1
|
Ashwood C, Voelcker C, Cummings RD. Swift Universal Glycan Acquisition (SUGA) Enables Quantitative Glycan Profiling across Diverse Sample Types. J Proteome Res 2025; 24:1030-1038. [PMID: 39978775 PMCID: PMC11894644 DOI: 10.1021/acs.jproteome.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 02/22/2025]
Abstract
The ability to rapidly analyze complex mixtures of glycans derived from glycoproteins is important, but techniques are often laborious and require multiple glycan derivatization steps. Here, we describe an approach termed Swift Universal Glycan Acquisition (SUGA) in which the total released, nonreduced N-glycan samples are analyzed following direct injection and electrospray ionization in a mass spectrometer with a rapid 3 min run time for each sample. As electrospray ionization (ESI) can generate multiple charge states and adducts for the same glycan composition (MS1), deconvolution is performed to yield the relative intensity profile for each detected glycan composition; each annotated composition is supported by an annotated MS2 spectrum. This combination of MS1 and MS2 data enables confident glycan identification. The data obtained by SUGA are comparable to those obtained using permethylated N-glycans analyzed by matrix-assisted laser desorption/ionization (MALDI)-MS. The SUGA approach was applied to the analyses of several purified glycoproteins and N-glycans derived from cells and compared to spectra obtained following permethylation and analysis by MALDI-MS. This new approach will facilitate the rapid and high-throughput analysis of N-glycans from diverse biological samples.
Collapse
Affiliation(s)
- Christopher Ashwood
- Department
of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Glycomics
Core, Beth Israel Deaconess Medical Center,
Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Cecilia Voelcker
- Glycomics
Core, Beth Israel Deaconess Medical Center,
Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Richard D. Cummings
- Department
of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
van Tol BDM, Wasynczuk AM, Gijze S, Mayboroda OA, Nouta J, Dolhain RJEM, Wuhrer M, Falck D. Comprehensive Immunoglobulin G, A, and M Glycopeptide Profiling for Large-Scale Biomedical Research. Mol Cell Proteomics 2025; 24:100928. [PMID: 39983994 PMCID: PMC11953977 DOI: 10.1016/j.mcpro.2025.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Glycosylation of immunoglobulin G (IgG) is recognized as a key modulator of cellular effector functions. At the same time, an increasing body of evidence underlines the importance of other antibody isotypes, especially IgA and IgM, in pathophysiological conditions. Therefore, methods to efficiently study the complex interplay between isotypes, subclasses, and glycosylation of antibodies during acute and chronic states of inflammation are needed. As a solution, we present an integrated and comprehensive method combining simultaneous affinity enrichment of IgG, IgA, and IgM with a single measurement, glycopeptide-centered LC-MS analysis of all isotypes which provides protein-specific (isotype and subclass), and site-specific N- and O-glycosylation quantitation. A two-protease approach provided individual peptides for each glycosylation site, allowing unambiguous compositional assignment and relative quantitation of glycoforms on the MS1 level as well as structural confirmation and partial isomer assignment on the MS/MS level. We demonstrate that our methodology can be efficiently applied to large clinical studies revealing differences in antibody glycosylation in women during and after pregnancy, as well as between healthy donors and patients with rheumatoid arthritis. In addition, this showcased the advantages of our method in comprehensiveness and resolution of isotypes, subclasses, and glycosylation sites as well as its precision and robustness.
Collapse
Affiliation(s)
- Bianca D M van Tol
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna M Wasynczuk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Steinar Gijze
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Pribić T, Das JK, Đerek L, Belsky DW, Orenduff M, Huffman KM, Kraus WE, Deriš H, Šimunović J, Štambuk T, Hodžić AF, Kraus VB, Das SK, Racette SB, Banskota N, Ferruci L, Pieper C, Lewis NE, Lauc G, Krishnan S. A 2-year calorie restriction intervention reduces glycomic biological age biomarkers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318451. [PMID: 39677441 PMCID: PMC11643172 DOI: 10.1101/2024.12.04.24318451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background/Objective In a subset of participants from the CALERIE™ Phase 2 study we evaluated the effects of 2y of ~25% Calorie Restriction (CR) diet on IgG N-glycosylation (GlycAge), plasma and complement C3 N-glycome as markers of aging and inflammaging. Methods Plasma samples from 26 participants in the CR group who completed the CALERIE2 trial and were deemed adherent to the intervention (~>10 % CR at 12 mo) were obtained from the NIA AgingResearchBiobank. Glycomic investigations using UPLC or LC-MS analyses were conducted on samples from baseline (BL), mid-intervention (12 mo) and post-intervention (24 mo), and changes resulting from the 2y CR intervention were examined. In addition, anthropometric, clinical, metabolic, DNA methylation (epigenetic) and skeletal muscle transcriptomic data were analyzed to identify aging-related changes that occurred in tandem with the N-glycome changes. Results Following the 2y CR intervention, IgG galactosylation was higher at 24mo compared to BL (p = 0.051), digalactosylation and GlycAge (the IgG-based surrogate for biological age) were not different between BL and 12mo or BL and 24mo, but increased between 12mo and 24mo (p = 0.016, 0.027 respectively). GlycAge was also positively associated with TNF-α and ICAM-1 (p=0.030, p=0.017 respectively). Plasma highly branched glycans were decreased by the 2y intervention (BL vs 24 mo: p=0.013), but both plasma and IgG bisecting GlcNAcs were increased (BL vs 24mo: p<0.001, p = 0.01 respectively). Furthermore, total complement C3 protein concentrations were reduced (BL vs 24mo: p <0.001), as were Man9 glycoforms (BL vs 24mo: p<0.001), and Man10 (which is glucosylated) C3 glycoforms (BL vs 24mo: p = 0.046). Conclusions 24-mos of CR was associated with several favorable, anti-aging, anti-inflammatory changes in the glycome: increased galactosylation, reduced branching glycans, and reduced GlycAge. These promising CR effects were accompanied by an increase in bisecting GlcNAc, a known pro-inflammatory biomarker. These intriguing findings linking CR, clinical, and glycomic changes may be anti-aging and inflammatory, and merit additional investigation.
Collapse
Affiliation(s)
- Tea Pribić
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jayanta K Das
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Lovorka Đerek
- Clinical Department for Laboratory Diagnostics, University Hospital Dubrava, Croatia
| | - Daniel W. Belsky
- Robert N Butler Columbia Aging Center and Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - Melissa Orenduff
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - William E Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helena Deriš
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Tamara Štambuk
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Virginia B Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sai Krupa Das
- Jean Mayer, USDA, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Susan B. Racette
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Nirad Banskota
- Computational Biology and Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferruci
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Carl Pieper
- Division of Biostatistics, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, California, USA
| | - Gordan Lauc
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Sridevi Krishnan
- School of Nutritional Sciences and Wellness, BIO5, University of Arizona, Tucson, USA
| |
Collapse
|
4
|
Maslov DE, Timoshchuk AN, Bondar AA, Golubev MP, Soplenkova AG, Hanic M, Sharapov SZ, Leonova ON, Aulchenko YS, Golubeva TS. Fast and Simple Protocol for N-Glycome Analysis of Human Blood Plasma Proteome. Biomolecules 2024; 14:1551. [PMID: 39766258 PMCID: PMC11673551 DOI: 10.3390/biom14121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/10/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
N-glycome analysis of individual proteins and tissues is crucial for fundamental and applied biomedical research and medical diagnosis and plays an important role in the evaluation of the quality of biopharmaceutical and biotechnological products. The interest in this research area continues to grow annually, thereby increasing the demand for the high-throughput profiling of human blood plasma N-glycome. In response to this need, we have developed an optimized, simple, and rapid protocol for the N-glycome profiling of human plasma proteins. This protocol encompasses the entire analysis cycle, from plasma isolation to N-glycan spectrum quantification. While the proposed method may have lower efficiency compared to already published high-throughput methods, its adaptability makes it suitable for implementation in virtually any molecular biological laboratory.
Collapse
Affiliation(s)
- Denis E. Maslov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia; (D.E.M.); (A.N.T.); (M.P.G.); (A.G.S.)
| | - Anna N. Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia; (D.E.M.); (A.N.T.); (M.P.G.); (A.G.S.)
| | - Alexander A. Bondar
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia;
| | - Maxim P. Golubev
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia; (D.E.M.); (A.N.T.); (M.P.G.); (A.G.S.)
| | - Anna G. Soplenkova
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia; (D.E.M.); (A.N.T.); (M.P.G.); (A.G.S.)
