1
|
Raffo-Romero A, Ziane-Chaouche L, Hajjaji N, Salzet M, Duhamel M. Protocol for generating a co-culture of macrophages with breast cancer tumoroids. STAR Protoc 2025; 6:103536. [PMID: 39709607 PMCID: PMC11726783 DOI: 10.1016/j.xpro.2024.103536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Cancer progression and treatment outcomes are heavily influenced by the tumor microenvironment (TME), especially through immune cell interactions. Here, we present a protocol for generating co-cultures of tumoroids with macrophages, either semi-liquid or Matrigel-embedded. We describe steps for macrophage preparation, co-culture establishment, and medium adjustments to support cell viability and function. While optimized for breast cancer models, this protocol can be adapted to other tumor types with appropriate medium adjustments. For complete details on the use and execution of this protocol, please refer to Raffo-Romero et al.1.
Collapse
Affiliation(s)
- Antonella Raffo-Romero
- University Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Equipe Labellisée Ligue Contre le Cancer, Lille, France.
| | - Lydia Ziane-Chaouche
- University Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Equipe Labellisée Ligue Contre le Cancer, Lille, France
| | - Nawale Hajjaji
- University Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Michel Salzet
- University Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Equipe Labellisée Ligue Contre le Cancer, Lille, France.
| | - Marie Duhamel
- University Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; Equipe Labellisée Ligue Contre le Cancer, Lille, France.
| |
Collapse
|
2
|
Ziane-Chaouche L, Raffo-Romero A, Hajjaji N, Kobeissy F, Pinheiro D, Aboulouard S, Cozzani A, Mitra S, Fournier I, Cizkova D, Salzet M, Duhamel M. Inhibition of furin in CAR macrophages directs them toward a proinflammatory phenotype and enhances their antitumor activities. Cell Death Dis 2024; 15:879. [PMID: 39632807 PMCID: PMC11618602 DOI: 10.1038/s41419-024-07267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has revolutionized cellular immunotherapy, demonstrating remarkable efficacy in hematological cancers. However, its application in solid tumors faces significant challenges, including limited T-cell infiltration and tumor-induced immunosuppression. Given the prominent role of macrophages in the tumor microenvironment, their phenotypic plasticity and inherent antitumor properties, such as phagocytosis, offer a promising avenue for therapeutic intervention. This study focuses on the development of a second generation of CAR macrophages (CAR-Ms). We elucidated the role of the proprotein convertase furin in macrophages, demonstrating its overexpression in the presence of tumor cells. Importantly, furin inhibition maintains a proinflammatory macrophage phenotype, potentially redirecting them towards an antitumor state. Compared to furin-expressing counterparts, furin-inhibited CAR-Ms exhibited heightened antitumor phagocytic activity against breast cancer cells and ex vivo patient-derived tumoroids. Notably, they sustained a persistent proinflammatory profile, indicative of enhanced tumoricidal potential. Additionally, furin-inhibited CAR-Ms secreted factors that promote T-cell activation, offering a means to modulate the tumor microenvironment. In summary, our work highlights the translational potential of furin-inhibited CAR-Ms as a potent cellular therapy to mitigate macrophage exhaustion within the tumor environment. By capitalizing on macrophage-mediated antitumor responses, these findings pave the way for the development of second-generation CAR-M therapeutic strategies tailored for solid tumors.
Collapse
Affiliation(s)
- Lydia Ziane-Chaouche
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
| | - Antonella Raffo-Romero
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
| | - Nawale Hajjaji
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
- Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Donna Pinheiro
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
| | - Soulaimane Aboulouard
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
| | - Adeline Cozzani
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Suman Mitra
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Isabelle Fournier
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
| | - Dasa Cizkova
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, Clinic of Small Animals, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France.
