1
|
Zhang L, Martin JG, Gao B, Zeng W, Couvertier S, Johnson DS. Chemoproteomic Profiling of Clickable Fumarate Probes for Target Identification and Mechanism of Action Studies. ACS Chem Biol 2025; 20:340-356. [PMID: 39874457 DOI: 10.1021/acschembio.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins. We further perform quantitative chemoproteomics analysis for proteome-wide target identification and validate several unique and shared targets of DMF and MMF, which provide insight into the reactivity, selectivity, and target engagement of fumarates.
Collapse
Affiliation(s)
- Lu Zhang
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeffrey G Martin
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Benbo Gao
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Weike Zeng
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shalise Couvertier
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas S Johnson
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Pei X, Ma S, Hong L, Zuo Z, Xu G, Chen C, Shen Y, Liu D, Li C, Li D. Molecular insights of T-2 toxin exposure-induced neurotoxicity and the neuroprotective effect of dimethyl fumarate. Food Chem Toxicol 2025; 196:115166. [PMID: 39617286 DOI: 10.1016/j.fct.2024.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
T-2 toxin, a potent environmental pollutant, has been proved to stimulate neuroinflammation, while the connection between T-2 toxin and pyroptosis remain elusive. Dimethyl fumarate (DMF), recently identified as a neuroprotectant and pyroptosis inhibitor, has potential therapeutic applications that are underexplored. Based on present study in vitro and vivo, we demonstrated that T-2 toxin induced the activation of NLRP3-Caspase-1 inflammasome in hippocampal neurons. In addition to proinflammatory mediator overexpression, gasdermin D (GSDMD)-dependently pyroptosis in the mouse hippocampal neuron cell line (HT22) treated by T-2 toxin was determined in our study. Moreover, the palliative effect of knockdown sequence of high mobility group B1 protein (HMGB1) provided more details for T-2 toxin-initiated pyroptosis. Importantly, we confirmed that DMF, as a novel inhibitor of GSDMD, could alleviate pyroptosis induced by T-2 toxin in an GSDMD targeting manner. In summary, our studies exposed the evidence that T-2 toxin could induce NLRP3 inflammasome activation and hippocampal neuronal pyroptosis. More notably, DMF was turn out to be a critical executioner for attenuating GSDMD-mediated pyroptosis. Our data found a new function of DMF and suggested a novel therapy strategy against mycotoxin-triggered neuronal inflammation, which leads to varieties of neurological diseases.
Collapse
Affiliation(s)
- Xingyao Pei
- Open Fund of Key Laboratory of Smart Breeding (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Shuhui Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Open Fund of Key Laboratory of Smart Breeding (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
3
|
Xi C, Pang J, Xue W, Cui Y, Jiang N, Zhi W, Shi H, Horuzsko A, Pace BS, Zhu X. Transsulfuration pathway activation attenuates oxidative stress and ferroptosis in sickle primary erythroblasts and transgenic mice. Commun Biol 2025; 8:15. [PMID: 39762627 PMCID: PMC11704341 DOI: 10.1038/s42003-024-07424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD. A vital contribution of the TSS pathway in sustaining cysteine levels is detected only under hemin exposure or physiological but not supraphysiological cystine supplement. Mechanistic studies show that hemin suppresses CBS expression to inhibit the TSS pathway and de novo cysteine biosynthesis. By contrast, the expression of CBS is inducible by dimethyl fumarate (DMF) through nuclear factor erythroid 2-related factor 2 (NRF2) activation and CpG islands DNA hydroxymethylation. DMF induces the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) to downregulate L-2-hydroxyglutarate (L2HG) and increase global and locus-specific DNA hydroxymethylation levels. This DMF-upregulated DNA hydroxymethylation affects CBS locus chromatin structure modifications and upregulates gene expression. Our results suggest that CBS of the TSS pathway plays an important role in maintaining cysteine levels under restricted cystine availability or excess hemin exposure, and CBS upregulation by DMF increases the cellular glutathione levels to protect against ROS and ferroptosis stress in SCD.
Collapse
Affiliation(s)
- Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, 30912, USA
| | - Junfeng Pang
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Weinan Xue
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Yang Cui
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Na Jiang
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Zhi
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | | | - Betty S Pace
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, 30912, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Izumi Y, Koyama Y. Nrf2-Independent Anti-Inflammatory Effects of Dimethyl Fumarate: Challenges and Prospects in Developing Electrophilic Nrf2 Activators for Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1527. [PMID: 39765855 PMCID: PMC11727036 DOI: 10.3390/antiox13121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025] Open
Abstract
The NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a potential therapeutic target for central nervous system diseases. This review emphasizes the role of oxidative stress and neuroinflammation in neurodegenerative diseases, highlighting the therapeutic potential of Nrf2 activators such as dimethyl fumarate (DMF). DMF, initially administered for treating psoriasis, has demonstrated efficacy in multiple sclerosis and is metabolized to monomethyl fumarate, which may exert significant therapeutic effects. DMF activates the Nrf2-ARE pathway, and recent studies have indicated that its anti-inflammatory effects occur through Nrf2-independent mechanisms. Electrophilic Nrf2 activators, such as DMF, covalently bind to cysteine residues in proteins and modulate their function. We discuss the implications of cysteine residue modifications by DMF, which may cause both therapeutic benefits and potential off-target effects. Furthermore, we propose a chemical proteomics-based drug discovery approach to achieve desired therapeutic effects by selectively covalently modifying cysteines in target proteins. These findings advocate for a broader understanding of the Nrf2-independent mechanisms of electrophilic Nrf2 activators, thereby improving drug discovery strategies that target neurodegenerative diseases while minimizing toxicity.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan;
| | | |
Collapse
|
5
|
Silva-Llanes I, Martín-Baquero R, Berrojo-Armisen A, Rodríguez-Cueto C, Fernández-Ruiz J, De Lago E, Lastres-Becker I. Beneficial Effect of Dimethyl Fumarate Drug Repositioning in a Mouse Model of TDP-43-Dependent Frontotemporal Dementia. Antioxidants (Basel) 2024; 13:1072. [PMID: 39334731 PMCID: PMC11428793 DOI: 10.3390/antiox13091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Frontotemporal dementia (FTD) causes progressive neurodegeneration in the frontal and temporal lobes, leading to behavioral, cognitive, and language impairments. With no effective treatment available, exploring new therapeutic approaches is critical. Recent research highlights the transcription factor Nuclear Factor erythroid-derived 2-like 2 (NRF2) as vital in limiting neurodegeneration, with its activation shown to mitigate FTD-related processes like inflammation. Dimethyl fumarate (DMF), an NRF2 activator, has demonstrated neuroprotective effects in a TAU-dependent FTD mouse model, reducing neurodegeneration and inflammation. This suggests DMF repositioning potential for FTD treatment. Until now, no trial had been conducted to analyze the effect of DMF on TDP-43-dependent FTD. In this study, we aimed to determine the potential therapeutic efficacy of DMF in a TDP-43-related FTD mouse model that exhibits early cognitive impairment. Mice received oral DMF treatment every other day from presymptomatic to symptomatic stages. By post-natal day (PND) 60, an improvement in cognitive function is already evident, becoming even more pronounced by PND90. This cognitive enhancement correlates with the neuroprotection observed in the dentate gyrus and a reduction in astrogliosis in the stratum lacunosum-moleculare zone. At the prefrontal cortex (PFC) level, a neuroprotective effect of DMF is also observed, accompanied by a reduction in astrogliosis. Collectively, our results suggest a potential therapeutic application of DMF for patients with TDP-43-dependent FTD.