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia;
| | - Sodbo Z. Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia; (D.E.M.); (A.N.T.); (M.P.G.); (A.G.S.)
| | - Olga N. Leonova
- Priorov Central Institute of Traumatology and Orthopedic, Moscow 127299, Russia
| | - Yurii S. Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia; (D.E.M.); (A.N.T.); (M.P.G.); (A.G.S.)
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Tatiana S. Golubeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
5
|
Yang H, Lin Z, Wu B, Xu J, Tao SC, Zhou S. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1145-1155. [PMID: 39099413 PMCID: PMC11399442 DOI: 10.3724/abbs.2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.
Collapse
Affiliation(s)
- Hangzhou Yang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Zihan Lin
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Bo Wu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai200233China
| |
Collapse
|
6
|
Bladergroen MR, Pongracz T, Wang W, Nicolardi S, Arbous SM, Roukens A, Wuhrer M. Total plasma N-glycomic signature of SARS-CoV-2 infection. iScience 2024; 27:110374. [PMID: 39100929 PMCID: PMC11294702 DOI: 10.1016/j.isci.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Total plasma protein N-glycosylation (TPNG) changes are a hallmark of many diseases. Here, we analyzed the TPNG of 169 COVID-19 patients and 12 healthy controls, using mass spectrometry, resulting in the relative quantification of 85 N-glycans. We found a COVID-19 N-glycomic signature, with 59 glycans differing between patients and controls, many of them additionally differentiating between severe and mild COVID-19. Tri- and tetra-antennary N-glycans were increased in patients, showing additionally elevated levels of antennary α2,6-sialylation. Conversely, bisection of di-antennary, core-fucosylated, nonsialylated glycans was low in COVID-19, particularly in severe cases, potentially driven by the previously observed low levels of bisection on antibodies of severely diseased COVID-19 patients. These glycomic changes point toward systemic changes in the blood glycoproteome, particularly involvement of acute-phase proteins, immunoglobulins and the complement cascade. Further research is needed to dissect glycosylation changes in a protein- and site-specific way to obtain specific functional leads.
Collapse
Affiliation(s)
- Marco R. Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Sesmu M. Arbous
- Department of Intensive Care, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Anna Roukens
- Department of Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - BEAT-COVID group
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Intensive Care, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - LUMC COVID-19 group
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Intensive Care, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
7
|
Safferthal M, Bechtella L, Zappe A, Vos GM, Pagel K. Labeling of Mucin-Type O-Glycans for Quantification Using Liquid Chromatography and Fluorescence Detection. ACS MEASUREMENT SCIENCE AU 2024; 4:223-230. [PMID: 38645579 PMCID: PMC11027200 DOI: 10.1021/acsmeasuresciau.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/23/2024]
Abstract
O-glycosylation is a common post-translational modification that is essential for the defensive properties of mucus barriers. Incomplete and altered O-glycosylation is often linked to severe diseases, such as cancer, cystic fibrosis, and chronic obstructive pulmonary disease. Originating from a nontemplate-driven biosynthesis, mucin-type O-glycan structures are very complex. They are often present as heterogeneous mixtures containing multiple isomers. Therefore, the analysis of complex O-glycan mixtures usually requires hyphenation of orthogonal techniques such as liquid chromatography (LC), ion mobility spectrometry, and mass spectrometry (MS). However, MS-based techniques are mainly qualitative. Moreover, LC separation of O-glycans often lacks reproducibility and requires sophisticated data treatment and analysis. Here we present a mucin-type O-glycomics analysis workflow that utilizes hydrophilic interaction liquid chromatography for separation and fluorescence labeling for detection and quantification. In combination with mass spectrometry, a detailed analysis on the relative abundance of specific mucin-type O-glycan compositions and features, such as fucose, sialic acids, and sulfates, is performed. Furthermore, the average number of monosaccharide units of O-glycans in different samples was determined. To demonstrate universal applicability, the method was tested on mucins from different tissue types and mammals, such as bovine submaxillary mucins, porcine gastric mucins, and human milk mucins. To account for day-to-day retention time shifts in O-glycan separations and increase the comparability between different instruments and laboratories, we included fluorescently labeled dextran ladders in our workflow. In addition, we set up a library of glucose unit values for all identified O-glycans, which can be used to simplify the identification process of glycans in future analyses.
Collapse
Affiliation(s)
- Marc Safferthal
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Leïla Bechtella
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Andreas Zappe
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Gaël M. Vos
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| | - Kevin Pagel
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Biology, Chemistry, Pharmacy, Freie Universität
Berlin, Altensteinstraße
23a, 14195 Berlin, Germany
| |
Collapse
|
8
|
O’Flaherty R, Amez Martín M, Gardner RA, Jennings PM, Rudd PM, Spencer DIR, Falck D. Erythropoietin N-glycosylation of Therapeutic Formulations Quantified and Characterized: An Interlab Comparability Study of High-Throughput Methods. Biomolecules 2024; 14:125. [PMID: 38254725 PMCID: PMC10813422 DOI: 10.3390/biom14010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX.
Collapse
Affiliation(s)
- Róisín O’Flaherty
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
- Department of Chemistry, Maynooth University, W23 F2K8 Maynooth, Ireland
| | - Manuela Amez Martín
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
| | - Patrick M. Jennings
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
| | - Pauline M. Rudd
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
| | - Daniel I. R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
9
|
Jin C, Venkatakrishnan V, Thomsson KA, Aoki NP, Shinmachi D, Aoki-Kinoshita KF, Hayes CA, Lisacek F, Karlsson NG. UniCarb-DB: An MS/MS Experimental Glycomic Fragmentation Database. Methods Mol Biol 2024; 2836:77-96. [PMID: 38995537 DOI: 10.1007/978-1-0716-4007-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosylation is a unique posttranslational modification that dynamically shapes the surface of cells. Glycans attached to proteins or lipids in a cell or tissue are studied as a whole and collectively designated as a glycome. UniCarb-DB is a glycomic spectral library of tandem mass spectrometry (MS/MS) fragment data. The current version of the database consists of over 1500 entries and over 1000 unique structures. Each entry contains parent ion information with associated MS/MS spectra, metadata about the original publication, experimental conditions, and biological origin. Each structure is also associated with the GlyTouCan glycan structure repository allowing easy access to other glycomic resources. The database can be directly utilized by mass spectrometry (MS) experimentalists through the conversion of data generated by MS into structural information. Flexible online search tools along with a downloadable version of the database are easily incorporated in either commercial or open-access MS software. This chapter highlights UniCarb-DB online search tool to browse differences of isomeric structures between spectra, a peak matching search between user-generated MS/MS spectra and spectra stored in UniCarb-DB and more advanced MS tools for combined quantitative and qualitative glycomics.
Collapse
Affiliation(s)
- Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Kristina A Thomsson
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nobuyuki P Aoki
- Soka University, Hachioji, Tokyo, Japan
- SparqLite.com, Hachioji, Tokyo, Japan
| | | | | | - Catherine A Hayes
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Computer Science Department, University of Geneva, Geneva, Switzerland
- Section of Biology, University of Geneva, Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Niclas G Karlsson
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Division of Pharmacy, Department of Life Science and Health, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
10
|
Torres NI, Manselle Cocco MN, Perrotta RM, Mahmoud YD, Salatino M, Mariño KV, Rabinovich GA. A single-step, rapid, and versatile method for simultaneous detection of cell surface glycan profiles using fluorochrome-conjugated lectins. Glycobiology 2023; 33:855-860. [PMID: 37584473 DOI: 10.1093/glycob/cwad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Cell surface glycans play essential roles in diverse physiological and pathological processes and their assessment has important implications in biomedicine and biotechnology. Here we present a rapid, versatile, and single-step multicolor flow cytometry method for evaluation of cell surface glycan signatures using a panel of selected fluorochrome-conjugated lectins. This procedure allows simultaneous detection of cell surface glycans with a 10-fold reduction in the number of cells required compared with traditional multistep lectin staining methods. Interestingly, we used this one-step lectin array coupled with dimension reduction algorithms in a proof-of-concept application for discrimination among different tumor and immune cell populations. Moreover, this procedure was also able to unveil T-, B-, and myeloid cell subclusters exhibiting differential glycophenotypes. Thus, we report a rapid and versatile lectin cytometry method to simultaneously detect a particular repertoire of surface glycans on living cells that can be easily implemented in different laboratories and core facilities.