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
- Equipe Labellisée Ligue Contre le Cancer, Villeneuve d'Ascq, France.
| |
Collapse
|
3
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
4
|
Moeller J, Meier DT. Ablation of PC1/3 in POMC-Expressing Tissues but Not in Immune Cells Induces Sepsis Hypersensitivity. J Endocr Soc 2024; 8:bvae171. [PMID: 39435302 PMCID: PMC11492489 DOI: 10.1210/jendso/bvae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 10/23/2024] Open
Abstract
Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neuropeptide and endocrine peptide precursors; it is expressed in neuroendocrine tissues as well as in immune cells. In response to endotoxemia, global PC1/3 knockout mice mount a cytokine storm and die rapidly. Further, immune cells isolated from these mice have a pro-inflammatory signature, suggesting that PC1/3 activates an unknown anti-inflammatory peptide precursor in immune cells. Here, we tested this hypothesis using tissue-specific PC1/3 ablation models. Knocking out PC1/3 in the myeloid or the hematopoietic compartment did not induce any phenotype. In contrast, proopiomelanocortin (POMC)-specific PC1/3 knockout mice phenocopied global PC1/3 knockout mice, including an enlarged spleen size and a hyperinflammatory sepsis phenotype in response to mild endotoxemia. This phenotype was prevented by steroid therapy and mimicked by blocking corticoid receptors in wild-type mice. Thus, our data suggest that sepsis hypersensitivity in PC1/3 deficiency is uncoupled from immune cell intrinsic PC1/3 expression and is driven by a lack of anti-inflammatory glucocorticoids due to an impairment in the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Jana Moeller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
6
|
Raffo-Romero A, Ziane-Chaouche L, Salomé-Desnoulez S, Hajjaji N, Fournier I, Salzet M, Duhamel M. A co-culture system of macrophages with breast cancer tumoroids to study cell interactions and therapeutic responses. CELL REPORTS METHODS 2024; 4:100792. [PMID: 38861990 PMCID: PMC11228374 DOI: 10.1016/j.crmeth.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
3D tumoroids have revolutionized in vitro/ex vivo cancer biology by recapitulating the complex diversity of tumors. While tumoroids provide new insights into cancer development and treatment response, several limitations remain. As the tumor microenvironment, especially the immune system, strongly influences tumor development, the absence of immune cells in tumoroids may lead to inappropriate conclusions. Macrophages, key players in tumor progression, are particularly challenging to integrate into the tumoroids. In this study, we established three optimized and standardized methods for co-culturing human macrophages with breast cancer tumoroids: a semi-liquid model and two matrix-embedded models tailored for specific applications. We then tracked interactions and macrophage infiltration in these systems using flow cytometry and light sheet microscopy and showed that macrophages influenced not only tumoroid molecular profiles but also chemotherapy response. This underscores the importance of increasing the complexity of 3D models to more accurately reflect in vivo conditions.
Collapse
Affiliation(s)
- Antonella Raffo-Romero
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Equipe Labellisée Ligue Contre le Cancer, Lille, France
| | - Lydia Ziane-Chaouche
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Equipe Labellisée Ligue Contre le Cancer, Lille, France
| | - Sophie Salomé-Desnoulez
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Nawale Hajjaji
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Equipe Labellisée Ligue Contre le Cancer, Lille, France; Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Isabelle Fournier
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Equipe Labellisée Ligue Contre le Cancer, Lille, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Equipe Labellisée Ligue Contre le Cancer, Lille, France.
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Equipe Labellisée Ligue Contre le Cancer, Lille, France.