Collapse
Affiliation(s)
- Ignacio Silva-Llanes
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
| | - Raquel Martín-Baquero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Alicia Berrojo-Armisen
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Eva De Lago
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
6
|
Tavakoli NS, Malone SG, Anderson TL, Neeley RE, Asadipooya A, Bardo MT, Ortinski PI. Astrocyte Ca 2+ in the dorsal striatum suppresses neuronal activity to oppose cue-induced reinstatement of cocaine seeking. Front Cell Neurosci 2024; 18:1347491. [PMID: 39280793 PMCID: PMC11393831 DOI: 10.3389/fncel.2024.1347491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Recent literature supports a prominent role for astrocytes in regulation of drug-seeking behaviors. The dorsal striatum, specifically, is known to play a role in reward processing with neuronal activity that can be influenced by astrocyte Ca2+. However, the manner in which Ca2+ in dorsal striatum astrocytes impacts neuronal signaling after exposure to self-administered cocaine remains unclear. We addressed this question following over-expression of the Ca2+ extrusion pump, hPMCA2w/b, in dorsal striatum astrocytes and the Ca2+ indicator, GCaMP6f, in dorsal striatum neurons of rats that were trained to self-administer cocaine. Following extinction of cocaine-seeking behavior, the rats over-expressing hMPCA2w/b showed a significant increase in cue-induced reinstatement of cocaine seeking. Suppression of astrocyte Ca2+ increased the amplitude of neuronal Ca2+ transients in brain slices, but only after cocaine self-administration. This was accompanied by decreased duration of neuronal Ca2+ events in the cocaine group and no changes in Ca2+ event frequency. Acute administration of cocaine to brain slices decreased amplitude of neuronal Ca2+ in both the control and cocaine self-administration groups regardless of hPMCA2w/b expression. These results indicated that astrocyte Ca2+ control over neuronal Ca2+ transients was enhanced by cocaine self-administration experience, although sensitivity to acutely applied cocaine remained comparable across all groups. To explore this further, we found that neither the hMPCA2w/b expression nor the cocaine self-administration experience altered regulation of neuronal Ca2+ events by NPS-2143, a Ca2+ sensing receptor (CaSR) antagonist, suggesting that plasticity of neuronal signaling after hPMCA2w/b over-expression was unlikely to result from elevated extracellular Ca2+. We conclude that astrocyte Ca2+ in the dorsal striatum impacts neurons via cell-intrinsic mechanisms (e.g., gliotransmission, metabolic coupling, etc.) and impacts long-term neuronal plasticity after cocaine self-administration differently from neuronal response to acute cocaine. Overall, astrocyte Ca2+ influences neuronal output in the dorsal striatum to promote resistance to cue-induced reinstatement of cocaine seeking.
Collapse
Affiliation(s)
- Navid S Tavakoli
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ryson E Neeley
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Artin Asadipooya
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Abdelaziz I, Bounaama A, Djerdjouri B, Amir-Tidadini ZC. Low-dose dimethylfumarate attenuates colitis-associated cancer in mice through M2 macrophage polarization and blocking oxidative stress. Toxicol Appl Pharmacol 2024; 489:117018. [PMID: 38945373 DOI: 10.1016/j.taap.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2-related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.
Collapse
Affiliation(s)
- Ismahane Abdelaziz
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Abdelkader Bounaama
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.
| | - Bahia Djerdjouri
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | | |
Collapse
|
8
|
Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler JT, Hansen SN. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1437939. [PMID: 39119604 PMCID: PMC11306042 DOI: 10.3389/fphar.2024.1437939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Neurodegenerative diseases constitute a global health issue and a major economic burden. They significantly impair both cognitive and motor functions, and their prevalence is expected to rise due to ageing societies and continuous population growth. Conventional therapies provide symptomatic relief, nevertheless, disease-modifying treatments that reduce or halt neuron death and malfunction are still largely unavailable. Amongst the common hallmarks of neurodegenerative diseases are protein aggregation, oxidative stress, neuroinflammation and mitochondrial dysfunction. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) constitutes a central regulator of cellular defense mechanisms, including the regulation of antioxidant, anti-inflammatory and mitochondrial pathways, making it a highly attractive therapeutic target for disease modification in neurodegenerative disorders. Here, we describe the role of NRF2 in the common hallmarks of neurodegeneration, review the current pharmacological interventions and their challenges in activating the NRF2 pathway, and present alternative therapeutic approaches for disease modification.
