by the buildup of fat droplets in the liver, inflammatory cytokine production and a shift in liver leukocyte phenotype away from anti-inflammatory Kupffer cells and towards proinflammatory M1 macrophages. These findings connect hepatocyte and circulatory glycoprotein sialylation to the regulation of metabolism and inflammation, potentially identifying the glycome as a new target for liver-driven disease.
Collapse
Affiliation(s)
- Douglas M Oswald
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark B Jones
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Liu J, Liu S, Huang Z, Fu Y, Fei J, Liu X, He Z. Associations between the serum levels of PFOS/PFOA and IgG N-glycosylation in adult or children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114285. [PMID: 32806420 DOI: 10.1016/j.envpol.2020.114285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) have been shown to be associated with disease development. Immunoglobulin G (IgG) N-glycosylation plays a vital role in human immune system and inflammatory activities. Altered IgG glycosylation was one of the molecular markers of various disorders. However, whether the chemicals affect IgG glycosylation has not been investigated. METHODS Serum samples of 190 individuals including 95 adults and 95 children were selected based on the sex, age and PFOA/PFOS concentration. IgG N-glycome profile was obtained from glycan release, derivatization, and MALDI-MS analysis. One-factor ANOVA test was performed to analyze the association between different levels of PFOS/PFOA and IgG glycosylation changes. Evaluation of the diagnostic performance of significantly changed IgG glycosylation was performed by receiver operating characteristic curve. PFOS/PFOA concentrations were studied in relation to IgG glycosylation by 3D-nonlinear regression analysis. RESULTS 10 of the 28 individual IgG glycans were significantly altered between different levels of PFOS/PFOA in adult serum. Among children with high serum levels of PFOS or PFOA, a total of 12 IgG N-glycans were markedly different from those with lower serum PFOS/PFOA. The glycan derived traits for adults with higher serum PFOS or PFOA were marked by significant alterations in IgG digalactosylation, agalactosylation, fucosylation, fucosylated sialylation, and disialylation. Similarly, pronounced changes in agalactosylation, digalactosylation, mono-sialylation and total sialylation, as well as neutral and sialo bisection, were associated with elevated serum PFOS or PFOA in children. Several glycans gained moderately accurate scores of area under the curve for diagnosis of PFOS or PFOA pollution. Nonlinear surface fitting showed the independent or coordinate effect of PFOS or PFOA on the expression of IgG glycosylation. CONCLUSIONS High levels of PFOS or PFOA in human serum were strongly associated with altered IgG glycosylation and therefore are a potential risk factor for the development of diseases.
Collapse
Affiliation(s)
- Junling Liu
- Wuhan Centers for Disease Prevention and Control, Wuhan, 430015, China
| | - Si Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiwen Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Fu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Fei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhenyu He
- Wuhan Centers for Disease Prevention and Control, Wuhan, 430015, China.
| |
Collapse
|
18
|
Discovery of N-glycan Biomarkers for the Canine Osteoarthritis. Life (Basel) 2020; 10:life10090199. [PMID: 32937769 PMCID: PMC7555374 DOI: 10.3390/life10090199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a post-translational modification that impacts on protein activity, stability, and interactions. It was sensitively altered by the cellular state and, therefore, is now used for a diagnostic or prognostic indicator of various human diseases such as cancer. To evaluate the clinical feasibility in the veterinary area, the N-glycan biomarkers were discovered from canine serum for the diagnosis of osteoarthritis (OA), which is one of the most common diseases of dogs. N-glycome was obtained from 20 μL of canine serum by the enzymatic cleavage followed by the purification and enrichment using solid-phase extraction. Independent compositions of 163 and 463 N-glycans were found from healthy control (n = 41) and osteoarthritis patients (n = 92), respectively. Initially, 31 of the potential biomarkers were screened by the p-values below 1.0 × 10−10 from ANOVA. Then, the area under the curve (AUC) and the intensity ratio between OA patient and healthy control (P/C ratio) were calculated. Considering the diagnostic efficacy, the AUC bigger than 0.9 and the P/C ratio larger than 3.0 were used to discover 16 N-glycans as diagnostic biomarkers. Particularly, five of the diagnostic biomarkers were AUC above 0.99 and three of N-glycans had AUC 1.0. The results suggest a clear possibility for N-glycan biomarkers to be used as a clinical tool in the veterinary medical area enabling to provide objective and non-invasive diagnostic information.