| |
Collapse
|
7
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
8
|
Ma T, Su G, Wu Q, Shen M, Feng X, Zhang Z. Tumor-derived extracellular vesicles: how they mediate glioma immunosuppression. Mol Biol Rep 2024; 51:235. [PMID: 38282090 DOI: 10.1007/s11033-023-09196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Gliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood-brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment. In the tumor immune microenvironment (TIME), the primary immune cells are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). In particular, glioma-associated TAMs are chiefly composed of monocyte-derived macrophages and brain-resident microglia. These cells partially exhibit characteristics of a pro-tumorigenic, anti-inflammatory M2-type. Glioma-derived EVs can hijack TAMs to differentiate into tumor-supporting phenotypes or directly affect the maturation of peripheral blood monocytes (PBMCs) and promote the activation of MDSCs. In addition, EVs impair the ability of dendritic cells (DCs) to process antigens, subsequently hindering the activation of lymphocytes. EVs also impact the proliferation, differentiation, and activation of lymphocytes. This is primarily evident in the overall reduction of CD4 + helper T cells and CD8 + T cells, coupled with a relative increase in Tregs, which possess immunosuppressive characteristics. This study investigates thoroughly how tumor-derived EVs impair the function of immune cells and enhance immunosuppression in gliomas, shedding light on their potential implications for immunotherapy strategies in glioma treatment.
Collapse
Affiliation(s)
- Tianfei Ma
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qionghui Wu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xinli Feng
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Weng D, He L, Chen X, Lin H, Ji D, Lu S, Ao L, Wang S. Integrated analysis of transcription factor-mRNA-miRNA regulatory network related to immune characteristics in medullary thyroid carcinoma. Front Immunol 2023; 13:1055412. [PMID: 36713370 PMCID: PMC9877459 DOI: 10.3389/fimmu.2022.1055412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Background Medullary thyroid carcinoma (MTC), a thyroid C cell-derived malignancy, is poorly differentiated and more aggressive than papillary, follicular and oncocytic types of thyroid cancer. The current therapeutic options are limited, with a third of population suffering resistance. The differential gene expression pattern among thyroid cancer subtypes remains unclear. This study intended to explore the exclusive gene profile of MTC and construct a comprehensive regulatory network via integrated analysis, to uncover the potential key biomarkers. Methods Multiple datasets of thyroid and other neuroendocrine tumors were obtained from GEO and TCGA databases. Differentially expressed genes (DEGs) specific in MTC were identified to construct a transcription factor (TF)-mRNA-miRNA network. The impact of the TF-mRNA-miRNA network on tumor immune characteristics and patient survival was further explored by single-sample GSEA (ssGSEA) and ESTIMATE algorithms, as well as univariate combined with multivariate analyses. RT-qPCR, cell viability and apoptosis assays were performed for in vitro validation. Results We identified 81 genes upregulated and 22 downregulated in MTC but not in other types of thyroid tumor compared to the normal thyroid tissue. According to the L1000CDS2 database, potential targeting drugs were found to reverse the expressions of DEGs, with panobinostat (S1030) validated effective for tumor repression in MTC by in vitro experiments. The 103 DEGs exclusively seen in MTC were involved in signal release, muscle contraction, pathways of neurodegeneration diseases, neurotransmitter activity and related amino acid metabolism, and cAMP pathway. Based on the identified 15 hub genes, a TF-mRNA-miRNA linear network, as well as REST-cored coherent feed-forward loop networks, namely REST-KIF5C-miR-223 and REST-CDK5R2-miR-130a were constructed via online prediction and validation by public datasets and our cohort. Hub-gene, TF and miRNA scores in the TF-mRNA-miRNA network were related to immune score, immune cell infiltration and immunotherapeutic molecules in MTC as well as in neuroendocrine tumor of lung and neuroblastoma. Additionally, a high hub-gene score or a low miRNA score indicated good prognoses of neuroendocrine tumors. Conclusion The present study uncovers underlying molecular mechanisms and potential immunotherapy-related targets for the pathogenesis and drug discovery of MTC.