Collapse
Affiliation(s)
- Nicolás I Torres
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), C1073, Ciudad de Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
| | - Ramiro M Perrotta
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
| | - Yamil D Mahmoud
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), C1073, Ciudad de Buenos Aires, Argentina
| | - Mariana Salatino
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
11
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
12
|
Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M, Dolhain RJEM. An Integrated Glycosylation Signature of Rheumatoid Arthritis. Biomolecules 2023; 13:1106. [PMID: 37509142 PMCID: PMC10377307 DOI: 10.3390/biom13071106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) Is a highly prevalent autoimmune disease that affects the joints but also various other organs. The disease is characterized by autoantibodies that are often already observed pre-disease. Since the 1980s, it has been known that antibody glycosylation is different in RA as compared to control individuals. While the literature on glycosylation changes in RA is dominated by reports on serum or plasma immunoglobulin G (IgG), our recent studies have indicated that the glycosylation changes observed for immunoglobulin A (IgA) and total serum N-glycome (TSNG) may be similarly prominent, and useful in differentiating between the RA patients and controls, or as a proxy of the disease activity. In this study, we integrated and compared the RA glycosylation signatures of IgG, IgA and TSNG, all determined in the pregnancy-induced amelioration of rheumatoid arthritis (PARA) cohort. We assessed the association of the altered glycosylation patterns with the disease, autoantibody positivity and disease activity. Our analyses indicated a common, composite glycosylation signature of RA that was independent of the autoantibody status.
Collapse
Affiliation(s)
- Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Guinevere S M Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Analytical Biochemistry, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
13
|
Sharapov SZ, Timoshchuk AN, Aulchenko YS. Genetic control of N-glycosylation of human blood plasma proteins. Vavilovskii Zhurnal Genet Selektsii 2023; 27:224-239. [PMID: 37293449 PMCID: PMC10244589 DOI: 10.18699/vjgb-23-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2022] [Indexed: 06/10/2023] Open
Abstract
Glycosylation is an important protein modification, which influences the physical and chemical properties as well as biological function of these proteins. Large-scale population studies have shown that the levels of various plasma protein N-glycans are associated with many multifactorial human diseases. Observed associations between protein glycosylation levels and human diseases have led to the conclusion that N-glycans can be considered a potential source of biomarkers and therapeutic targets. Although biochemical pathways of glycosylation are well studied, the understanding of the mechanisms underlying general and tissue-specific regulation of these biochemical reactions in vivo is limited. This complicates both the interpretation of the observed associations between protein glycosylation levels and human diseases, and the development of glycan-based biomarkers and therapeutics. By the beginning of the 2010s, high-throughput methods of N-glycome profiling had become available, allowing research into the genetic control of N-glycosylation using quantitative genetics methods, including genome-wide association studies (GWAS). Application of these methods has made it possible to find previously unknown regulators of N-glycosylation and expanded the understanding of the role of N-glycans in the control of multifactorial diseases and human complex traits. The present review considers the current knowledge of the genetic control of variability in the levels of N-glycosylation of plasma proteins in human populations. It briefly describes the most popular physical-chemical methods of N-glycome profiling and the databases that contain genes involved in the biosynthesis of N-glycans. It also reviews the results of studies of environmental and genetic factors contributing to the variability of N-glycans as well as the mapping results of the genomic loci of N-glycans by GWAS. The results of functional in vitro and in silico studies are described. The review summarizes the current progress in human glycogenomics and suggests possible directions for further research.
Collapse
Affiliation(s)
- S Zh Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - A N Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Y S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
van der Burgt Y, Wuhrer M. The role of clinical glyco(proteo)mics in precision medicine. Mol Cell Proteomics 2023:100565. [PMID: 37169080 DOI: 10.1016/j.mcpro.2023.100565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Glycoproteomics reveals site-specific O- and N-glycosylation that may influence protein properties including binding, activity and half-life. The increasingly mature toolbox with glycomic- and glycoproteomic strategies is applied for the development of biopharmaceuticals and discovery and clinical evaluation of glycobiomarkers in various disease fields. Notwithstanding the contributions of glycoscience in identifying new drug targets, the current report is focused on the biomarker modality that is of interest for diagnostic and monitoring purposes. To this end it is noted that the identification of biomarkers has received more attention than corresponding quantification. Most analytical methods are very efficient in detecting large numbers of analytes but developments to accurately quantify these have so far been limited. In this perspective a parallel is made with earlier proposed tiers for protein quantification using mass spectrometry. Moreover, the foreseen reporting of multimarker readouts is discussed to describe an individual's health or disease state and their role in clinical decision-making. The potential of longitudinal sampling and monitoring of glycomic features for diagnosis and treatment monitoring is emphasized. Finally, different strategies that address quantification of a multimarker panel will be discussed.
Collapse
Affiliation(s)
- Yuri van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Sanda M, Yang Q, Zong G, Chen H, Zheng Z, Dhani H, Khan K, Kroemer A, Wang LX, Goldman R. LC-MS/MS-PRM Quantification of IgG Glycoforms Using Stable Isotope Labeled IgG1 Fc Glycopeptide Standard. J Proteome Res 2023; 22:1138-1147. [PMID: 36763792 PMCID: PMC10461028 DOI: 10.1021/acs.jproteome.2c00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/12/2023]
Abstract
Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this work, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft higher-energy C-trap dissociation (HCD) conditions, which reduces the coefficients of variability (CVs) of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intrascan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow, as well as the HCD workflow, with the highest sensitivity compared to traditional workflows. This was exemplified by a rapid quantification (13 min) of IgG1 Fc glycoforms from COVID-19 patients.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
- Clinical
and Translational Glycoscience Research Center, Georgetown University, Washington, D.C. 20057, United States
- Max-Planck-Institut
fuer Herz- und Lungenforschung, Ludwigstrasse 43, Bad Nauheim, 61231, Germany
| | - Qiang Yang
- GlycoT Therapeutics, College Park, Maryland 20742, United States
| | - Guanghui Zong
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - He Chen
- GlycoT Therapeutics, College Park, Maryland 20742, United States
| | - Zhihao Zheng
- GlycoT Therapeutics, College Park, Maryland 20742, United States
| | - Harmeet Dhani
- MedStar Georgetown
Transplant Institute, MedStar Georgetown University Hospital and the
Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Khalid Khan
- MedStar Georgetown
Transplant Institute, MedStar Georgetown University Hospital and the
Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Alexander Kroemer
- MedStar Georgetown
Transplant Institute, MedStar Georgetown University Hospital and the
Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Radoslav Goldman
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
- Clinical
and Translational Glycoscience Research Center, Georgetown University, Washington, D.C. 20057, United States
- Department
of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
16
|
Burock R, Cajic S, Hennig R, Buettner FFR, Reichl U, Rapp E. Reliable N-Glycan Analysis-Removal of Frequently Occurring Oligosaccharide Impurities by Enzymatic Degradation. Molecules 2023; 28:molecules28041843. [PMID: 36838829 PMCID: PMC9967028 DOI: 10.3390/molecules28041843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glycosylation, especially N-glycosylation, is one of the most common protein modifications, with immense importance at the molecular, cellular, and organismal level. Thus, accurate and reliable N-glycan analysis is essential in many areas of pharmaceutical and food industry, medicine, and science. However, due to the complexity of the cellular glycosylation process, in-depth glycoanalysis is still a highly challenging endeavor. Contamination of samples with oligosaccharide impurities (OSIs), typically linear glucose homo-oligomers, can cause further complications. Due to their physicochemical similarity to N-glycans, OSIs produce potentially overlapping signals, which can remain unnoticed. If recognized, suspected OSI signals are usually excluded in data evaluation. However, in both cases, interpretation of results can be impaired. Alternatively, sample preparation can be repeated to include an OSI removal step from samples. However, this significantly increases sample amount, time, and effort necessary. To overcome these issues, we investigated the option to enzymatically degrade and thereby remove interfering OSIs as a final sample preparation step. Therefore, we screened ten commercially available enzymes concerning their potential to efficiently degrade maltodextrins and dextrans as most frequently found OSIs. Of these enzymes, only dextranase from Chaetomium erraticum and glucoamylase P from Hormoconis resinae enabled a degradation of OSIs within only 30 min that is free of side reactions with N-glycans. Finally, we applied the straightforward enzymatic degradation of OSIs to N-glycan samples derived from different standard glycoproteins and various stem cell lysates.