Collapse
|
19
|
Furukawa JI, Hanamatsu H, Nishikaze T, Manya H, Miura N, Yagi H, Yokota I, Akasaka-Manya K, Endo T, Kanagawa M, Iwasaki N, Tanaka K. Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation. Anal Chem 2020; 92:14383-14392. [DOI: 10.1021/acs.analchem.0c02209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jun-ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Kita15, Nishi7, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime 791-0295, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-1, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Norimasa Iwasaki
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
20
|
Bravo MF, Palanichamy K, Shlain MA, Schiro F, Naeem Y, Marianski M, Braunschweig AB. Synthesis and Binding of Mannose‐Specific Synthetic Carbohydrate Receptors. Chemistry 2020; 26:11782-11795. [DOI: 10.1002/chem.202000481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Indexed: 12/16/2022]
Affiliation(s)
- M. Fernando Bravo
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD Program in Chemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
| | - Kalanidhi Palanichamy
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Milan A. Shlain
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Frank Schiro
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Mateusz Marianski
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD Program in Chemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
- The PhD Program in Biochemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD Program in Chemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
- The PhD Program in Biochemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
21
|
Cheng L, Cao L, Wu Y, Xie W, Li J, Guan F, Tan Z. Bisecting N-Acetylglucosamine on EGFR Inhibits Malignant Phenotype of Breast Cancer via Down-Regulation of EGFR/Erk Signaling. Front Oncol 2020; 10:929. [PMID: 32612952 PMCID: PMC7308504 DOI: 10.3389/fonc.2020.00929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/12/2020] [Indexed: 12/27/2022] Open
Abstract
Glycosylation, the most prevalent and diverse post-translational modification of protein, plays crucial biological roles in many physiological and pathological events. Alteration of N-glycan has been detected during breast cancer progression. Among the specific N-glycan structures, bisecting N-Acetylglucosamine (GlcNAc) is a β1,4-linked GlcNAc attached to the core β-mannose residue, and is catalyzed by glycosyltransferase MGAT3. Bisecting GlcNAc levels were commonly dysregulated in different types of cancer. In this study, we utilized mass spectrometry and lectin microarray analysis to investigate aberrant N-glycans in breast cancer cells. Our data showed the decreased levels of bisecting GlcNAc and down-regulated expression of MGAT3 in breast cancer cells than normal epithelial cells. Using PHA-E (a plant lectin recognizing and combining bisecting GlcNAc) based enrichment coupled with nanoLC-MS/MS, we analyzed the glycoproteins bearing bisecting GlcNAc in various breast cancer cells. Among the differentially expressed glycoproteins, levels of bisecting GlcNAc on EGFR were significantly decreased in breast cancer cells, confirmed by immunostaining and immunoprecipitation. We overexpressed MGAT3 in breast cancer MDA-MB-231 cells, and overexpression of MGAT3 significantly enhanced the bisecting N-GlcNAc on EGFR and suppressed the EGFR/Erk signaling, which further resulted in the reduction of migratory ability, cell proliferation, and clonal formation. Taken together, we conclude that bisecting N-GlcNAc on EGFR inhibits malignant phenotype of breast cancer via down-regulation of EGFR/Erk signaling.
Collapse
Affiliation(s)
- Lanming Cheng
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Lin Cao
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Yurong Wu
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Wenjie Xie
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Jiaqi Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Zengqi Tan
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
22
|
Cheng PW, Davidson S, Bhat G. Markers of malignant prostate cancer cells: Golgi localization of α-mannosidase 1A at GM130-GRASP65 site and appearance of high mannose N-glycans on cell surface. Biochem Biophys Res Commun 2020; 527:406-410. [PMID: 32331836 DOI: 10.1016/j.bbrc.2020.03.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/01/2023]
Abstract
The ability to distinguish malignant from indolent prostate cancer cells is critically important for identification of clinically significant prostate cancer to minimize unnecessary overtreatment and sufferings endured by patients who have indolent cancer. Recently, we discovered that loss of giantin function as the primary Golgi targeting site for endoplasmic reticulum-derived transport vesicles in aggressive prostate cancer cells caused a shift of the Golgi localization site of α-mannosidase 1A to 130 KDa Golgi matrix protein (GM130)-65 KDa Golgi reassembly-stacking protein (GRASP65) site resulting in emergence of high mannose N-glycans on trans-Golgi enzymes and cell surface glycoproteins. To extend this observation, we isolated two cell clones (Clone 1 and Clone 2) from high passage LNCaP cells, which exhibited androgen refractory property missing in low passage LNCaP cells, and characterized their malignant property. We have found that comparing to Clone 2, which does not have cell surface high mannose N-glycans and exhibits localization of α-mannosidase 1A at giantin site, Clone 1 displays cell surface high mannose N-glycans, exhibits localization of α-mannosidase 1A at GM130-GRASP65 site, and shows a faster rate of closing the wound in a wound healing assay. The results indicate that Golgi localization of α-mannosidase 1A at GM130-GRASP65 site and appearance of cell surface high mannose N-glycans may serve as markers of malignant prostate cancer cells.