Collapse
Affiliation(s)
- Danfeng Weng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Long He
- Department of Pain, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangna Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huangfeng Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Daihan Ji
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shuting Lu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China,*Correspondence: Shenglin Wang, ; Lu Ao,
| | - Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China,*Correspondence: Shenglin Wang, ; Lu Ao,
| |
Collapse
|
10
|
Lu J, Xu F, Rao C, Shen C, Jin J, Zhu Z, Wang C, Li Q. Mechanism of action of paclitaxel for treating glioblastoma based on single-cell RNA sequencing data and network pharmacology. Front Pharmacol 2022; 13:1076958. [PMID: 36506527 PMCID: PMC9727555 DOI: 10.3389/fphar.2022.1076958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Paclitaxel is an herbal active ingredient used in clinical practice that shows anti-tumor effects. However, its biological activity, mechanism, and cancer cell-killing effects remain unknown. Information on the chemical gene interactions of paclitaxel was obtained from the Comparative Toxicogenomics Database, SwishTargetPrediction, Binding DB, and TargetNet databases. Gene expression data were obtained from the GSE4290 dataset. Differential gene analysis, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology analyses were performed. Gene set enrichment analysis was performed to evaluate disease pathway activation; weighted gene co-expression network analysis with diff analysis was used to identify disease-associated genes, analyze differential genes, and identify drug targets via protein-protein interactions. The Molecular Complex Detection (MCODE) analysis of critical subgroup networks was conducted to identify essential genes affected by paclitaxel, assess crucial cluster gene expression differences in glioma versus standard samples, and perform receiver operator characteristic mapping. To evaluate the pharmacological targets and signaling pathways of paclitaxel in glioblastoma, the single-cell GSE148196 dataset was acquired from the Gene Expression Omnibus database and preprocessed using Seurat software. Based on the single-cell RNA-sequencing dataset, 24 cell clusters were identified, along with marker genes for the two different cell types in each cluster. Correlation analysis revealed that the mechanism of paclitaxel treatment involves effects on neurons. Paclitaxel may affect glioblastoma by improving glucose metabolism and processes involved in modulating immune function in the body.
Collapse
|
11
|
Therapeutic anti-glioma effect of the combined action of PCSK inhibitor with the anti-tumoral factors secreted by Poly (I:C)-stimulated macrophages. Cancer Gene Ther 2022; 29:22-36. [PMID: 33402730 PMCID: PMC8761570 DOI: 10.1038/s41417-020-00286-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
Macrophages plasticity is a key feature in cancer progression. Neoplastic cells can alter their immune functions and orient them into a pro-tumoral phenotype. In this context, we developed a new therapeutic strategy to switch macrophages phenotype and reactivate their anti-tumoral functions. We showed a dual activity of a proprotein convertases inhibitor as anti-glioma drug and anti-tumoral macrophages' reactivation drug. Proprotein convertases are proteases that cleave proteins into functional proteins. Several of their substrates are involved in tumorigenesis and immunosuppression. We combine here proprotein convertases inhibitor with Poly (I:C), a TLR3 ligand, to increase the anti-tumoral activity of macrophages. With mass spectrometry-based proteomics, system biology, combined with biological assays, we established that a stimulation of macrophages with Poly (I:C) increased their secretion of pro-inflammatory cytokines and anti-tumoral factors. 3D invasion assay showed the efficacy of these anti-tumoral factors against mixed glioma cells and macrophages spheroids. Besides, immunofluorescence and proliferation assays showed an additive effect of the proprotein convertases inhibitor and the anti-tumoral factors secreted by Poly (I:C)-treated macrophages on both anti-glioma activity and macrophages anti-tumoral orientation directly in tumor microenvironment, leading to an innovative glioma therapy.