Collapse
Affiliation(s)
| | - Lluís Riera-Ponsati
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | | |
Collapse
|
9
|
Cox JH, McCain RS, Tran E, Swaminathan S, Smith HH, Piroli GG, Shtutman M, Walla MD, Cotham WE, Frizzell N. Quantification of the immunometabolite protein modifications S-2-succinocysteine and 2,3-dicarboxypropylcysteine. Am J Physiol Endocrinol Metab 2024; 326:E407-E416. [PMID: 38324261 PMCID: PMC11901351 DOI: 10.1152/ajpendo.00354.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore "succinate moiety" may better describe the antigen recognized.NEW & NOTEWORTHY Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.
Collapse
Affiliation(s)
- J Hunter Cox
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Richard S McCain
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Emery Tran
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Shoba Swaminathan
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Holland H Smith
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Michael D Walla
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - William E Cotham
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, United States
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
10
|
Barreca M, Qin Y, Cadot MEH, Barraja P, Bach A. Advances in developing noncovalent small molecules targeting Keap1. Drug Discov Today 2023; 28:103800. [PMID: 37852355 DOI: 10.1016/j.drudis.2023.103800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Kelch-like ECH-associated protein 1 (Keap1) is a drug target for diseases involving oxidative stress and inflammation. There are three covalent Keap1-binding drugs on the market, but noncovalent compounds that inhibit the interaction between Keap1 and nuclear factor erythroid 2-related factor 2 (Nrf2) represent an attractive alternative. Both compound types prevent degradation of Nrf2, leading to the expression of antioxidant and antiinflammatory proteins. However, their off-target profiles differ as do their exact pharmacodynamic effects. Here, we discuss the opportunities and challenges of targeting Keap1 with covalent versus noncovalent inhibitors. We then provide a comprehensive overview of current noncovalent Keap1-Nrf2 inhibitors, with a focus on their pharmacological effects, to examine the therapeutic potential for this compound class.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Marie Elodie Hélène Cadot
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Piroli GG, Manuel AM, McCain RS, Smith HH, Ozohanics O, Mellid S, Cox JH, Cotham WE, Walla MD, Cascón A, Ambrus A, Frizzell N. Defective function of α-ketoglutarate dehydrogenase exacerbates mitochondrial ATP deficits during complex I deficiency. Redox Biol 2023; 67:102932. [PMID: 37883842 PMCID: PMC10618796 DOI: 10.1016/j.redox.2023.102932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The NDUFS4 knockout (KO) mouse phenotype resembles the human Complex I deficiency Leigh Syndrome. The irreversible succination of protein thiols by fumarate is increased in select regions of the NDUFS4 KO brain affected by neurodegeneration. We report that dihydrolipoyllysine-residue succinyltransferase (DLST), a component of the α-ketoglutarate dehydrogenase complex (KGDHC) of the tricarboxylic acid (TCA) cycle, is succinated in the affected regions of the NDUFS4 KO brain. Succination of DLST reduced KGDHC activity in the brainstem (BS) and olfactory bulb (OB) of KO mice. The defective production of KGDHC derived succinyl-CoA resulted in decreased mitochondrial substrate level phosphorylation (SLP), further aggravating the existing oxidative phosphorylation (OXPHOS) ATP deficit. Protein succinylation, an acylation modification that requires succinyl-CoA, was reduced in the KO mice. Modeling succination of a cysteine in the spatial vicinity of the DLST active site or introduction of succinomimetic mutations recapitulates these metabolic deficits. Our data demonstrate that the biochemical deficit extends beyond impaired Complex I assembly and OXPHOS deficiency, functionally impairing select components of the TCA cycle to drive metabolic perturbations in affected neurons.
Collapse
Affiliation(s)
- Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Allison M Manuel
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Richard S McCain
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Holland H Smith
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sara Mellid
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - J Hunter Cox
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - William E Cotham
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29205, USA
| | - Michael D Walla
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29205, USA
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA.
| |
Collapse
|
12
|
Diskin C, Day EA, Henry ÓC, Toller-Kawahisa JE, O’Neill LAJ. 4-Octyl Itaconate and Dimethyl Fumarate Induce Secretion of the Anti-Inflammatory Protein Annexin A1 via NRF2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1032-1041. [PMID: 37578391 PMCID: PMC10476164 DOI: 10.4049/jimmunol.2200848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Annexin A1 is a key anti-inflammatory effector protein that is involved in the anti-inflammatory effects of glucocorticoids. 4-Octyl itaconate (4-OI), a derivative of the endogenous metabolite itaconate, which is abundantly produced by LPS-activated macrophages, has recently been identified as a potent anti-inflammatory agent. The anti-inflammatory effects of 4-OI share a significant overlap with those of dimethyl fumarate (DMF), a derivate of another Krebs cycle metabolite fumarate, which is already in use clinically for the treatment of inflammatory diseases. In this study we show that both 4-OI and DMF induce secretion of the 33-kDa form of annexin A1 from murine bone marrow-derived macrophages, an effect that is much more pronounced in LPS-stimulated cells. We also show that this 4-OI- and DMF-driven annexin A1 secretion is NRF2-dependent and that other means of activating NRF2 give rise to the same response. Lastly, we demonstrate that the cholesterol transporter ABCA1, which has previously been implicated in annexin A1 secretion, is required for this process in macrophages. Our findings contribute to the growing body of knowledge on the anti-inflammatory effects of the Krebs cycle metabolite derivatives 4-OI and DMF.