Collapse
Affiliation(s)
- Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; College of Medicine, and, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute of Research on Cancer and Allied Diseases, Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Samuel Davidson
- College of Medicine, and, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Wang H, Zhang J, Dong J, Hou M, Pan W, Bu D, Zhou J, Zhang Q, Wang Y, Zhao K, Li Y, Huang C, Sun S. Identification of glycan branching patterns using multistage mass spectrometry with spectra tree analysis. J Proteomics 2020; 217:103649. [PMID: 31978548 DOI: 10.1016/j.jprot.2020.103649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Glycans are crucial to a wide range of biological processes, and their biological activities are closely related to the branching patterns of structures. Different from the simple linear chains of proteins, branching patterns of glycans are more complicated, making their identification extremely challenging. Tandem mass spectrometry (MS2) cannot provide sufficient structural information to deduce glycan branching patterns even with the assistance of various bioinformatic tools and algorithms.The promising technology to identify glycan branching patterns is multi-stage mass spectrometry (MSn). The production-relationship among MSn spectra of a glycan is essentially a tree, making deducing glycan structures from MSn spectra a great challenge. In the present study, we report an approach called glyBranch (glycan Branching pattern identification based on spectra tree) to fully exploit the information contained in the MSn spectra tree for glycan identification. Using 14 glycan standards, including 2 pairs with isomeric sequence, and 16 complex N-glycans isolated from RNase B and IgG, we demonstrated the successful application of glyBranch to branching pattern analysis. The source code of glyBranch is available at https://github.com/bigict/glyBranch/. We have also developed a web-server, which is freely accessible at http://glycan.ict.ac.cn/glyBranch/. SIGNIFICANCE: Glycans are crucial in various biological processes and their functions are closely related to the details of their structures; thus, the identification of glycan branching patterns is of great significance to biological studies. Multistage mass spectrometry (MSn) can provide detailed structural information by generating multiple-level fragments through consecutive fragmentation; however, the interpretation of numerous MSn spectra is extremely challenging. In this study, we present an approach called glyBranch (glycan Branching pattern identification based on spectra tree) to exploit the information contained in MSn spectra tree for glycan identification. This approach will greatly facilitate the automated identification of glycan structures and related biological studies.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Junchuan Dong
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijie Hou
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Pan
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbo Bu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Zhou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaojun Wang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; College of Information and Electrical Engineering, China Agricultural University, 100083,China
| | - Keli Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiwei Sun
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Fomin M, Seikowski J, Belov VN, Hell SW. Negatively Charged Red-Emitting Acridine Dyes for Facile Reductive Amination, Separation, and Fluorescent Detection of Glycans. Anal Chem 2020; 92:5329-5336. [PMID: 32154706 PMCID: PMC7307837 DOI: 10.1021/acs.analchem.9b05863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/10/2020] [Indexed: 01/26/2023]
Abstract
Capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) has become a key method in high-throughput glycan analysis. At present, CGE-LIF relies on the green fluorophore 8-aminopyrene-1,3,6-trisulfonic acid (APTS). However, APTS has moderate reactivity in labeling of glycans and a fixed selectivity profile. Here, we report synthesis of red-emitting and highly reactive fluorescent tags for glycan derivatization. The design is based on a 9-aminoacridine scaffold with various acceptor groups at C-2 (CN, SO2R) and a primary amino group at C-7 for conjugation via reductive amination. These reactive dyes exhibit absorption maxima close to 450 nm and emission above 600 nm. They readily undergo conjugation with reducing sugars at the desired 1:1 stoichiometry. The red emission of conjugates with a maximum at 610-630 nm can be observed under excitation with 488 nm light and detected separately from the APTS-labeled oligosaccharides. Phosphorylated 7,9-diaminoacridine-2-SO2R derivatives with variable amounts of negative charges provide high mobilities of glycoconjugates on polyacrylamide gel electrophoresis (PAGE), as compared with those of APTS. We further demonstrate their utility by labeling and separating a maltodextrin ladder and sialyllactose isomers. The new dyes are expected to cross-validate and increase the glycan identification precision in CGE-LIF and help to reveal "heavy" glycans, yet undetectable with the APTS label.
Collapse
Affiliation(s)
- Maksim
A. Fomin
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry (MPIBPC), Am Fassberg 11, 37077 Göttingen, Germany
| | - Jan Seikowski
- Facility
for Synthetic Chemistry, MPIBPC, Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir N. Belov
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry (MPIBPC), Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry (MPIBPC), Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Lastovickova M, Strouhalova D, Bobalova J. Use of Lectin-based Affinity Techniques in Breast Cancer Glycoproteomics: A Review. J Proteome Res 2020; 19:1885-1899. [PMID: 32181666 DOI: 10.1021/acs.jproteome.9b00818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in glycoprotein content, altered glycosylations, and aberrant glycan structures are increasingly recognized as cancer hallmarks. Because breast cancer is one of the most common causes of cancer deaths in the world, it is highly urgent to find other reliable biomarkers for its initial diagnosis and to learn as much as possible about this disease. In this Review, the applications of lectins to a screening of potential breast cancer biomarkers published during recent years are overviewed. These data provide a deeper insight into the use of modern strategies, technologies, and scientific knowledge in glycoproteomic breast cancer research. Particular attention is concentrated on the use of lectin-based affinity techniques, applied independently or most frequently in combination with mass spectrometry, as an effective tool for the targeting, separation, and reliable identification of glycoprotein molecules. Individual procedures and lectins used in published glycoproteomic studies of breast-cancer-related glycoproteins are discussed. The summarized approaches have the potential for use in diagnostic and predictive applications. Finally, the use of lectins is briefly discussed from the view of their future applications in the analysis of glycoproteins in cancer.