Collapse
Affiliation(s)
- Robert Burock
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - Samanta Cajic
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - René Hennig
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
- Correspondence:
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Udo Reichl
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| |
Collapse
|
17
|
Šimunović J, Gašperšič J, Černigoj U, Vidič J, Štrancar A, Novokmet M, Razdorov G, Pezer M, Lauc G, Trbojević-Akmačić I. High-throughput immunoaffinity enrichment and N-glycan analysis of human plasma haptoglobin. Biotechnol Bioeng 2023; 120:491-502. [PMID: 36324280 DOI: 10.1002/bit.28280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Haptoglobin (Hp) is a positive acute phase protein, synthesized in the liver, with four N-glycosylation sites carrying mainly complex type N-glycans. Its glycosylation is altered in different types of diseases but still has not been extensively studied mainly due to analytical challenges, especially the lack of a fast, efficient, and robust high-throughput Hp isolation procedure. Here, we describe the development of a high-throughput method for Hp enrichment from human plasma, based on monolithic chromatographic support in immunoaffinity mode and downstream Hp N-glycome analysis by hydrophilic interaction ultrahigh-performance liquid chromatography with fluorescent detection (HILIC-UHPLC-FLR). Chromatographic monolithic supports in a 96-well format enable fast, efficient, and robust Hp enrichment directly from diluted plasma samples. The N-glycome analysis demonstrated that a degree of Hp deglycosylation differs depending on the conditions used for N-glycan release and on the specific glycosylation site, with Asn 241 being the most resistant to deglycosylation under tested conditions. HILIC-UHPLC-FLR analysis enables robust quantification of 28 individual chromatographic peaks, in which N-glycan compositions were determined by UHPLC coupled to electrospray ionization quadrupole time of flight mass spectrometry. The developed analytical approach enables fast evaluation of total Hp N-glycosylation and is applicable in large-scale studies.
Collapse
Affiliation(s)
| | | | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Jana Vidič
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | | | | | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
18
|
Mukherjee S, Jankevics A, Busch F, Lubeck M, Zou Y, Kruppa G, Heck AJR, Scheltema RA, Reiding KR. Oxonium Ion-Guided Optimization of Ion Mobility-Assisted Glycoproteomics on the timsTOF Pro. Mol Cell Proteomics 2023; 22:100486. [PMID: 36549589 PMCID: PMC9853368 DOI: 10.1016/j.mcpro.2022.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | | | - Yang Zou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Gary Kruppa
- Bruker Daltonik GmbH & Co KG, Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Chau TH, Chernykh A, Ugonotti J, Parker BL, Kawahara R, Thaysen-Andersen M. Glycomics-Assisted Glycoproteomics Enables Deep and Unbiased N-Glycoproteome Profiling of Complex Biological Specimens. Methods Mol Biol 2023; 2628:235-263. [PMID: 36781790 DOI: 10.1007/978-1-0716-2978-9_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mass spectrometry-driven glycomics and glycoproteomics, the system-wide profiling of detached glycans and intact glycopeptides from biological samples, respectively, are powerful approaches to interrogate the heterogenous glycoproteome. Efforts to develop integrated workflows employing both glycomics and glycoproteomics have been invested since the concerted application of these complementary approaches enables a deeper exploration of the glycoproteome. This protocol paper outlines, step-by-step, an integrated -omics technology, the "glycomics-assisted glycoproteomics" method, that first establishes the N-glycan fine structures and their quantitative distribution pattern of protein extracts via porous graphitized carbon-LC-MS/MS. The N-glycome information is then used to augment and guide the challenging reversed-phase LC-MS/MS-based profiling of intact N-glycopeptides from the same protein samples. Experimental details and considerations relating to the sample preparation and the N-glycomics and N-glycoproteomics data collection, analysis, and integration are discussed. Benefits of the glycomics-assisted glycoproteomics method, which can be readily applied to both simple and complex biological specimens such as protein extracts from cells, tissues, and bodily fluids (e.g., serum), include quantitative information of the protein carriers and site(s) of glycosylation, site occupancy, and the site-specific glycan structures directly from biological samples. The glycomics-assisted glycoproteomics method therefore facilitates a comprehensive view of the complexity and dynamics of the heterogenous glycoproteome.
Collapse
Affiliation(s)
- The Huong Chau
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anastasia Chernykh
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Julian Ugonotti
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebeca Kawahara
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
20
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
21
|
Integrating age, BMI, and serum N-glycans detected by MALDI mass spectrometry to classify suspicious mammogram findings as benign lesions or breast cancer. Sci Rep 2022; 12:20801. [PMID: 36460712 PMCID: PMC9718781 DOI: 10.1038/s41598-022-25401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
While mammograms are the standard tool for breast cancer screening, there remains challenges for mammography to effectively distinguish benign lesions from breast cancers, leading to many unnecessary biopsy procedures. A blood-based biomarker could provide a minimally invasive supplemental assay to increase the specificity of breast cancer screening. Serum N-glycosylation alterations have associations with many cancers and several of the clinical characteristics of breast cancer. The current study utilized a high-throughput mass spectrometry workflow to identify serum N-glycans with differences in intensities between patients that had a benign lesion from patients with breast cancer. The overall N-glycan profiles of the two patient groups had no differences, but there were several individual N-glycans with significant differences in intensities between patients with benign lesions and ductal carcinoma in situ (DCIS). Many N-glycans had strong associations with age and/or body mass index, but there were several of these associations that differed between the patients with benign lesions and breast cancer. Accordingly, the samples were stratified by the patient's age and body mass index, and N-glycans with significant differences between these subsets were identified. For women aged 50-74 with a body mass index of 18.5-24.9, a model including the intensities of two N-glycans, 1850.666 m/z and 2163.743 m/z, age, and BMI were able to clearly distinguish the breast cancer patients from the patients with benign lesions with an AUROC of 0.899 and an optimal cutoff with 82% sensitivity and 84% specificity. This study indicates that serum N-glycan profiling is a promising approach for providing clarity for breast cancer screening, especially within the subset of healthy weight women in the age group recommended for mammograms.
Collapse
|
22
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
23
|
Patabandige MW, Pfeifer LD, Nguyen HT, Desaire H. Quantitative clinical glycomics strategies: A guide for selecting the best analysis approach. MASS SPECTROMETRY REVIEWS 2022; 41:901-921. [PMID: 33565652 PMCID: PMC8601598 DOI: 10.1002/mas.21688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
Glycans introduce complexity to the proteins to which they are attached. These modifications vary during the progression of many diseases; thus, they serve as potential biomarkers for disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Understanding the strengths and weaknesses of different quantitative glycomics analysis methods is important for selecting the best strategy to analyze glycosylation changes in any given set of clinical samples. To provide guidance towards selecting the proper approach, we discuss four widely used quantitative glycomics analysis platforms, including fluorescence-based analysis of released N-linked glycans and three different varieties of MS-based analysis: liquid chromatography (LC)-mass spectrometry (MS) analysis of glycopeptides, matrix-assisted laser desorption ionization-time of flight MS, and LC-ESI-MS analysis of released N-linked glycans. These methods' strengths and weaknesses are compared, particularly associated with the figures of merit that are important for clinical biomarker studies, including: the initial sample requirements, the methods' throughput, sample preparation time, the number of species identified, the methods' utility for isomer separation and structural characterization, method-related challenges associated with quantitation, repeatability, the expertise required, and the cost for each analysis. This review, therefore, provides unique guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering insights on the available analysis technologies.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Leah D. Pfeifer
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Hanna T. Nguyen
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
24
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
25
|
Mouse tissue glycome atlas 2022 highlights inter-organ variation in major N-glycan profiles. Sci Rep 2022; 12:17804. [PMID: 36280747 PMCID: PMC9592591 DOI: 10.1038/s41598-022-21758-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/19/2023] Open
Abstract
This study presents "mouse tissue glycome atlas" representing the profiles of major N-glycans of mouse glycoproteins that may define their essential functions in the surface glycocalyx of mouse organs/tissues and serum-derived extracellular vesicles (exosomes). Cell surface glycocalyx composed of a variety of N-glycans attached covalently to the membrane proteins, notably characteristic "N-glycosylation patterns" of the glycocalyx, plays a critical role for the regulation of cell differentiation, cell adhesion, homeostatic immune response, and biodistribution of secreted exosomes. Given that the integrity of cell surface glycocalyx correlates significantly with maintenance of the cellular morphology and homeostatic immune functions, dynamic alterations of N-glycosylation patterns in the normal glycocalyx caused by cellular abnormalities may serve as highly sensitive and promising biomarkers. Although it is believed that inter-organs variations in N-glycosylation patterns exist, information of the glycan diversity in mouse organs/tissues remains to be elusive. Here we communicate for the first-time N-glycosylation patterns of 16 mouse organs/tissues, serum, and serum-derived exosomes of Slc:ddY mice using an established solid-phase glycoblotting platform for the rapid, easy, and high throughput MALDI-TOFMS-based quantitative glycomics. The present results elicited occurrence of the organ/tissue-characteristic N-glycosylation patterns that can be discriminated to each other. Basic machine learning analysis using this N-glycome dataset enabled classification between 16 mouse organs/tissues with the highest F1 score (69.7-100%) when neural network algorithm was used. A preliminary examination demonstrated that machine learning analysis of mouse lung N-glycome dataset by random forest algorithm allows for the discrimination of lungs among the different mouse strains such as the outbred mouse Slc:ddY, inbred mouse DBA/2Crslc, and systemic lupus erythematosus model mouse MRL-lpr/lpr with the highest F1 score (74.5-83.8%). Our results strongly implicate importance of "human organ/tissue glycome atlas" for understanding the crucial and diversified roles of glycocalyx determined by the organ/tissue-characteristic N-glycosylation patterns and the discovery research for N-glycome-based disease-specific biomarkers and therapeutic targets.