Collapse
|
12
|
Rose M, Duhamel M, Rodet F, Salzet M. The Role of Proprotein Convertases in the Regulation of the Function of Immune Cells in the Oncoimmune Response. Front Immunol 2021; 12:667850. [PMID: 33995401 PMCID: PMC8117212 DOI: 10.3389/fimmu.2021.667850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Proprotein convertases (PC) are a family of 9 serine proteases involved in the processing of cellular pro-proteins. They trigger the activation, inactivation or functional changes of many hormones, neuropeptides, growth factors and receptors. Therefore, these enzymes are essential for cellular homeostasis in health and disease. Nine PC subtilisin/kexin genes (PCSK1 to PCSK9) encoding for PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P and PCSK9 are known. The expression of PC1/3, PC2, PC5/6, Furin and PC7 in lymphoid organs such as lymph nodes, thymus and spleen has suggested a role for these enzymes in immunity. In fact, knock-out of Furin in T cells was associated with high secretion of pro-inflammatory cytokines and autoantibody production in mice. This suggested a key role for this enzyme in immune tolerance. Moreover, Furin through its proteolytic activity, regulates the suppressive functions of Treg and thus prevents chronic inflammation and autoimmune diseases. In macrophages, Furin is also involved in the regulation of their inflammatory phenotype. Similarly, PC1/3 inhibition combined with TLR4 stimulation triggers the activation of the NF-κB signaling pathway with an increased secretion of pro-inflammatory cytokines. Factors secreted by PC1/3 KD macrophages stimulated with LPS exert a chemoattractive effect on naive auxiliary T lymphocytes (Th0) and anti-tumoral activities. The link between TLR and PCs is thus very important in inflammatory response regulation. Furin regulates TL7 and TLR8 processing and trafficking whereas PC1/3 controls TLR4 and TLR9 trafficking. Since PC1/3 and Furin are key regulators of both the innate and adaptive immune responses their inhibition may play a major role in oncoimmune therapy. The role of PCs in the oncoimmune response and therapeutic strategies based on PCs inhibition are proposed in the present review.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Franck Rodet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| |
Collapse
|
13
|
Cardon T, Ozcan B, Aboulouard S, Kobeissy F, Duhamel M, Rodet F, Fournier I, Salzet M. Epigenetic Studies Revealed a Ghost Proteome in PC1/3 KD Macrophages under Antitumoral Resistance Induced by IL-10. ACS OMEGA 2020; 5:27774-27782. [PMID: 33163760 PMCID: PMC7643081 DOI: 10.1021/acsomega.0c02530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Our previous investigation on macrophages has allowed us to show that the inhibition of the enzyme proprotein convertase (PC1/3) controls the activation of macrophages. We demonstrated that PC1/3 knockdown (KD) in macrophages exhibits an increased secretion of proinflammatory and antitumoral factors. In this biological context, we assessed the presence of histone modifications and the presence and contribution of a "ghost proteome" in these macrophages. We identified a set of alternative proteins (AltProts) that have a key role in the regulation of various signaling pathways. In this study, to further investigate the underlying mechanisms involved in the resistance of PC1/3-KD macrophages to anti-inflammatory stimuli, we have conducted a proteomic system biology study to assess the epigenome variation, focusing on histone modifications. Results from our study have indicated the presence of significant variations in histone modifications along with the identification of 28 AltProts, which can be correlated with antitumoral resistance under IL-10 stimulation. These findings highlight a key role of altered epigenome histone modifications in driving resistance and indicate that like the reference proteins, AltProts can have a major impact in the field of epigenetics and regulation of gene expression, as shown in our results.
Collapse
Affiliation(s)
- Tristan Cardon
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Bilgehan Ozcan
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Soulaimane Aboulouard
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Firas Kobeissy
- Department
of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Marie Duhamel
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Franck Rodet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
| | - Isabelle Fournier
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| | - Michel Salzet
- Inserm,
CHRU Lille, University Lille, U-1192—Laboratoire Protéomique,
Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Lille 59000, France
- Institut
Universitaire de France, Paris 75000, France
| |
Collapse
|
14
|
Rose M, Duhamel M, Aboulouard S, Kobeissy F, Le Rhun E, Desmons A, Tierny D, Fournier I, Rodet F, Salzet M. The Role of a Proprotein Convertase Inhibitor in Reactivation of Tumor-Associated Macrophages and Inhibition of Glioma Growth. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:31-46. [PMID: 32300641 PMCID: PMC7152595 DOI: 10.1016/j.omto.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Tumors are characterized by the presence of malignant and non-malignant cells, such as immune cells including macrophages, which are preponderant. Macrophages impact the efficacy of chemotherapy and may lead to drug resistance. In this context and based on our previous work, we investigated the ability to reactivate macrophages by using a proprotein convertases inhibitor. Proprotein convertases process immature proteins into functional proteins, with several of them having a role in immune cell activation and tumorigenesis. Macrophages were treated with a peptidomimetic inhibitor targeting furin, PC1/3, PC4, PACE4, and PC5/6. Their anti-glioma activity was analyzed by mass spectrometry-based proteomics and viability assays in 2D and 3D in vitro cultures. Comparison with temozolomide, the drug used for glioma therapy, established that the inhibitor was more efficient for the reduction of cancer cell density. The inhibitor was also able to reactivate macrophages through the secretion of several immune factors with antitumor properties. Moreover, two proteins considered as good glioma patient survival indicators were also identified in 3D cultures treated with the inhibitor. Finally, we established that the proprotein convertases inhibitor has a dual role as an anti-glioma drug and anti-tumoral macrophage reactivation drug. This strategy could be used together with chemotherapy to increase therapy efficacy in glioma.