Collapse
Affiliation(s)
- Marketa Lastovickova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Dana Strouhalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Janette Bobalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
26
|
Dent M, Matoba N. Cancer biologics made in plants. Curr Opin Biotechnol 2020; 61:82-88. [PMID: 31785553 PMCID: PMC7096282 DOI: 10.1016/j.copbio.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Plants are routinely utilized as efficient production platforms for the development of anti-cancer biologics leading to novel anti-cancer vaccines, immunotherapies, and drug-delivery modalities. Various biosimilar/biobetter antibodies and immunogens based on tumor-associated antigens have been produced and optimized for plant expression. Plant virus nanoparticles, including those derived from cowpea mosaic virus or tobacco mosaic virus in particular have shown promise as immunotherapies stimulating tumor-associated immune cells and as drug carriers delivering conjugated chemotherapeutics effectively to tumors. Advancements have also been made toward the development of lectins that can selectively recognize cancer cells. The ease at which plant systems can be utilized for the production of these products presents an opportunity to further develop novel and exciting anti-cancer biologics.
Collapse
Affiliation(s)
- Matthew Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
27
|
Hu Y, Ferdosi S, Kapuruge EP, Diaz de Leon JA, Stücker I, Radoï L, Guénel P, Borges CR. Diagnostic and Prognostic Performance of Blood Plasma Glycan Features in the Women Epidemiology Lung Cancer (WELCA) Study. J Proteome Res 2019; 18:3985-3998. [PMID: 31566983 DOI: 10.1021/acs.jproteome.9b00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is the leading cause of cancer death in women living in the United States, which accounts for approximately the same percentage of cancer deaths in women as breast, ovary, and uterine cancers combined. Targeted blood plasma glycomics represents a promising source of noninvasive diagnostic and prognostic biomarkers for lung cancer. Here, 208 samples from lung cancer patients and 207 age-matched controls enrolled in the Women Epidemiology Lung Cancer (WELCA) study were analyzed by a bottom-up glycan "node" analysis approach. Glycan features, quantified as single analytical signals, including 2-linked mannose, α2-6 sialylation, β1-4 branching, β1-6 branching, 4-linked GlcNAc, and antennary fucosylation, exhibited abilities to distinguish cases from controls (ROC AUCs: 0.68-0.92) and predict survival in patients (hazard ratios: 1.99-2.75) at all stages. Notable alterations of glycan features were observed in stages I-II. Diagnostic and prognostic glycan features were mostly independent of smoking status, age, gender, and histological subtypes of lung cancer.
Collapse
Affiliation(s)
- Yueming Hu
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Shadi Ferdosi
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Erandi P Kapuruge
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Jesús Aguilar Diaz de Leon
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Isabelle Stücker
- CESP (Center for Research in Epidemiology and Population Health), Cancer and Environment Team, INSERM UMS1018 , University Paris-Sud, University Paris-Saclay , 94800 Villejuif, France
| | - Loredana Radoï
- CESP (Center for Research in Epidemiology and Population Health), Cancer and Environment Team, INSERM UMS1018 , University Paris-Sud, University Paris-Saclay , 94800 Villejuif, France
- Faculty of Dental Surgery , University Paris Descartes , 75006 Paris , France
| | - Pascal Guénel
- CESP (Center for Research in Epidemiology and Population Health), Cancer and Environment Team, INSERM UMS1018 , University Paris-Sud, University Paris-Saclay , 94800 Villejuif, France
| | - Chad R Borges
- School of Molecular Sciences and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
28
|
Niu H, Li X, Peng J, Zhang H, Zhao X, Zhou X, Yu D, Liu X, Wu R. The efficient profiling of serum N-linked glycans by a highly porous 3D graphene composite. Analyst 2019; 144:5261-5270. [PMID: 31364612 DOI: 10.1039/c9an01119f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, an enrichment approach for the profiling of N-linked glycans was developed by utilizing a highly porous 3D graphene composite fabricated from graphene oxide nanosheets and a phenol-formaldehyde polymer via graphitization and KOH activation. In tailoring the large surface area (ca. 2213 m2 g-1) and 3D-layered mesoporous structure, the 3D graphene composite demonstrated not only high efficiency in glycan enrichment but also the size-exclusion effect against residual protein interference. For a standard protein ovalbumin digest, 26 N-linked glycans were identified with good repeatability, and the detection limit was as low as 0.25 ng μL-1 with the identification of 13 N-linked glycans (S/N > 10). When the mass ratio of the ovalbumin digest to the interfering proteins, i.e., bovine serum albumin and ovalbumin was 1 : 2000 : 2000, 18 N-linked glycans could still be detected with sufficient signal intensities. From a 60 nL minute complex human serum sample, up to 53 N-linked glycans with S/N > 10 were identified after the 3D graphene enrichment, while only 20 N-linked glycans were identified by the porous graphitized carbon material used for comparison. In addition, the application of the 3D graphene composite in profiling the up-regulated and down-regulated N-linked glycans from the real clinical serum samples of ovarian cancer patients confirmed the potential of the 3D graphene composite for analyzing minute and complicated biological samples.