Collapse
Affiliation(s)
- Ciana Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Emily A. Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Órlaith C. Henry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Juliana E. Toller-Kawahisa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Luke A. J. O’Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
13
|
Ghate PS, Vacharasin JM, Ward JA, Nowling D, Kay V, Cowen MH, Lawlor MK, McCord M, Xu H, Carmona E, Cheon SH, Chukwurah E, Walla M, Lizarraga SB. The Warburg micro syndrome protein RAB3GAP1 modulates neuronal morphogenesis and interacts with axon elongation end ER-Golgi trafficking factors. Neurobiol Dis 2023; 184:106215. [PMID: 37385458 DOI: 10.1016/j.nbd.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
RAB3GAP1 is GTPase activating protein localized to the ER and Golgi compartments. In humans, mutations in RAB3GAP1 are the most common cause of Warburg Micro syndrome, a neurodevelopmental disorder associated with intellectual disability, microcephaly, and agenesis of the corpus callosum. We found that downregulation of RAB3GAP1 leads to a reduction in neurite outgrowth and complexity in human stem cell derived neurons. To further define the cellular function of RAB3GAP1, we sought to identify novel interacting proteins. We used a combination of mass spectrometry, co-immunoprecipitation and colocalization analysis and identified two novel interactors of RAB3GAP1: the axon elongation factor Dedicator of cytokinesis 7 (DOCK7) and the TATA modulatory factor 1 (TMF1) a modulator of Endoplasmic Reticulum (ER) to Golgi trafficking. To define the relationship between RAB3GAP1 and its two novel interactors, we analyzed their localization to different subcellular compartments in neuronal and non-neuronal cells with loss of RAB3GAP1. We find that RAB3GAP1 is important for the sub-cellular localization of TMF1 and DOCK7 across different compartments of the Golgi and endoplasmic reticulum. In addition, we find that loss of function mutations in RAB3GAP1 lead to dysregulation of pathways that are activated in response to the cellular stress like ATF6, MAPK, and PI3-AKT signaling. In summary, our findings suggest a novel role for RAB3GAP1 in neurite outgrowth that could encompass the regulation of proteins that control axon elongation, ER-Golgi trafficking, as well as pathways implicated in response to cellular stress.
Collapse
Affiliation(s)
- Pankaj S Ghate
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Janay M Vacharasin
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America; Center for Translational Neuroscience, Brown University, Providence, RI, United states of America
| | - Duncan Nowling
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Valerie Kay
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mara H Cowen
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mary-Kate Lawlor
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mikayla McCord
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Hailey Xu
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Esteban Carmona
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Seon-Hye Cheon
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Evelyn Chukwurah
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mike Walla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States of America
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America; Center for Translational Neuroscience, Brown University, Providence, RI, United states of America.
| |
Collapse
|
14
|
Coutinho Costa VG, Araújo SES, Alves-Leon SV, Gomes FCA. Central nervous system demyelinating diseases: glial cells at the hub of pathology. Front Immunol 2023; 14:1135540. [PMID: 37261349 PMCID: PMC10227605 DOI: 10.3389/fimmu.2023.1135540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Inflammatory demyelinating diseases (IDDs) are among the main causes of inflammatory and neurodegenerative injury of the central nervous system (CNS) in young adult patients. Of these, multiple sclerosis (MS) is the most frequent and studied, as it affects about a million people in the USA alone. The understanding of the mechanisms underlying their pathology has been advancing, although there are still no highly effective disease-modifying treatments for the progressive symptoms and disability in the late stages of disease. Among these mechanisms, the action of glial cells upon lesion and regeneration has become a prominent research topic, helped not only by the discovery of glia as targets of autoantibodies, but also by their role on CNS homeostasis and neuroinflammation. In the present article, we discuss the participation of glial cells in IDDs, as well as their association with demyelination and synaptic dysfunction throughout the course of the disease and in experimental models, with a focus on MS phenotypes. Further, we discuss the involvement of microglia and astrocytes in lesion formation and organization, remyelination, synaptic induction and pruning through different signaling pathways. We argue that evidence of the several glia-mediated mechanisms in the course of CNS demyelinating diseases supports glial cells as viable targets for therapy development.
Collapse
Affiliation(s)
| | - Sheila Espírito-Santo Araújo
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
15
|
Kurowska-Rucińska E, Ruciński J, Myślińska D, Grembecka B, Wrona D, Majkutewicz I. Dimethyl Fumarate Alleviates Adult Neurogenesis Disruption in Hippocampus and Olfactory Bulb and Spatial Cognitive Deficits Induced by Intracerebroventricular Streptozotocin Injection in Young and Aged Rats. Int J Mol Sci 2022; 23:ijms232415449. [PMID: 36555093 PMCID: PMC9779626 DOI: 10.3390/ijms232415449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The disorder of adult neurogenesis is considered an important mechanism underlying the learning and memory impairment observed in Alzheimer's disease (AD). The sporadic nonhereditary form of AD (sAD) affects over 95% of AD patients and is related to interactions between genetic and environmental factors. An intracerebroventricular injection of streptozotocin (STZ-ICV) is a representative and well-established method to induce sAD-like pathology. Dimethyl fumarate (DMF) has antioxidant and anti-inflammatory properties and is used for multiple sclerosis treatment. The present study determines whether a 26-day DMF therapy ameliorates the disruption of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and olfactory bulb (OB) in an STZ-ICV rat model of sAD. Considering age as an important risk factor for developing AD, this study was performed using 3-month-old (the young group) and 22-month-old (the aged group) male Wistar rats. Spatial cognitive functions were evaluated with the Morris water maze task. Immunofluorescent labelling was used to assess the parameters of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and OB. Our results showed that the STZ-ICV evoked spatial learning and memory impairment and disturbances in adult neurogenesis and BDNF expression in both examined brain structures. In the aged animals, the deficits were more severe. We found that the DMF treatment significantly alleviated STZ-ICV-induced behavioural and neuronal disorders in both age groups of the rats. Our findings suggest that DMF, due to its beneficial effect on the formation of new neurons and BDNF-related neuroprotection, may be considered as a promising new therapeutic agent in human sAD.