Collapse
Affiliation(s)
- Mélanie Rose
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France.,Oncovet Clinical Research (OCR), SIRIC ONCOLille, 59650 Villeneuve d'Ascq, France
| | - Marie Duhamel
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Soulaimane Aboulouard
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Firas Kobeissy
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Emilie Le Rhun
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Annie Desmons
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Dominique Tierny
- Oncovet Clinical Research (OCR), SIRIC ONCOLille, 59650 Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Franck Rodet
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Michel Salzet
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| |
Collapse
|
15
|
Liquid biopsies for diagnosing and monitoring primary tumors of the central nervous system. Cancer Lett 2020; 480:24-28. [PMID: 32229189 DOI: 10.1016/j.canlet.2020.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Obtaining diagnostic specimens, notably to monitor disease course in cancer patients undergoing therapy, is an emerging area of research, however, with few clinical implications so far in the field of Neuro-oncology. Specifically for patients with primary brain tumors where repeat biosampling from the tumor and clinical decision making based on neuroimaging alone remain challenging, this area may assume a central role. In principle, sampling could focus on blood, cerebrospinal fluid or urine with differential sensitivities and specificities of findings that differ between specific parameters and target molecules. These include protein, mRNA, miRNA, cell-free DNA, either freely circulating or as cargo of extracellular vesicles, as well circulating tumor cells. The most solid biomarkers are those directly reflecting neoplastic disease, e.g., in the case of primary brain tumors isocitrate dehydrogenase mutation or epidermal growth factor receptor variant III. Importantly, the main goals of liquid biopsy marker development are to better understand response to therapy, natural evolution and emergence of resistant clones, rather than obviating the need for surgical interventions which remain to be a mainstay of therapy for the vast majority of primary brain tumors.
Collapse
|
16
|
Murgoci AN, Duhamel M, Raffo-Romero A, Mallah K, Aboulouard S, Lefebvre C, Kobeissy F, Fournier I, Zilkova M, Maderova D, Cizek M, Cizkova D, Salzet M. Location of neonatal microglia drives small extracellular vesicles content and biological functions in vitro. J Extracell Vesicles 2020; 9:1727637. [PMID: 32158520 PMCID: PMC7049881 DOI: 10.1080/20013078.2020.1727637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Combining proteomics and systems biology approaches, we demonstrate that neonatal microglial cells derived from two different CNS locations, cortex and spinal cord, and cultured in vitro displayed different phenotypes upon different physiological or pathological conditions. These cells also exhibited greater variability in terms of cellular and small extracellular vesicles (sEVs) protein content and levels. Bioinformatic data analysis showed that cortical microglia exerted anti-inflammatory and neurogenesis/tumorigenesis properties, while the spinal cord microglia were more inflammatory. Interestingly, while both sEVs microglia sources enhanced growth of DRGs processes, only the spinal cord-derived sEVs microglia under LPS stimulation significantly attenuated glioma proliferation. These results were confirmed using the neurite outgrowth assay on DRGs cells and glioma proliferation analysis in 3D spheroid cultures. Results from these in vitro assays suggest that the microglia localized at different CNS regions can ensure different biological functions. Together, this study indicates that neonatal microglia locations regulate their physiological and pathological functional fates and could affect the high prevalence of brain vs spinal cord gliomas in adults.