Collapse
Affiliation(s)
- Huan Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxi Peng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongping Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.
| | - Ren'an Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.
| |
Collapse
|
29
|
Yu H, Li X, Chen M, Zhang F, Liu X, Yu J, Zhong Y, Shu J, Chen W, Du H, Zhang K, Zhang C, Zhang J, Xie H, Li Z. Integrated Glycome Strategy for Characterization of Aberrant LacNAc Contained N-Glycans Associated With Gastric Carcinoma. Front Oncol 2019; 9:636. [PMID: 31355147 PMCID: PMC6636412 DOI: 10.3389/fonc.2019.00636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Aberrant glycosylation is not only a feature of malignant cell transformation, but also plays an important role in metastasis. In the present study, an integrated strategy combining the lectin microarrays and lectin cytochemistry was employed to investigate and verify the altered glycopatterns in gastric cancer (GC) cell lines as well as resected tumor specimens from matched tissue sets of 46 GC patients. Subsequently, lectin-mediated affinity capture glycoproteins, and MALDI-TOF/TOF-MS were employed to further acquire precise structural information of the altered glycans. According to the results, the glycopatterns recognized by 10 (e.g., ACA, MAL-I, and ConA) and 3 lectins (PNA, MAL-I, and VVA) showed significantly variations in GC cells and tissue compared to their corresponding controls, respectively. Notably, the relative abundance of Galβ-1,4GlcNAc (LacNAc) recognized by MAL-I exhibited a significant increase in GC cells (p < 0.001) and tissue from patients at stage II and III (p < 0.05), and a significant increase in lymph node positive tumor cases, compared with lymph node negative tumor cases (p < 0.05). More LacNAc contained N-glycans were characterized in tumor sample with advanced stage compared to corresponding control. Moreover, there were 10 neo-LacNAc-contained N-glycans (e.g., m/z 1625.605, 1803.652, and 1914.671) only presented in GC tissue with advanced stage. Among these, six N-glycans were modified with sialic acid or fucose based on LacNAc to form sialylated N-glycans or lewis antigens, respectively. Our results revealed that the aberrant expression of LacNAc is a characteristic of GC, and LacNAc may serve as a scaffold to be further modified with sialic acid or fucose. Our findings provided useful information for us to understand the development of GC.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaojie Li
- Department of Pathology, 1st People's Hospital of Chenzhou, Chenzhou, China
| | - Mengting Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jingmin Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
30
|
Shen Y, You Y, Xiao K, Chen Y, Tian Z. Large-Scale Identification and Fragmentation Pathways Analysis of N-Glycans from Mouse Brain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1254-1261. [PMID: 31098956 DOI: 10.1007/s13361-019-02181-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
N-linked glycosylation is one of the most common protein PTMs, and the topological structure (monosaccharide composition and sequence as well as glycosidic linkages) of N-glycans is vital information to understand their biological functions and roles. Tandem mass spectrometry has been widely used for topological structure characterization of N-glycans, where comprehensive understanding of fragmentation pathways and characteristics of product ions are essential to achieve best interpretation of MS/MS data and highest confidence of identification. Here, we report our glycomic study of N-glycome of mouse brain as well as fragmentation pathway analysis of the identified N-glycans. With LC-MS/MS analysis at both the positive and negative ESI modes together with our recently developed N-glycan database search engine GlySeeker, 221 unique N-glycans with putative topological structures were identified with target-decoy searches and number of best hits of 1. Analysis of fragmentation pathways and characteristics of product ions of permethylated N-glycans in the positive mode and native N-glycans in the negative mode were further carried out. The reported N-glycans serve as a basic reference for future glycosylation study of mouse brain; and in general database search of tandem mass spectra of N-glycans, B/Y/Z ions should be preferentially considered for the permethylated form in the positive mode and B/C/Z ions for the native form in the negative mode.
Collapse
Affiliation(s)
- Yun Shen
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yiwen You
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Kaijie Xiao
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
31
|
Zhang Z, Westhrin M, Bondt A, Wuhrer M, Standal T, Holst S. Serum protein N-glycosylation changes in multiple myeloma. Biochim Biophys Acta Gen Subj 2019; 1863:960-970. [DOI: 10.1016/j.bbagen.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
|
32
|
Zhang M, Dou H, Yang D, Shan M, Li X, Hao C, Zhang Y, Zeng P, He Y, Liu Y, Fu J, Wang W, Hu M, Li H, Tian Q, Lei S, Zhang L. Retrospective analysis of glycan-related biomarkers based on clinical laboratory data in two medical centers during the past 6 years. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:141-163. [PMID: 30905446 DOI: 10.1016/bs.pmbts.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of clinically used cancer biomarkers are either specific glycan structures or glycoproteins. Although the high serum levels of the cancer biomarkers are also present in certain patients suffering noncancer diseases, systematic measurement and comparison of the serum levels of all cancer biomarkers among cancer and noncancer patients have not been reported. In this study, the serum levels of 17 glucose and glycan-related biomarkers including 10 cancer biomarkers SCCA, CA724, CA50, CA242, CA125, CA199, CA153, AFP, CEA, and PSA were retrospectively investigated based on clinical laboratory data in two medical centers during the past 6 years (2012-2018). The data included a total of 1,477,309 clinical lab test results of 17 biomarkers from healthy controls and patients suffering 64 different types of cancer and noncancer diseases. We found that the median serum levels of CA724, CEA, CA153, SCCA, and CA125 were highest not in cancer patients but in patients suffering gout, lung fibrosis, nephrotic syndrome, uremia, and cirrhosis, respectively. Consistently, the classical ovarian cancer biomarker CA125 had better overall sensitivity and specificity as biomarker for cirrhosis (67% and 92%, respectively) than that for ovarian cancer (41% and 97%, respectively). Furthermore, the information shown as heatmap or waterfall built on the -Log10p values of the 17 glycan-related biomarkers in different clinically defined diseases suggested that all glycan-related biomarkers had cancer-, aging-, and disease-relevant characteristics and cancers were systems disease. The detailed presentation of the data for each of the 17 biomarkers will be deliberated in chapters 6-23 in this book series.