Collapse
|
26
|
Petralia LMC, Santha E, Behrens AJ, Nguyen DL, Ganatra MB, Taron CH, Khatri V, Kalyanasundaram R, van Diepen A, Hokke CH, Foster JM. Alteration of rhesus macaque serum N-glycome during infection with the human parasitic filarial nematode Brugia malayi. Sci Rep 2022; 12:15763. [PMID: 36131114 PMCID: PMC9491660 DOI: 10.1038/s41598-022-19964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Serum N-glycan profiling studies during the past decades have shown robust associations between N-glycan changes and various biological conditions, including infections, in humans. Similar studies are scarcer for other mammals, despite the tremendous potential of serum N-glycans as biomarkers for infectious diseases in animal models of human disease and in the veterinary context. To expand the knowledge of serum N-glycan profiles in important mammalian model systems, in this study, we combined MALDI-TOF-MS analysis and HILIC-UPLC profiling of released N-glycans together with glycosidase treatments to characterize the glycan structures present in rhesus macaque serum. We used this baseline to monitor changes in serum N-glycans during infection with Brugia malayi, a parasitic nematode of humans responsible for lymphatic filariasis, in a longitudinal cohort of infected rhesus macaques. Alterations of the HILIC-UPLC profile, notably of abundant structures, became evident as early as 5 weeks post-infection. Given its prominent role in the immune response, contribution of immunoglobulin G to serum N-glycans was investigated. Finally, comparison with similar N-glycan profiling performed during infection with the dog heartworm Dirofilaria immitis suggests that many changes observed in rhesus macaque serum N-glycans are specific for lymphatic filariasis.
Collapse
Affiliation(s)
- Laudine M C Petralia
- Division of Protein Expression and Modification, New England Biolabs, Ipswich, MA, 01938, USA.
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Esrath Santha
- Division of Protein Expression and Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Anna-Janina Behrens
- Division of Protein Expression and Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - D Linh Nguyen
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Mehul B Ganatra
- Division of Protein Expression and Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Christopher H Taron
- Division of Protein Expression and Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Angela van Diepen
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Jeremy M Foster
- Division of Protein Expression and Modification, New England Biolabs, Ipswich, MA, 01938, USA.
| |
Collapse
|
27
|
Cramer DAT, Franc V, Caval T, Heck AJR. Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry. Anal Chem 2022; 94:12732-12741. [PMID: 36074704 PMCID: PMC9494300 DOI: 10.1021/acs.analchem.2c02215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
28
|
Sanda M, Yang Q, Zong G, Chen H, Zheng Z, Dhani H, Khan K, Kroemer A, Wang LX, Goldman R. LC-MS/MS-PRM Quantification of IgG glycoforms using stable isotope labeled IgG1 Fc glycopeptide standard. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.501850. [PMID: 35982648 PMCID: PMC9387126 DOI: 10.1101/2022.08.02.501850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this paper, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft collision induced dissociation (CID) conditions which reduces the CVs of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intra-scan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow as well as the CID workflow with the highest sensitivity compared to traditional workflows., This was exemplified by a rapid quantification (13-minute) of IgG1 Fc glycoforms from COVID-19 patients. Graphic Abstract
Collapse
|
29
|
de Haan N, Pučić-Baković M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, Vučković F, Trbojević-Akmačić I, Gornik O, Hanić M, Wuhrer M, Lauc G. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022; 32:651-663. [PMID: 35452121 PMCID: PMC9280525 DOI: 10.1093/glycob/cwac026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.
Collapse
Affiliation(s)
- Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3 Copenhagen 2200, Denmark
| | - Maja Pučić-Baković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Mislav Novokmet
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Guinevere Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Genadij Razdorov
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Frano Vučković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| | - Maja Hanić
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| |
Collapse
|
30
|
Moran AB, Gardner RA, Wuhrer M, Lageveen-Kammeijer GSM, Spencer DIR. Sialic Acid Derivatization of Fluorescently Labeled N-Glycans Allows Linkage Differentiation by Reversed-Phase Liquid Chromatography-Fluorescence Detection-Mass Spectrometry. Anal Chem 2022; 94:6639-6648. [PMID: 35482581 PMCID: PMC9096788 DOI: 10.1021/acs.analchem.1c02610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
Sialic acids have diverse biological roles, ranging from promoting up to preventing protein and cellular recognition in health and disease. The various functions of these monosaccharides are owed, in part, to linkage variants, and as a result, linkage-specific analysis of sialic acids is an important aspect of glycomic studies. This has been addressed by derivatization strategies using matrix-assisted laser desorption/ionization mass spectrometry (MS) or sialidase digestion arrays followed by liquid chromatography (LC)-MS. Despite this, these approaches are unable to simultaneously provide unambiguous assignment of sialic acid linkages and assess further isomeric glycan features within a single measurement. Thus, for the first time, we present the combination of procainamide fluorescent labeling with sialic acid linkage-specific derivatization via ethyl esterification and amidation for the analysis of released plasma N-glycans using reversed-phase (RP)LC-fluorescence detection (FD)-MS. As a result, α2,3- and α2,6-sialylated N-glycans, with the same mass prior to derivatization, are differentiated based on retention time, precursor mass, and fragmentation spectra, and additional sialylated isomers were also separated. Furthermore, improved glycan coverage and protocol precision were found via the novel application using a combined FD-MS quantification approach. Overall, this platform achieved unambiguous assignment of N-glycan sialic acid linkages within a single RPLC-FD-MS measurement, and by improving their retention on RPLC, this technique can be used for future investigations of released N-glycans as an additional or orthogonal method to current analytical approaches.
Collapse
Affiliation(s)
- Alan B. Moran
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
- Ludger
Ltd., Culham Science
Centre, OX14 3EB Abingdon, United Kingdom
| | | | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
31
|
OUP accepted manuscript. Glycobiology 2022; 32:380-390. [DOI: 10.1093/glycob/cwac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
|
32
|
Guo L, Nayak S, Mao Y, Li N. Glycine additive enhances sensitivity for N- and O-glycan analysis with hydrophilic interaction chromatography-electrospray ionization-mass spectrometry. Anal Biochem 2021; 635:114447. [PMID: 34742721 DOI: 10.1016/j.ab.2021.114447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Glycosylation is critical for many biological processes and biotherapeutic development. One of the most powerful approaches for analyzing released glycans is hydrophilic interaction chromatography coupled with electrospray ionization mass spectrometry (HILIC-ESI-MS). The high sensitivity of MS is crucial for detecting low-abundance glycans and elucidating their structures. In this study, we presented a simple solution to boost MS response of procainamide (ProcA) labeled glycans for 2- to over 60-fold by including 1 mM glycine in ammonium formate mobile phases for HILIC-ESI-MS. The glycine additive increased charge states, enhanced ion intensities and signal-to-noise ratios, and improved tandem MS spectral quality of various N- and O-glycans without affecting chromatographic performance. Furthermore, more homogeneous ionization among different ProcA labeled glycans was achieved by using the glycine additive, resulting in more comparable quantitative results relative to fluorescence-based quantification. We demonstrated that ammonium formate caused ion suppression to ProcA labeled glycans, which were likely mitigated by glycine with enhanced ESI ionization. Overall, simple addition of glycine to mobile phases during HILIC-ESI-MS analysis significantly improves MS detection sensitivity and will facilitate future profiling and quantitation of glycans released from N- and O-glycoproteins.