Collapse
Affiliation(s)
- Adriana-Natalia Murgoci
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Marie Duhamel
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Antonella Raffo-Romero
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Khalil Mallah
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Soulaimane Aboulouard
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Christophe Lefebvre
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Firas Kobeissy
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isabelle Fournier
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Monika Zilkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Maderova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Cizek
- Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy in Košice, KošiceSlovakia
| | - Dasa Cizkova
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Michel Salzet
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| |
Collapse
|
17
|
Rodet F, Capuz A, Ozcan BA, Le Beillan R, Raffo-Romero A, Kobeissy F, Duhamel M, Salzet M. PC1/3 KD Macrophages Exhibit Resistance to the Inhibitory Effect of IL-10 and a Higher TLR4 Activation Rate, Leading to an Anti-Tumoral Phenotype. Cells 2019; 8:E1490. [PMID: 31766635 PMCID: PMC6953035 DOI: 10.3390/cells8121490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
During tumorigenesis, macrophages are recruited by tumors and orientated towards a pro-tumoral phenotype. One of the main anti-tumoral immunotherapy consists of their re-polarization in an anti-tumoral phenotype. We have demonstrated that the inhibition of proprotein convertase 1/3 combined with TLR4 activation in macrophages is a promising strategy. These macrophages display pro-inflammatory and anti-tumoral phenotypes. A hallmark is a stronger activation of the pro-inflammatory NFKB pathway. We believe that this can be explained by a modification of TLR4 expression at the cell surface or MYD88 cleavage since it exhibits a potential cleavage site for proprotein convertases. We tested these hypotheses through immunofluorescence and Western blot experiments. A proteomics study was also performed to test the sensitivity of these macrophages to IL-10. We demonstrated that these macrophages treated with LPS showed a quicker re-expression of TLR4 at the cell surface. The level of MYD88 was also higher when TLR4 was internalized. Moreover, these macrophages were resistant to the pro-tumoral effect of IL-10 and still produced pro-inflammatory factors. This established that the sensitivity to anti-inflammatory molecules and the length of TLR4 desensitization were reduced in these macrophages. Therefore, during antitumoral immunotherapy, a repeated stimulation of TLR4 may reactivate PC1/3 inhibited macrophages even in an anti-inflammatory environment.
Collapse
Affiliation(s)
- Franck Rodet
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| | - Alice Capuz
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| | - Bilgehan-Aybike Ozcan
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| | - Rémy Le Beillan
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| | - Antonella Raffo-Romero
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| | - Firas Kobeissy
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marie Duhamel
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| | - Michel Salzet
- Université de Lille, Inserm U1192–Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59655 Villeneuve d’Ascq CEDEX, France
| |
Collapse
|
18
|
Ogrinc N, Saudemont P, Balog J, Robin YM, Gimeno JP, Pascal Q, Tierny D, Takats Z, Salzet M, Fournier I. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat Protoc 2019; 14:3162-3182. [PMID: 31597965 DOI: 10.1038/s41596-019-0217-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/14/2019] [Indexed: 11/09/2022]
Abstract
Rapid, sensitive, precise and accurate analysis of samples in their native in vivo environment is critical to better decipher physiological and physiopathological mechanisms. SpiderMass is an ambient mass spectrometry (MS) system designed for mobile in vivo and real-time surface analyses of biological tissues. The system uses a fibered laser, which is tuned to excite the most intense vibrational band of water, resulting in a process termed water-assisted laser desorption/ionization (WALDI). The water molecules act as an endogenous matrix in a matrix-assisted laser desorption ionization (MALDI)-like scenario, leading to the desorption/ionization of biomolecules (lipids, metabolites and proteins). The ejected material is transferred to the mass spectrometer through an atmospheric interface and a transfer line that is several meters long. Here, we formulate a three-stage procedure that includes (i) a laser system setup coupled to a Waters Q-TOF or Thermo Fisher Q Exactive mass analyzer, (ii) analysis of specimens and (iii) data processing. We also describe the optimal setup for the analysis of cell cultures, fresh-frozen tissue sections and in vivo experiments on skin. With proper optimization, the system can be used for a variety of different targets and applications. The entire procedure takes 1-2 d for complex samples.