Collapse
Affiliation(s)
- Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China.
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Xiulian Li
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Cui Hao
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Yiran Zhang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Pengjiao Zeng
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Yanli He
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Yong Liu
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Jing Fu
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Wei Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Minghui Hu
- Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingwu Tian
- Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuhe Lei
- College of Mathematical Sciences, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China.
| |
Collapse
|
33
|
Quantitation of Glycopeptides by ESI/MS - size of the peptide part strongly affects the relative proportions and allows discovery of new glycan compositions of Ceruloplasmin. Glycoconj J 2019; 36:13-26. [PMID: 30612270 DOI: 10.1007/s10719-018-9852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Significant changes of glycan structures are observed in humans if diseases like cancer, arthritis or inflammation are present. Thus, interest in biomarkers based on glycan structures has rapidly emerged in recent years and monitoring disease specific changes of glycosylation and their quantification is of great interest. Mass spectrometry is most commonly used to characterize and quantify glycopeptides and glycans liberated from the glycoprotein of interest. However, ionization properties of glycopeptides can strongly depend on their composition and can therefore lead to intensities that do not reflect the actual proportions present in the intact glycoprotein. Here we show that an increase in the length of the peptide can lead to a more accurate determination and quantification of the glycans. The four glycosylation sites of human serum ceruloplasmin from 17 different individuals were analyzed using glycopeptides of varying peptide lengths, obtained by action of different proteases and by limited digestion. In most cases, highly sialylated compositions showed an increased relative abundance with increasing peptide length. We observed a relative increase of triantennary glycans of up to a factor of three and, even more, MS peaks corresponding to tetraantennary compositions on ceruloplasmin at glycosite 137N in all 17 samples, which we did not detect using a bottom up approach. The data presented here leads to the conclusion that a middle down - or when possible a top down - approach is favorable for qualitative and quantitative analysis of the glycosylation of glycoproteins.
Collapse
|
34
|
Han Y, Xiao K, Tian Z. Comparative Glycomics Study of Cell-Surface N-Glycomes of HepG2 versus LO2 Cell Lines. J Proteome Res 2019; 18:372-379. [PMID: 30343578 DOI: 10.1021/acs.jproteome.8b00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-surface N-glycans play important roles in both inter- and intracellular processes, including cell adhesion and development, cell recognition, as well as cancer development and metastasis; detailed structural characterization of these N-glycans is thus paramount. Here we report our comparative N-glycomics study of cell-surface N-glycans of the hepatocellular carcinoma (HCC) HepG2 cells vs the normal liver LO2 cells. With sequential trypsin digestion of proteins, C18 depletion of peptides without glycosylation, PNGase F digestion of N-glycopeptides, PGC enrichment of N-glycans, CH3I permethylation of the enriched N-glycans, cell-surface N-glycomes of the HepG2 and LO2 cells were analyzed using C18-RPLC-MS/MS (HCD). With spectrum-level FDR no bigger than 1%, 351 and 310 N-glycans were identified for HepG2 and LO2, respectively, with comprehensive structural information (not only monosaccharide composition, but also sequence and linkage) by N-glycan database search engine GlySeeker. The percentage of hybrid N-glycans with tetra-antennary structures was substantially increased in the HepG2 cells. This comprehensive discovery study of differentially expressed cell-surface N-glycans in HepG2 vs LO2 serves as a solid reference for future validation study of glycosylation markers in HCC.
Collapse
Affiliation(s)
- Yuyin Han
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Kaijie Xiao
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| |
Collapse
|
35
|
NISHIKAZE T. Sialic acid derivatization for glycan analysis by mass spectrometry. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:523-537. [PMID: 31708496 PMCID: PMC6856002 DOI: 10.2183/pjab.95.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/08/2019] [Indexed: 05/03/2023]
Abstract
Mass spectrometry (MS) is a well-accepted means for analyzing glycans. Before glycan analysis by MS, several chemical derivatizations are generally carried out. These are classified into three categories; (1) labeling of the reducing end of glycans, (2) permethylation, and (3) sialic acid derivatization. Because sialic acid residues are unstable, they are easily lost during pretreatment and during or after ionization in a mass spectrometer. Sialic acid derivatization can prevent the loss of this residue. Recently, new types of sialic acid derivatization techniques have been developed, which allow straight-forward sialic acid linkage analysis (α2,3-/α2,6-linkages) as well as residue stabilization. This review summarizes the developments in sialic acid derivatization techniques, especially the varied methods of sialic acid linkage-specific derivatization.