Collapse
Affiliation(s)
- Lili Guo
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| | - Shruti Nayak
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| |
Collapse
|
33
|
Seo N, Lee H, Oh MJ, Kim GH, Lee SG, Ahn JK, Cha HS, Kim KH, Kim J, An HJ. Isomer-Specific Monitoring of Sialylated N-Glycans Reveals Association of α2,3-Linked Sialic Acid Epitope With Behcet's Disease. Front Mol Biosci 2021; 8:778851. [PMID: 34888356 PMCID: PMC8650305 DOI: 10.3389/fmolb.2021.778851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
Behcet’s disease (BD) is an immune disease characterized by chronic and relapsing systemic vasculitis of unknown etiology, which can lead to blindness and even death. Despite continuous efforts to discover biomarkers for accurate and rapid diagnosis and optimal treatment of BD, there is still no signature marker with high sensitivity and high specificity. As the link between glycosylation and the immune system has been revealed, research on the immunological function of glycans is being actively conducted. In particular, sialic acids at the terminus of glycoconjugates are directly implicated in immune responses, cell–cell/pathogen interactions, and tumor progression. Therefore, changes in sialic acid epitope in the human body are spotlighted as a new indicator to monitor the onset and progression of immune diseases. Here, we performed global profiling of N-glycan compositions derived from the sera of 47 healthy donors and 47 BD patients using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to preferentially determine BD target glycans. Then, three sialylated biantennary N-glycans were further subjected to the separation of linkage isomers and quantification using porous graphitized carbon-liquid chromatography (PGC-LC)/multiple reaction monitoring (MRM)-MS. We were able to successfully identify 11 isomers with sialic acid epitopes from the three glycan compositions consisting of Hex5HexNAc4NeuAc1, Hex5HexNAc4Fuc1NeuAc1, and Hex5HexNAc4NeuAc2. Among them, three isomers almost completely distinguished BD from control with high sensitivity and specificity with an area under the curve (AUC) of 0.945, suggesting the potential as novel BD biomarkers. In particular, it was confirmed that α2,3-sialic acid at the terminus of biantennary N-glycan was the epitope associated with BD. In this study, we present a novel approach to elucidating the association between BD and glycosylation by tracing isomeric structures containing sialic acid epitopes. Isomer-specific glycan profiling is suitable for analysis of large clinical cohorts and may facilitate the introduction of diagnostic assays for other immune diseases.
Collapse
Affiliation(s)
- Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Hyunjun Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon, South Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Ga Hyeon Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Sang Gil Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Joong Kyong Ahn
- Division of Rheumatology, Department of International Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hoon-Suk Cha
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| |
Collapse
|
34
|
Helm J, Grünwald-Gruber C, Thader A, Urteil J, Führer J, Stenitzer D, Maresch D, Neumann L, Pabst M, Altmann F. Bisecting Lewis X in Hybrid-Type N-Glycans of Human Brain Revealed by Deep Structural Glycomics. Anal Chem 2021; 93:15175-15182. [PMID: 34723506 PMCID: PMC8600501 DOI: 10.1021/acs.analchem.1c03793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The importance of
protein glycosylation in the biomedical field
requires methods that not only quantitate structures by their monosaccharide
composition, but also resolve and identify the many isomers expressed
by mammalian cells. The art of unambiguous identification of isomeric
structures in complex mixtures, however, did not yet catch up with
the fast pace of advance of high-throughput glycomics. Here, we present
a strategy for deducing structures with the help of a deci-minute
accurate retention time library for porous graphitic carbon chromatography
with mass spectrometric detection. We implemented the concept for
the fundamental N-glycan type consisting of five
hexoses, four N-acetylhexosamines and one fucose
residue. Nearly all of the 40 biosynthetized isomers occupied unique
elution positions. This result demonstrates the unique isomer selectivity
of porous graphitic carbon. With the help of a rather tightly spaced
grid of isotope-labeled internal N-glycan, standard
retention times were transposed to a standard chromatogram. Application
of this approach to animal and human brain N-glycans
immediately identified the majority of structures as being of the
bisected type. Most notably, it exposed hybrid-type glycans with galactosylated
and even Lewis X containing bisected N-acetylglucosamine,
which have not yet been discovered in a natural source. Thus, the
time grid approach implemented herein facilitated discovery of the
still missing pieces of the N-glycome in our most
noble organ and suggests itself—in conjunction with collision
induced dissociation—as a starting point for the overdue development
of isomer-specific deep structural glycomics.
Collapse
Affiliation(s)
- Johannes Helm
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Thader
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Jonathan Urteil
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johannes Führer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - David Stenitzer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Laura Neumann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
35
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
36
|
Zlatina K, Galuska SP. Immunoglobulin Glycosylation - An Unexploited Potential for Immunomodulatory Strategies in Farm Animals. Front Immunol 2021; 12:753294. [PMID: 34733284 PMCID: PMC8558360 DOI: 10.3389/fimmu.2021.753294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
The function of antibodies, namely the identification and neutralization of pathogens, is mediated by their antigen binding site (Fab). In contrast, the subsequent signal transduction for activation of the immune system is mediated by the fragment crystallizable (Fc) region, which interacts with receptors or other components of the immune system, such as the complement system. This aspect of binding and interaction is more precise, readjusted by covalently attached glycan structures close to the hinge region of immunoglobulins (Ig). This fine-tuning of Ig and its actual state of knowledge is the topic of this review. It describes the function of glycosylation at Ig in general and the associated changes due to corresponding glycan structures. We discuss the functionality of IgG glycosylation during different physiological statuses, like aging, lactation and pathophysiological processes. Further, we point out what is known to date about Ig glycosylation in farm animals and how new achievements in vaccination may contribute to improved animal welfare.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
37
|
Makrydaki E, Kotidis P, Polizzi KM, Kontoravdi C. Hitting the sweet spot with capillary electrophoresis: advances in N-glycomics and glycoproteomics. Curr Opin Biotechnol 2021; 71:182-190. [PMID: 34438131 DOI: 10.1016/j.copbio.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
N-glycosylation is of paramount importance for understanding the mechanisms of various human diseases and ensuring the safety and efficacy of biotherapeutics. Traditional glycan analysis techniques include LC-based separations and MALDI-TOF-MS identification. However, the current state-of-the-art methods lack throughput and structural information, include laborious sample preparation procedures and require large sample volumes. Capillary electrophoresis (CE) has long been used for the screening and reliable quantitation of glycans, but its applications have been limited. Because of its speed, sensitivity and complementarity with standard glycan analysis techniques, CE is currently emerging as one of the most versatile and adaptable methods for glycan analysis in both academia and industry. Herein, we review the latest advancements in CE-based applications to glycomics and glycoproteomics within both the biopharmaceutical and clinical sectors.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
38
|
Bao B, Kellman BP, Chiang AWT, Zhang Y, Sorrentino JT, York AK, Mohammad MA, Haymond MW, Bode L, Lewis NE. Correcting for sparsity and interdependence in glycomics by accounting for glycan biosynthesis. Nat Commun 2021; 12:4988. [PMID: 34404781 PMCID: PMC8371009 DOI: 10.1038/s41467-021-25183-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Glycans are fundamental cellular building blocks, involved in many organismal functions. Advances in glycomics are elucidating the essential roles of glycans. Still, it remains challenging to properly analyze large glycomics datasets, since the abundance of each glycan is dependent on many other glycans that share many intermediate biosynthetic steps. Furthermore, the overlap of measured glycans can be low across samples. We address these challenges with GlyCompare, a glycomic data analysis approach that accounts for shared biosynthetic steps for all measured glycans to correct for sparsity and non-independence in glycomics, which enables direct comparison of different glycoprofiles and increases statistical power. Using GlyCompare, we study diverse N-glycan profiles from glycoengineered erythropoietin. We obtain biologically meaningful clustering of mutant cell glycoprofiles and identify knockout-specific effects of fucosyltransferase mutants on tetra-antennary structures. We further analyze human milk oligosaccharide profiles and find mother’s fucosyltransferase-dependent secretor-status indirectly impact the sialylation. Finally, we apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional glycosylation data to reveal tissues and disease-specific glycan presentations. Our substructure-oriented approach will enable researchers to take full advantage of the growing power and size of glycomics data. Glycomics can uncover important molecular changes but measured glycans are highly interconnected and incompatible with common statistical methods, introducing pitfalls during analysis. Here, the authors develop an approach to identify glycan dependencies across samples to facilitate comparative glycomics.