Collapse
|
16
|
Matteo P, Federico D, Emanuela M, Giulia R, Tommaso B, Alfredo G, Anna C, Annamaria O. New and Old Horizons for an Ancient Drug: Pharmacokinetics, Pharmacodynamics, and Clinical Perspectives of Dimethyl Fumarate. Pharmaceutics 2022; 14:pharmaceutics14122732. [PMID: 36559226 PMCID: PMC9788528 DOI: 10.3390/pharmaceutics14122732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: In their 60-year history, dimethyl fumarate and other salts of fumaric acid have been used for the treatment of psoriasis and other immune-mediated diseases for their immune-modulating properties. Over the years, new mechanisms of action have been discovered for this evergreen drug that remains a first-line treatment for several different inflammatory diseases. Due to its pleiotropic effects, this molecule is still of great interest in varied conditions, not exclusively inflammatory diseases. (2) Methods: The PubMed database was searched using combinations of the following keywords: dimethyl fumarate, pharmacokinetics, pharmacodynamics, adverse effects, psoriasis, multiple sclerosis, and clinical indications. This article reviews and updates the pharmacokinetics, mechanisms of action, and clinical indications of dimethyl fumarate. (3) Conclusions: The pharmacology of dimethyl fumarate is complex, fascinating, and not fully known. Progressive insights into the molecule's mechanisms of action will make it possible to maximize its clinical efficacy, reduce concerns about adverse effects, and find other possible areas of application.
Collapse
Affiliation(s)
- Paolinelli Matteo
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
- Correspondence:
| | - Diotallevi Federico
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Martina Emanuela
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Radi Giulia
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | | | | | - Campanati Anna
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Offidani Annamaria
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| |
Collapse
|
17
|
Sauerland MB, Helm C, Lorentzen LG, Manandhar A, Ulven T, Gamon LF, Davies MJ. Identification of galectin-1 and other cellular targets of alpha,beta-unsaturated carbonyl compounds, including dimethylfumarate, by use of click-chemistry probes. Redox Biol 2022; 59:102560. [PMID: 36493513 PMCID: PMC9731849 DOI: 10.1016/j.redox.2022.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
α,β-Unsaturated carbonyls are a common motif in environmental toxins (e.g. acrolein) as well as therapeutic drugs, including dimethylfumarate (DMFU) and monomethylfumarate (MMFU), which are used to treat multiple sclerosis and psoriasis. These compounds form adducts with protein Cys residues as well as other nucleophiles. The specific targets ('adductome') that give rise to their therapeutic or toxic activities are poorly understood. This is due, at least in part, to the absence of antigens or chromophores/fluorophores in these compounds. We have recently reported click-chemistry probes of DMFU and MMFU (Redox Biol., 2022, 52, 102299) that allow adducted proteins to be visualized and enriched for further characterization. In the current study, we hypothesized that adducted proteins could be 'clicked' to agarose beads and thereby isolated for LC-MS analysis of DMFU/MMFU targets in primary human coronary artery smooth muscle cells. We show that the probes react with thiols with similar rate constants to the parent drugs, and give rise to comparable patterns of gene induction, confirming similar biological actions. LC-MS proteomic analysis identified ∼2970 cellular targets of DMFU, ∼1440 for MMFU, and ∼140 for the control (succinate-probe) treated samples. The most extensively modified proteins were galectin-1, annexin-A2, voltage dependent anion channel-2 and vimentin. Other previously postulated DMFU targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cofilin, p65 (RELA) and Keap1 were also identified as adducted species, though at lower levels with the exception of GAPDH. These data demonstrate the utility of the click-chemistry approach to the identification of cellular protein targets of both exogenous and endogenous compounds.
Collapse
Affiliation(s)
- Max B. Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Christina Helm
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G. Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, Jagtvej 162, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Jagtvej 162, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Luke F. Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark,Corresponding author.
| |
Collapse
|
18
|
Kopacz A, Rojo AI, Patibandla C, Lastra-Martínez D, Piechota-Polanczyk A, Kloska D, Jozkowicz A, Sutherland C, Cuadrado A, Grochot-Przeczek A. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic Biol Med 2022; 192:37-49. [PMID: 36100148 DOI: 10.1016/j.freeradbiomed.2022.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Chinmai Patibandla
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Diego Lastra-Martínez
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Calum Sutherland
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
19
|
Sauerland MB, Davies MJ. Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification. Arch Biochem Biophys 2022; 727:109344. [PMID: 35777524 DOI: 10.1016/j.abb.2022.109344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023]
Abstract
Humans have widespread exposure to both oxidants, and soft electrophilic compounds such as alpha,beta-unsaturated aldehydes and quinones. Electrophilic motifs are commonly found in a drugs, industrial chemicals, pollutants and are also generated via oxidant-mediated degradation of biomolecules including lipids (e.g. formation of 4-hydroxynonenal, 4-hydroxyhexenal, prostaglandin J2). All of these classes of compounds react efficiently with Cys residues, and the particularly the thiolate anion, with this resulting in Cys modification via either oxidation or adduct formation. This can result in deleterious or beneficial effects, that are either reversible (e.g. in cell signalling) or irreversible (damaging). For example, acrolein is a well-established toxin, whereas dimethylfumarate is used in the treatment of multiple sclerosis and psoriasis. This short review discusses the targets of alpha,beta-unsaturated aldehydes, and particularly two prototypic cases, acrolein and dimethylfumarate, and the factors that control the selectivity and kinetics of reaction of these species. Comparison is made between the reactivity of oxidants versus soft electrophiles. These rate constants indicate that electrophiles can be significant thiol modifying agents in some situations, as they have rate constants similar to or greater than species such as H2O2, can be present at higher concentrations, and are less efficiently removed by protective systems when compared to H2O2. They may also induce similar or higher levels of modification than highly reactive oxidants, due to the very low concentrations of oxidants formed in most in vivo situations.