Collapse
Affiliation(s)
- Takashi NISHIKAZE
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
36
|
Wang T, Singh Y, Stine KJ, Demchenko AV. Investigation of Glycosyl Nitrates as Building Blocks for Chemical Glycosylation. European J Org Chem 2018; 2018:6699-6705. [PMID: 31341403 DOI: 10.1002/ejoc.201801272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosyl nitrates are important synthetic intermediates in the synthesis of 2-amino sugars, 1,2-orthoesters or, more recently, 2-OH glucose. However, glycosyl nitrates have never been glycosidated. Presented herein is our first attempt to use glycosyl nitrates as glycosyl donors for O-glycosylation. Lanthanide triflates showed good affinity to activate the nitrate leaving group.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
37
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Ahmed Hussien
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| |
Collapse
|
38
|
Bythell BJ, Rabus JM, Wagoner AR, Abutokaikah MT, Maître P. Sequence Ion Structures and Dissociation Chemistry of Deprotonated Sucrose Anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2380-2393. [PMID: 30284205 DOI: 10.1007/s13361-018-2065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
We investigate the tandem mass spectrometry of regiospecifically labeled, deprotonated sucrose analytes. We utilize density functional theory calculations to model the pertinent gas-phase fragmentation chemistry of the prevalent glycosidic bond cleavages (B1-Y1 and C1-Z1 reactions) and compare these predictions to infrared spectroscopy experiments on the resulting B1 and C1 product anions. For the C1 anions, barriers to interconversion of the pyranose [α-glucose-H]-, C1 anions to entropically favorable ring-open aldehyde-terminated forms were modest (41 kJ mol-1) consistent with the observation of a band assigned to a carbonyl stretch at ~ 1680-1720 cm-1. For the B1 anions, our transition structure calculations predict the presence of both deprotonated 1,6-anhydroglucose and carbon 2-ketone ((4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)dihydro-2H-pyran-3(4H)-one) anion structures, with the latter predominating. This hypothesis is supported by our spectroscopic data which show diagnostic bands at 1600, 1674, and 1699 cm-1 (deprotonated carbon 2-ketone structures), and at ~ 1541 cm-1 (both types of structure) and RRKM rate calculations. The deprotonated carbon 2-ketone structures are also the lowest energy product B1 anions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA.
| | - Jordan M Rabus
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Ashley R Wagoner
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Maha T Abutokaikah
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Philippe Maître
- Laboratoire de Chimie Physique (UMR8000), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
39
|
Alocci D, Ghraichy M, Barletta E, Gastaldello A, Mariethoz J, Lisacek F. Understanding the glycome: an interactive view of glycosylation from glycocompositions to glycoepitopes. Glycobiology 2018. [PMID: 29518231 DOI: 10.1093/glycob/cwy019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, due to the advance of experimental techniques in glycomics, large collections of glycan profiles are regularly published. The rapid growth of available glycan data accentuates the lack of innovative tools for visualizing and exploring large amount of information. Scientists resort to using general-purpose spreadsheet applications to create ad hoc data visualization. Thus, results end up being encoded in publication images and text, while valuable curated data is stored in files as supplementary information. To tackle this problem, we have built an interactive pipeline composed with three tools: Glynsight, EpitopeXtractor and Glydin'. Glycan profile data can be imported in Glynsight, which generates a custom interactive glycan profile. Several profiles can be compared and glycan composition is integrated with structural data stored in databases. Glycan structures of interest can then be sent to EpitopeXtractor to perform a glycoepitope extraction. EpitopeXtractor results can be superimposed on the Glydin' glycoepitope network. The network visualization allows fast detection of clusters of glycoepitopes and discovery of potential new targets. Each of these tools is standalone or can be used in conjunction with the others, depending on the data and the specific interest of the user. All the tools composing this pipeline are part of the Glycomics@ExPASy initiative and are available at https://www.expasy.org/glycomics.
Collapse
Affiliation(s)
- Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Marie Ghraichy
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Elena Barletta
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Alessandra Gastaldello
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland.,Computer Science Department CUI, University of Geneva, 7 Route de Drize, 1227 Geneva, Switzerland.,Section of Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Fast and facile analysis of glycosylation and phosphorylation of fibrinogen from human plasma-correlation with liver cancer and liver cirrhosis. Anal Bioanal Chem 2018; 410:7965-7977. [PMID: 30397756 DOI: 10.1007/s00216-018-1418-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its late diagnosis with the main risk factor being liver cirrhosis (LC). Glycan structures from glycoproteins are usually altered in cancer. Blood plasma from 111 healthy and sick donors was analyzed to determine the post-translational modifications (PTM) of intact Aα-, Bβ-, and γ-subunits of fibrinogen, a glycoprotein predominantly produced in liver cells. Glycosylation and phosphorylation of the protein species were quantified by liquid chromatography coupled to mass spectrometry to correlate PTMs to pathological cases. Quantities of the PTMs were used for statistical classification by principal component analysis (PCA) and multivariate analysis of variance (MANOVA). As relevant clinical finding, patients with liver disease (HCC and/or LC) were distinguished from individuals without relevant chronic liver disease with 91% sensitivity and 100% specificity. Within the group of patients with liver disease, a robust separation between LC and HCC was not possible. In more detail, the phosphorylation of Aα-subunit is decreased in HCC patients, whereas the monophosphorylated state is significantly increased in LC patients. In terms of glycosylation, the amount of O-glycans in the Aα-subunit is decreased in LC patients, while sialylation and fucosylation of N-type glycans of Bβ- and γ-subunits are increased in LC and HCC. Based on PTM of fibrinogen, starting from plasma we can assign the status of an individual as healthy or as liver disease in less than 3 h.