Collapse
Affiliation(s)
- Bokan Bao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
| | - Yujie Zhang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Austin K York
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Morey W Haymond
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA. .,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Deriš H, Cindrić A, Lauber M, Petrović T, Bielik A, Taron CH, Wingerden M, Lauc G, Trbojević-Akmačić I. Robustness and repeatability of GlycoWorks RapiFluor-MS IgG N-glycan profiling in a long-term high-throughput glycomic study. Glycobiology 2021; 31:1062-1067. [PMID: 34132802 DOI: 10.1093/glycob/cwab050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/16/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
Protein glycosylation is the attachment of a carbohydrate moiety to a protein backbone affecting both structure and function of the protein. Abnormal glycosylation is associated with various diseases, and some of the changes in glycosylation are detectable even before symptom development. As such, glycans have emerged as compelling new biomarker candidates. A wide range of analytical methods exist for small-scale glycan analyses. However, there is a growing need for highly robust and reproducible high-throughput techniques that allow for large-scale glycoprofiling. Here we describe the evaluation of robustness and repeatability of immunoglobulin G (IgG) N-glycan analysis using the GlycoWorks RapiFluor-MS N-Glycan Kit followed by hydrophilic interaction ultra-high-performance liquid chromatography (HILIC-UHPLC) from 335 technical replicates of human plasma randomly distributed across 67 96-well plates. The data was collected over a five-month period using multiple UHPLC systems and chromatographic columns. Following relative IgG N-glycan quantification in acquired chromatograms, data analysis showed that the most abundant peaks that together made up for three fourths of the detected IgG N-glycome all had coefficients of variation (CVs) lower than 2 percent. The highest CVs ranging from 16 to 29 percent accompanied low abundance glycan peaks with the individual relative peak area below 1 percent that together made up for less than 2 percent of the detected IgG N-glycome. These results show that the tested method is very robust and repeatable, making it suitable for the IgG N-glycan analysis of a large number of samples in a high-throughput manner over a longer period of time.
Collapse
Affiliation(s)
- Helena Deriš
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Tea Petrović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Alicia Bielik
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Christopher H Taron
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Marleen Wingerden
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia.,University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | |
Collapse
|
40
|
Blaschke CRK, McDowell CT, Black AP, Mehta AS, Angel PM, Drake RR. Glycan Imaging Mass Spectrometry: Progress in Developing Clinical Diagnostic Assays for Tissues, Biofluids, and Cells. Clin Lab Med 2021; 41:247-266. [PMID: 34020762 PMCID: PMC8862151 DOI: 10.1016/j.cll.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-glycan imaging mass spectrometry (IMS) can rapidly and reproducibly identify changes in disease-associated N-linked glycosylation that are linked with histopathology features in standard formalin-fixed paraffin-embedded tissue samples. It can detect multiple N-glycans simultaneously and has been used to identify specific N-glycans and carbohydrate structural motifs as possible cancer biomarkers. Recent advancements in instrumentation and sample preparation are also discussed. The tissue N-glycan IMS workflow has been adapted to new glass slide-based assays for effective and rapid analysis of clinical biofluids, cultured cells, and immunoarray-captured glycoproteins for detection of changes in glycosylation associated with disease.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Colin T McDowell
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Alyson P Black
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, Charleston, SC 29425, USA.
| |
Collapse
|
41
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
42
|
Lu LL, Das J, Grace PS, Fortune SM, Restrepo BI, Alter G. Antibody Fc Glycosylation Discriminates Between Latent and Active Tuberculosis. J Infect Dis 2021; 222:2093-2102. [PMID: 32060529 PMCID: PMC7661770 DOI: 10.1093/infdis/jiz643] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mycobacterium tuberculosis remains a global health problem and clinical management is complicated by difficulty in discriminating between latent infection and active disease. While M. tuberculosis-reactive antibody levels are heterogeneous, studies suggest that levels of IgG glycosylation differ between disease states. Here we extend this observation across antibody domains and M. tuberculosis specificities to define changes with the greatest resolving power. Methods Capillary electrophoretic glycan analysis was performed on bulk non-antigen–specific IgG, bulk Fc domain, bulk Fab domain, and purified protein derivative (PPD)- and Ag85A-specific IgG from subjects with latent (n = 10) and active (n = 20) tuberculosis. PPD-specific isotype/subclass, PPD-specific antibody-dependent phagocytosis, cellular cytotoxicity, and natural killer cell activation were assessed. Discriminatory potentials of antibody features were evaluated individually and by multivariate analysis. Results Parallel profiling of whole, Fc, and Fab domain-specific IgG glycosylation pointed to enhanced differential glycosylation on the Fc domain. Differential glycosylation was observed across antigen-specific antibody populations. Multivariate modeling highlighted Fc domain glycan species as the top discriminatory features, with combined PPD IgG titers and Fc domain glycans providing the highest classification accuracy. Conclusions Differential glycosylation occurs preferentially on the Fc domain, providing significant discriminatory power between different states of M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Lenette L Lu
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jishnu Das
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Patricia S Grace
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M Fortune
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Blanca I Restrepo
- School of Public Health, University of Texas Health Houston, Brownsville, Texas, USA.,South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Glycomic-Based Biomarkers for Ovarian Cancer: Advances and Challenges. Diagnostics (Basel) 2021; 11:diagnostics11040643. [PMID: 33916250 PMCID: PMC8065431 DOI: 10.3390/diagnostics11040643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer remains one of the most common causes of death among gynecological malignancies afflicting women worldwide. Among the gynecological cancers, cervical and endometrial cancers confer the greatest burden to the developing and the developed world, respectively; however, the overall survival rates for patients with ovarian cancer are worse than the two aforementioned. The majority of patients with ovarian cancer are diagnosed at an advanced stage when cancer has metastasized to different body sites and the cure rates, including the five-year survival, are significantly diminished. The delay in diagnosis is due to the absence of or unspecific symptoms at the initial stages of cancer as well as a lack of effective screening and diagnostic biomarkers that can detect cancer at the early stages. This, therefore, provides an imperative to prospect for new biomarkers that will provide early diagnostic strategies allowing timely mitigative interventions. Glycosylation is a protein post-translational modification that is modified in cancer patients. In the current review, we document the state-of-the-art of blood-based glycomic biomarkers for early diagnosis of ovarian cancer and the technologies currently used in this endeavor.