Collapse
Affiliation(s)
- Max B Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
20
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
21
|
Marastoni D, Crescenzo F, Pisani AI, Zuco C, Schiavi G, Benedetti G, Ricciardi GK, Montemezzi S, Pizzini FB, Tamanti A, Calabrese M. Two years' effect of dimethyl fumarate on focal and diffuse gray matter pathology in multiple sclerosis. Mult Scler 2022; 28:2090-2098. [PMID: 35765211 DOI: 10.1177/13524585221104014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Data on the effect of dimethyl fumarate (DMF) on focal and diffuse gray matter (GM) damage, a relevant pathological substrate of multiple sclerosis (MS)-related disability are lacking. OBJECTIVE To evaluate the DMF effect on cortical lesions (CLs) accumulation and global and regional GM atrophy in subjects with relapsing-remitting MS. METHODS A total of 148 patients (mean age 38.1 ± 9.7 years) treated with DMF ended a 2-year longitudinal study. All underwent regular Expanded Disability Status Scale (EDSS assessment), and at least two 3T-magnetic resonance imaging (MRI) at 3 and 24 months after DMF initiation. CLs and changes in global and regional atrophy of several brain regions were compared with 47 untreated age and sex-matched patients. RESULTS DMF-treated patients showed lower CLs accumulation (median 0[0-3] vs 2[0-7], p < 0.001) with respect to controls. Global cortical thickness (p < 0.001) and regional thickness and volume were lower in treated group (cerebellum, hippocampus, caudate, and putamen: p < 0.001; thalamus p = 0.03). Lower relapse rate (14% vs 40%, p < 0.001), EDSS change (0.2 ± 0.4 vs 0.4 ± 0.9, p < 0.001), and new WM lesions (median 0[0-5] vs 2[0-6], p < 0.001) were reported. No severe adverse drug reactions occurred. CONCLUSIONS Beyond the well-known effect on disease activity, these results provide evidence of the effect of DMF through reduced progression of focal and diffuse GM damage.
Collapse
Affiliation(s)
- Damiano Marastoni
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Anna I Pisani
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carmela Zuco
- Neurology Unit, "Carlo Poma" Hospital, ASST Mantua, Mantua, Italy
| | - Gianmarco Schiavi
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Benedetti
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Francesca B Pizzini
- Radiology Unit, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Majkutewicz I. Dimethyl fumarate: A review of preclinical efficacy in models of neurodegenerative diseases. Eur J Pharmacol 2022; 926:175025. [DOI: 10.1016/j.ejphar.2022.175025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
23
|
Yang J, Liu Z, Perrett S, Zhang H, Pan Z. PES derivative PESA is a potent tool to globally profile cellular targets of PES. Bioorg Med Chem Lett 2022; 60:128553. [PMID: 35051576 DOI: 10.1016/j.bmcl.2022.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PES (2-phenylethynesulfonamide, pifithrin-μ, PFTμ) is an electrophilic compound that exhibits anticancer properties, protects against chemotherapy-induced peripheral neuropathy in chemotherapy, and shows immunomodulatory, anti-inflammatory and anti-viral activities. PES generally shows higher cytotoxicity towards tumor cells than non-tumor cells. The mechanism of action of PES is unclear but may involve the covalent modification of proteins as PES has been found to be a covalent inhibitor of Hsp70. We developed a new PES derivative PESA with a terminal alkynyl group to perform click-reaction-assisted activity-based protein profiling (click-reaction ABPP) and used this to screen for cellular targets of PES. We found PES and its derivatives PES-Cl and PESA have comparable ability to undergo a Michael addition reaction with GSH and Hsp70, and showed similar cytotoxicity. By fluorescence imaging and proteomics studies we identified over 300 PESA-attached proteins in DOHH2 cells. Some proteins involved in cancer-related redox processes, such as peroxiredoxin 1 (PRDX1), showed higher frequency and abundance in mass spectrometry detection. Our results suggest that cytotoxicity of PES and its derivatives may be related to attack of protein thiols and cellular GSH resulting in breakdown of cellular redox homeostasis. This study provides a powerful new tool compound within the PES class of bioactive compounds and gives insight into the working mechanisms of PES and its derivatives.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China.
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
24
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
25
|
Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100028. [PMID: 34909662 PMCID: PMC8663926 DOI: 10.1016/j.crphar.2021.100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), together with its suppressive binding partner Kelch-like ECH-associated protein 1 (Keap1), regulates cellular antioxidant response and drug metabolism. The roles of Nrf2/Keap1 signaling in the pathology of many diseases have been extensively investigated, and small molecules targeting Nrf2/Keap1 signaling have been developed to prevent or treat diseases such as multiple sclerosis, chronic kidney disease and cancer. Notably, Nrf2 plays dual roles in cancer development and treatment. Activation of Nrf2/Keap1 signaling in cancer cells has been reported to promote cancer progression and result in therapy resistance. Since cancer patients are often suffering comorbidities of other chronic diseases, anticancer drugs could be co-administrated with other drugs and herbs. Nrf2/Keap1 signaling modulators, especially activators, are common in drugs, herbs and dietary ingredients, even they are developed for other targets. Therefore, drug-drug or herb-drug interactions due to modulation of Nrf2/Keap1 signaling should be considered in cancer therapies. Here we briefly summarize basic biochemistry and physiology functions of Nrf2/Keap1 signaling, Nrf2/Keap1 signaling modulators that cancer patients could be exposed to, and anticancer drugs that are sensitive to Nrf2/Keap1 signaling, aiming to call attention to the potential drug-drug or herb-drug interactions between anticancer drugs and these Nrf2/Keap1 signaling modulators.