Collapse
|
41
|
Pan Q, Law COK, Yung MMH, Han KC, Pon YL, Lau TCK. Novel RNA aptamers targeting gastrointestinal cancer biomarkers CEA, CA50 and CA72-4 with superior affinity and specificity. PLoS One 2018; 13:e0198980. [PMID: 30303958 PMCID: PMC6179186 DOI: 10.1371/journal.pone.0198980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer is the third most common cause of death from cancer in the world and it remains difficult to cure in Western countries, primarily because most patients present with advanced disease. Currently, CEA, CA50 and CA72-4 are commonly used as tumor markers for gastric cancer by immunoassays. However, the drawback and conundrum of immunoassay are the unceasing problem in standardization of quality of antibodies and time/effort for the intensive production. Therefore, there is an urgent need for the development of a standardized assay to detect gastric cancer at the early stage. Aptamers are DNA or RNA oligonucleotides with structural domain which recognize ligands such as proteins with superior affinity and specificity when compared to antibodies. In this study, SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique was adopted to screen a random 30mer RNA library for aptamers targeting CEA, CA50 and CA72-4 respectively. Combined with high-throughput sequencing, we identified 6 aptamers which specifically target for these three biomarkers of gastrointestinal cancer. Intriguingly, the predicted secondary structures of RNA aptamers from each antigen showed significant structural similarity, suggesting the structural recognition between the aptamers and the antigens. Moreover, we determined the dissociation constants of all the aptamers to their corresponding antigens by fluorescence spectroscopy, which further demonstrated high affinities between the aptamers and the antigens. In addition, immunostaining of gastric adenocarcinoma cell line AGS using CEA Aptamer probe showed positive fluorescent signal which proves the potential of the aptamer as a detection tool for gastric cancer. Furthermore, substantially decreased cell viability and growth were observed when human colorectal cell line LS-174T was transfected with each individual aptamers. Taking together, these novel RNA aptamers targeting gastrointestinal cancer biomarker CEA, CA50 and CA72-4 will aid further development and standardization of clinical diagnostic method with better sensitivity and specificity, and potentially future therapeutics development of gastric cancer.
Collapse
Affiliation(s)
- Qing Pan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Carmen O. K. Law
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Mingo M. H. Yung
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - K. C. Han
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Yuen Lam Pon
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
42
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
43
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
44
|
Drake RR, Powers TW, Norris-Caneda K, Mehta AS, Angel PM. In Situ Imaging of N-Glycans by MALDI Imaging Mass Spectrometry of Fresh or Formalin-Fixed Paraffin-Embedded Tissue. ACTA ACUST UNITED AC 2018; 94:e68. [DOI: 10.1002/cpps.68] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richard R. Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina; Charleston South Carolina
| | - Thomas W. Powers
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina; Charleston South Carolina
| | - Kim Norris-Caneda
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina; Charleston South Carolina
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina; Charleston South Carolina
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina; Charleston South Carolina
| |
Collapse
|
45
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
46
|
Liu Y, Wang C, Wang R, Wu Y, Zhang L, Liu BF, Cheng L, Liu X. Isomer-specific profiling of N-glycans derived from human serum for potential biomarker discovery in pancreatic cancer. J Proteomics 2018; 181:160-169. [DOI: 10.1016/j.jprot.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 02/03/2023]
|
47
|
Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells. Anal Bioanal Chem 2018; 410:4195-4202. [DOI: 10.1007/s00216-018-1070-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
|
48
|
Starbuck K, Al-Alem L, Eavarone DA, Hernandez SF, Bellio C, Prendergast JM, Stein J, Dransfield DT, Zarrella B, Growdon WB, Behrens J, Foster R, Rueda BR. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau. Oncotarget 2018; 9:23289-23305. [PMID: 29796189 PMCID: PMC5955411 DOI: 10.18632/oncotarget.25289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/08/2018] [Indexed: 01/29/2023] Open
Abstract
Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.
Collapse
Affiliation(s)
- Kristen Starbuck
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Silvia Fatima Hernandez
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | - Bianca Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Whitfield B. Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Rosemary Foster
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo R. Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Totten SM, Adusumilli R, Kullolli M, Tanimoto C, Brooks JD, Mallick P, Pitteri SJ. Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera. Sci Rep 2018; 8:6509. [PMID: 29695737 PMCID: PMC5916935 DOI: 10.1038/s41598-018-24270-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ravali Adusumilli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Majlinda Kullolli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
50
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|