Collapse
|
44
|
Patabandige MW, Go EP, Desaire H. Clinically Viable Assay for Monitoring Uromodulin Glycosylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:436-443. [PMID: 33301684 PMCID: PMC8541689 DOI: 10.1021/jasms.0c00317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Uromodulin, also known as the Tamm-Horsfall protein or THP, is the most abundant protein excreted in human urine. It is associated with the progression of kidney diseases; therefore, changes in the glycosylation profile of this protein could serve as a potential biomarker for kidney health. The typical glycomics analysis approaches used to quantify uromodulin glycosylation involve time-consuming and tedious glycoprotein isolation and labeling steps, which limit their utility in clinical glycomics assays, where sample throughput is important. Herein, we introduce a radically simplified sample preparation workflow, with direct ESI-MS analysis, enabling the quantification of N-linked glycans that originate from uromodulin. The method omits any glycan labeling steps but includes steps to reduce the salt content of the samples, thereby minimizing ion suppression. The method is effective for quantifying subtle glycosylation differences of uromodulin samples derived from different biological states. As a proof of concept, glycosylation from samples that differ by pregnancy status were shown to be differentiable.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Eden P. Go
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
45
|
Serum N-Glycomics Stratifies Bacteremic Patients Infected with Different Pathogens. J Clin Med 2021; 10:jcm10030516. [PMID: 33535571 PMCID: PMC7867038 DOI: 10.3390/jcm10030516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteremia—i.e., the presence of pathogens in the blood stream—is associated with long-term morbidity and is a potential precursor condition to life-threatening sepsis. Timely detection of bacteremia is therefore critical to reduce patient mortality, but existing methods lack precision, speed, and sensitivity to effectively stratify bacteremic patients. Herein, we tested the potential of quantitative serum N-glycomics performed using porous graphitized carbon liquid chromatography tandem mass spectrometry to stratify bacteremic patients infected with Escherichia coli (n = 11), Staphylococcus aureus (n = 11), Pseudomonas aeruginosa (n = 5), and Streptococcus viridans (n = 5) from healthy donors (n = 39). In total, 62 N-glycan isomers spanning 41 glycan compositions primarily comprising complex-type core fucosylated, bisecting N-acetylglucosamine (GlcNAc), and α2,3-/α2,6-sialylated structures were profiled across all samples using label-free quantitation. Excitingly, unsupervised hierarchical clustering and principal component analysis of the serum N-glycome data accurately separated the patient groups. P. aeruginosa-infected patients displayed prominent N-glycome aberrations involving elevated levels of fucosylation and bisecting GlcNAcylation and reduced sialylation relative to other bacteremic patients. Notably, receiver operating characteristic analyses demonstrated that a single N-glycan isomer could effectively stratify each of the four bacteremic patient groups from the healthy donors (area under the curve 0.93–1.00). Thus, the serum N-glycome represents a new hitherto unexplored class of potential diagnostic markers for bloodstream infections.
Collapse
|
46
|
Kurz S, Sheikh MO, Lu S, Wells L, Tiemeyer M. Separation and Identification of Permethylated Glycan Isomers by Reversed Phase NanoLC-NSI-MS n. Mol Cell Proteomics 2021; 20:100045. [PMID: 33376194 PMCID: PMC8724860 DOI: 10.1074/mcp.ra120.002266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
HPLC has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line multidimensional ion fragmentation (MSn) to assign structural features independent of standards, would significantly enhance the depth of knowledge obtainable from biological samples. Here, we report an optimized workflow for LC-MS analysis of permethylated glycans that includes sample preparation, mobile phase optimization, and MSn method development to resolve structural isomers on-the-fly. We report baseline separation and MSn of isomeric N- and O-glycan structures, aided by supplementing mobile phases with Li+, which simplifies adduct heterogeneity and facilitates cross-ring fragmentation to obtain valuable monosaccharide linkage information. Our workflow has been adapted from standard proteomics-based workflows and, therefore, provides opportunities for laboratories with expertise in proteomics to acquire glycomic data with minimal deviation from existing buffer systems, chromatography media, and instrument configurations. Furthermore, our workflow does not require a mass spectrometer with high-resolution/accurate mass capabilities. The rapidly evolving appreciation of the biological significance of glycans for human health and disease requires the implementation of high-throughput methods to identify and quantify glycans harvested from sample sets of sufficient size to achieve appropriately powered statistical significance. The LC-MSn approach we report generates glycan isomeric separations and robust structural characterization and is amenable to autosampling with associated throughput enhancements.
Collapse
Affiliation(s)
- Simone Kurz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
47
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
48
|
Marie AL, Ray S, Lu S, Jones J, Ghiran I, Ivanov AR. High-Sensitivity Glycan Profiling of Blood-Derived Immunoglobulin G, Plasma, and Extracellular Vesicle Isolates with Capillary Zone Electrophoresis-Mass Spectrometry. Anal Chem 2021; 93:1991-2002. [PMID: 33433994 DOI: 10.1021/acs.analchem.0c03102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a highly sensitive method for profiling of N-glycans released from proteins based on capillary zone electrophoresis coupled to electrospray ionization mass spectrometry (CZE-ESI-MS) and applied the technique to glycan analysis of plasma and blood-derived isolates. The combination of dopant-enriched nitrogen (DEN)-gas introduced into the nanoelectrospray microenvironment with optimized ionization, desolvation, and CZE-MS conditions improved the detection sensitivity up to ∼100-fold, as directly compared to the conventional mode of instrument operation through peak intensity measurements. Analyses without supplemental pressure increased the resolution ∼7-fold in the separation of closely related and isobaric glycans. The developed method was evaluated for qualitative and quantitative glycan profiling of three types of blood isolates: plasma, total serum immunoglobulin G (IgG), and total plasma extracellular vesicles (EVs). The comparative glycan analysis of IgG and EV isolates and total plasma was conducted for the first time and resulted in detection of >200, >400, and >500 N-glycans for injected sample amounts equivalent to <500 nL of blood. Structural CZE-MS2 analysis resulted in the identification of highly diverse glycans, assignment of α-2,6-linked sialic acids, and differentiation of positional isomers. Unmatched depth of N-glycan profiling was achieved compared to previously reported methods for the analysis of minute amounts of similar complexity blood isolates.
Collapse
Affiliation(s)
- Anne-Lise Marie
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Jennifer Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ionita Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
49
|
Váradi C, Hajdu V, Farkas F, Gilányi I, Oláh C, Viskolcz B. The Analysis of Human Serum N-Glycosylation in Patients with Primary and Metastatic Brain Tumors. Life (Basel) 2021; 11:life11010029. [PMID: 33418875 PMCID: PMC7825111 DOI: 10.3390/life11010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
The identification of patients with different brain tumors is solely built on imaging diagnostics, indicating the need for novel methods to facilitate disease recognition. Glycosylation is a chemical modification of proteins, reportedly altered in several inflammatory and malignant diseases, providing a potential alternative route for disease detection. In this paper, we report the quantitative analysis of serum N-glycosylation of patients diagnosed with primary and metastatic brain tumors. PNGase-F-digested and procainamide-labeled serum glycans were purified by magnetic nanoparticles, followed by quantitative liquid chromatographic analysis. The glycan structures were identified by the combination of single quad mass spectrometric detection and exoglycosidase digestions. Linear discriminant analysis provided a clear separation of different disease groups and healthy controls based on their N-glycome pattern. Altered distribution of biantennary neutral, sialylated but nonfucosylated, and sialylated-fucosylated structures were found to be the most significant changes. Our results demonstrate that serum glycosylation monitoring could improve the detection of malignancy.
Collapse
Affiliation(s)
- Csaba Váradi
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary; (V.H.); (B.V.)
- Correspondence: ; Tel.: +36-30-8947730
| | - Viktória Hajdu
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary; (V.H.); (B.V.)
| | - Flóra Farkas
- Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, 3526 Miskolc, Hungary; (F.F.); (I.G.); (C.O.)
| | - Ibolya Gilányi
- Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, 3526 Miskolc, Hungary; (F.F.); (I.G.); (C.O.)
| | - Csaba Oláh
- Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, 3526 Miskolc, Hungary; (F.F.); (I.G.); (C.O.)
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary; (V.H.); (B.V.)
| |
Collapse
|
50
|
Hendel JL, Gardner RA, Spencer DIR. Automation of Immunoglobulin Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:173-204. [PMID: 34687010 DOI: 10.1007/978-3-030-76912-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of reliable, affordable, high-resolution glycomics technologies that can be used for many samples in a high-throughput manner are essential for both the optimization of glycosylation in the biopharmaceutical industry as well as for the advancement of clinical diagnostics based on glycosylation biomarkers. We will use this chapter to review the sample preparation processes that have been used on liquid-handling robots to obtain high-quality glycomics data for both biopharmaceutical and clinical antibody samples. This will focus on glycoprotein purification, followed by glycan or glycopeptide generation, derivatization and enrichment. The use of liquid-handling robots for glycomics studies on other sample types beyond antibodies will not be discussed here. We will summarize our thoughts on the current status of the field and explore the benefits and challenges associated with developing and using automated platforms for sample preparation. Finally, the future outlook for the automation of glycomics will be discussed along with a projected impact on the field in general.
Collapse
Affiliation(s)
- Jenifer L Hendel
- Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, UK
| | | | | |
Collapse
|