Collapse
Affiliation(s)
- Jingya Wang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Jin Yang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| |
Collapse
|
26
|
Poganik JR, Huang KT, Parvez S, Zhao Y, Raja S, Long MJC, Aye Y. Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nat Commun 2021; 12:5736. [PMID: 34593792 PMCID: PMC8484674 DOI: 10.1038/s41467-021-25466-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the emerging importance of reactive electrophilic drugs, deconvolution of their principal targets remains difficult. The lack of genetic tractability/interventions and reliance on secondary validation using other non-specific compounds frequently complicate the earmarking of individual binders as functionally- or phenotypically-sufficient pathway regulators. Using a redox-targeting approach to interrogate how on-target binding of pleiotropic electrophiles translates to a phenotypic output in vivo, we here systematically track the molecular components attributable to innate immune cell toxicity of the electrophilic-drug dimethyl fumarate (Tecfidera®). In a process largely independent of canonical Keap1/Nrf2-signaling, Keap1-specific modification triggers mitochondrial-targeted neutrophil/macrophage apoptosis. On-target Keap1–ligand-engagement is accompanied by dissociation of Wdr1 from Keap1 and subsequent coordination with cofilin, intercepting Bax. This phagocytic-specific cell-killing program is recapitulated by whole-animal administration of dimethyl fumarate, where individual depletions of the players identified above robustly suppress apoptosis. The mechanism-of-action of many electrohilic drugs remains poorly understood. Here, the authors use a redox-targeting approach to elucidate the basis for the innate immune cell toxicity of dimethyl fumarate, showing that it modifies Keap1 to trigger mitochondrial-targeted neutrophil/macrophage apoptosis.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Guangdong, China
| | - Sruthi Raja
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
27
|
Upadhayay S, Mehan S. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
28
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
29
|
Shacham T, Patel C, Lederkremer GZ. PERK Pathway and Neurodegenerative Disease: To Inhibit or to Activate? Biomolecules 2021; 11:biom11030354. [PMID: 33652720 PMCID: PMC7996871 DOI: 10.3390/biom11030354] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
With the extension of life span in recent decades, there is an increasing burden of late-onset neurodegenerative diseases, for which effective treatments are lacking. Neurodegenerative diseases include the widespread Alzheimer’s disease (AD) and Parkinson’s disease (PD), the less frequent Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) and also rare early-onset diseases linked to mutations that cause protein aggregation or loss of function in genes that maintain protein homeostasis. The difficulties in applying gene therapy approaches to tackle these diseases is drawing increasing attention to strategies that aim to inhibit cellular toxicity and restore homeostasis by intervening in cellular pathways. These include the unfolded protein response (UPR), activated in response to endoplasmic reticulum (ER) stress, a cellular affliction that is shared by these diseases. Special focus is turned to the PKR-like ER kinase (PERK) pathway of the UPR as a target for intervention. However, the complexity of the pathway and its ability to promote cell survival or death, depending on ER stress resolution, has led to some confusion in conflicting studies. Both inhibition and activation of the PERK pathway have been reported to be beneficial in disease models, although there are also some reports where they are counterproductive. Although with the current knowledge a definitive answer cannot be given on whether it is better to activate or to inhibit the pathway, the most encouraging strategies appear to rely on boosting some steps without compromising downstream recovery.
Collapse
Affiliation(s)
- Talya Shacham
- Cell Biology Division, George Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (T.S.); (C.P.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chaitanya Patel
- Cell Biology Division, George Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (T.S.); (C.P.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- Cell Biology Division, George Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (T.S.); (C.P.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-3-640-9239
| |
Collapse
|
30
|
Comparative Efficacy and Safety of Ozanimod and Dimethyl Fumarate for Relapsing-Remitting Multiple Sclerosis Using Matching-Adjusted Indirect Comparison. CNS Drugs 2021; 35:795-804. [PMID: 33847901 PMCID: PMC8310468 DOI: 10.1007/s40263-021-00805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) experience relapses and sustained disability progression. Since 2004, the number of disease-modifying therapies (DMTs) for MS has grown substantially. As a result, patients, healthcare providers, and insurers are increasingly interested in comparative efficacy and safety evaluations to distinguish between treatment options, but head-to-head studies between DMTs are limited. OBJECTIVE The aim of the current study was to compare efficacy and safety outcomes with the DMTs ozanimod and dimethyl fumarate (DMF) using a matching-adjusted indirect comparison (MAIC) to adjust for cross-trial differences in study design and population. METHODS A systematic literature review was performed to identify clinical studies evaluating the efficacy and safety of ozanimod compared with DMF. Individual patient-level data (IPD) for ozanimod were obtained from the SUNBEAM and RADIANCE Part B trials, and aggregate-level patient data (APD) for DMF were obtained from CONFIRM and DEFINE. A MAIC is used to weight IPD to APD based on important baseline patient characteristics considered to be effect modifiers or prognostic factors in order to balance the covariate distribution to establish more homogenous trial populations. Once trial populations are determined to be sufficiently homogenous, outcomes of interest are estimated and used to generate treatment effects between the weighted IPD and APD. We used MAIC methodology to compare efficacy and safety outcomes of interest between ozanimod 1.0 mg once daily (OD) and DMF 240 mg twice daily (BID), including confirmed disability progression (CDP) at 3 and 6 months, annualized relapse rate (ARR), proportion of patients relapsed, overall adverse events (AEs), serious AEs (SAEs), and discontinuations due to AEs. RESULTS After matching patient data, baseline patient characteristics were balanced between patients receiving ozanimod and those receiving DMF. Compared with DMF, ozanimod demonstrated significantly improved CDP at 3 months (hazard ratio 0.67; 95% confidence interval [CI] 0.53-0.86), ARR (rate ratio [RR] 0.80; 95% CI 0.67-0.97), proportion of patients relapsed (odds ratio [OR] 0.66; 95% CI 0.52-0.83), overall AEs (OR 0.11; 95% CI 0.08-0.16), SAEs (OR 0.27; 95% CI 0.19-0.39), and discontinuations (OR 0.11; 95% CI 0.07-0.17). CDP at 6 months did not differ significantly between the two agents (RR 0.89; 95% CI 0.62-1.26). CONCLUSIONS After adjustment of baseline patient characteristics, the MAIC demonstrated that the efficacy and safety of ozanimod 1.0 mg OD was superior to that of DMF 240 mg BID. Although a MAIC is less likely to produce biased estimates than a naïve or a standard indirect treatment comparison via a common comparator, limitations include potential confounding due to unobserved and thus unaccounted for baseline differences.