Collapse
Affiliation(s)
- Nina Ogrinc
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
| | - Philippe Saudemont
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- SATT-Nord, Immeuble Central Gare, Lille, France
| | - Julia Balog
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - Yves-Marie Robin
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, Lille, France
| | - Jean-Pascal Gimeno
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
| | - Quentin Pascal
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Eurasanté, Loos, France
| | - Dominique Tierny
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Eurasanté, Loos, France
| | - Zoltan Takats
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
| |
Collapse
|
19
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019. [PMID: 31143517 DOI: 10.1080/2162402x.2019.1596004] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
20
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019; 8:1596004. [PMID: 31143517 PMCID: PMC6527283 DOI: 10.1080/2162402x.2019.1596004] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
21
|
Li G, Huang M, Cai Y, Yang Y, Sun X, Ke Y. Circ-U2AF1 promotes human glioma via derepressing neuro-oncological ventral antigen 2 by sponging hsa-miR-7-5p. J Cell Physiol 2018; 234:9144-9155. [PMID: 30341906 DOI: 10.1002/jcp.27591] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
The prognosis for human glioma, a malignant tumor of the central nervous system, is poor due to its rapid growth, genetic heterogeneity, and inadequate understanding of its underlying molecular mechanisms. Circular RNAs composed of exonic sequences, represent an understudied form of noncoding RNAs (ncRNAs) that was discovered more than a decade ago, function as microRNA sponges. We aimed to assess the relationship between circ-U2AF1 (CircRNA ID: hsa_circ_0061868) and hsa-mir-7-5p and examine their effects on proliferation, apoptosis, and the metastatic phenotype of glioma cells regulated by neuro-oncological ventral antigen 2 (NOVA2). We found that the expression levels of circ-U2AF1 and NOVA2 were upregulated, while hsa-miR-7-5p was downregulated in human glioma tissues and glioma cell lines. Our data and bioinformatic analysis indicated the association of these molecules with glioma grade, a positive correlation between circ-U2AF1 and NOVA2 expression levels and a negative correlation of hsa-miR-7-5p with both circ-U2AF1 and NOVA2, respectively. In addition, silencing of circ-U2AF1 expression resulted in increased hsa-miR-7-5p expression and decreased NOVA2 expression both in vitro and in vivo. Luciferase assay confirmed hsa-miR-7-5p as a direct target of circ-U2AF1 and NOVA2 as a direct target of hsa-miR-7-5p. Functionally, silencing of circ-U2AF1 inhibits glioma development by repressing NOVA2 via upregulating hsa-miR-7-5p both in vitro and in vivo. Thus, we assumed that circ-U2AF1 promotes glioma malignancy via derepressing NOVA2 by sponging hsa-miR-7-5p. Taken together, we suggest that circ-U2AF1 can be a prognostic biomarker and the circ-U2AF1/hsa-miR-7-5p/NOVA2 regulatory pathway may be a novel therapeutic target for treating gliomas.
Collapse
Affiliation(s)
- Guoxiong Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.,Department of Neurosurgery, People's Hospital of Shiyan, Shenzhen, China
| | - Min Huang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuantao Yang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xinlin Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
22
|
Fatou B, Saudemont P, Duhamel M, Ziskind M, Focsa C, Salzet M, Fournier I. Real time and in vivo pharmaceutical and environmental studies with SpiderMass instrument. J Biotechnol 2018; 281:61-66. [DOI: 10.1016/j.jbiotec.2018.06.339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 01/19/2023]
|