Collapse
|
31
|
Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants (Basel) 2020; 9:antiox9080700. [PMID: 32756501 PMCID: PMC7465338 DOI: 10.3390/antiox9080700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
The maintenance of redox homeostasis in the brain is critical for the prevention of the development of neurodegenerative diseases. Drugs acting on brain redox balance can be promising for the treatment of neurodegeneration. For more than four decades, dimethyl fumarate (DMF) and other derivatives of fumaric acid ester compounds have been shown to mitigate a number of pathological mechanisms associated with psoriasis and relapsing forms of multiple sclerosis (MS). Recently, DMF has been shown to exert a neuroprotective effect on the central nervous system (CNS), possibly through the modulation of microglia detrimental actions, observed also in multiple brain injuries. In addition to the hypothesis that DMF is linked to the activation of NRF2 and NF-kB transcription factors, the neuroprotective action of DMF may be mediated by the activation of the glutathione (GSH) antioxidant pathway and the regulation of brain iron homeostasis. This review will focus on the role of DMF as an antioxidant modulator in microglia processes and on its mechanisms of action in the modulation of different pathways to attenuate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-Nanotechnology Institute, Sapienza University, 00185 Rome, Italy;
| | - Paola Baiocco
- Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| |
Collapse
|
32
|
Preston GW, Yang L, Phillips DH, Maier CS. Visualisation tools for dependent peptide searches to support the exploration of in vitro protein modifications. PLoS One 2020; 15:e0235263. [PMID: 32639981 PMCID: PMC7343161 DOI: 10.1371/journal.pone.0235263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Dependent peptide searching is a method for discovering covalently-modified peptides-and therefore proteins-in mass-spectrometry-based proteomics experiments. Being more permissive than standard search methods, it has the potential to discover novel modifications (e.g., post-translational modifications occurring in vivo, or modifications introduced in vitro). However, few studies have explored dependent peptide search results in an untargeted way. In the present study, we sought to evaluate dependent peptide searching as a means of characterising proteins that have been modified in vitro. We generated a model data set by analysing N-ethylmaleimide-treated bovine serum albumin, and performed dependent peptide searches using the popular MaxQuant software. To facilitate interpretation of the search results (hundreds of dependent peptides), we developed a series of visualisation tools (R scripts). We used the tools to assess the diversity of putative modifications in the albumin, and to pinpoint hypothesised modifications. We went on to explore the tools' generality via analyses of public data from studies of rat and human proteomes. Of 19 expected sites of modification (one in rat cofilin-1 and 18 across six different human plasma proteins), eight were found and correctly localised. Apparently, some sites went undetected because chemical enrichment had depleted necessary analytes (potential 'base' peptides). Our results demonstrate (i) the ability of the tools to provide accurate and informative visualisations, and (ii) the usefulness of dependent peptide searching for characterising in vitro protein modifications. Our model data are available via PRIDE/ProteomeXchange (accession number PXD013040).
Collapse
Affiliation(s)
- George W. Preston
- Department of Analytical, MRC-PHE Centre for Environment & Health, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, England, United Kingdom
- Department of Chemistry, Oregon State University, Corvallis, OR, United States of America
| | - Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States of America
| | - David H. Phillips
- Department of Analytical, MRC-PHE Centre for Environment & Health, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, England, United Kingdom
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
33
|
Sangineto M, Grabherr F, Adolph TE, Grander C, Reider S, Jaschke N, Mayr L, Schwärzler J, Dallio M, Moschen AR, Moschetta A, Sabbà C, Tilg H. Dimethyl fumarate ameliorates hepatic inflammation in alcohol related liver disease. Liver Int 2020; 40:1610-1619. [PMID: 32306456 PMCID: PMC7383968 DOI: 10.1111/liv.14483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcohol-related liver disease (ALD) comprises different liver disorders which impose a health care issue. ALD and particularly alcoholic steatohepatitis, an acute inflammatory condition, cause a substantial morbidity and mortality as effective treatment options remain elusive. Inflammation in ALD is fuelled by macrophages (Kupffer cells [KCs]) which are activated by intestinal pathogen associated molecular patterns, eg lipopolysaccharide (LPS), disseminated beyond a defective intestinal barrier. We hypothesized that the immunomodulator dimethyl-fumarate (DMF), which is approved for the treatment of human inflammatory conditions such as multiple sclerosis or psoriasis, ameliorates the course of experimental ALD. METHODS Dimethyl-fumarate or vehicle was orally administered to wild-type mice receiving a Lieber-DeCarli diet containing 5% ethanol for 15 days. Liver injury, steatosis and inflammation were evaluated by histology, biochemical- and immunoassays. Moreover, we investigated a direct immunosuppressive effect of DMF on KCs and explored a potential impact on ethanol-induced intestinal barrier disruption. RESULTS Dimethyl-fumarate protected against ethanol-induced hepatic injury, steatosis and inflammation in mice. Specifically, we observed reduced hepatic triglyceride and ALT accumulation, reduced hepatic expression of inflammatory cytokines (Tnf-α, Il-1β, Cxcl1) and reduced abundance of neutrophils and macrophages in ethanol-fed and DMF-treated mice when compared to vehicle. DMF protected against ethanol-induced barrier disruption and abrogated systemic LPS concentration. In addition, DMF abolished LPS-induced cytokine responses of KCs. CONCLUSIONS Dimethyl-fumarate counteracts ethanol-induced barrier dysfunction, suppresses inflammatory responses of KCs and ameliorates hepatic inflammation and steatosis, hallmarks of experimental ALD. Our data indicates that DMF treatment might be beneficial in human ALD and respective clinical trials are eagerly awaited.
Collapse
Affiliation(s)
- Moris Sangineto
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Department of Interdisciplinary MedicineUniversity of BariBariItaly
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Simon Reider
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Christian Doppler Laboratory for Mucosal ImmunologyMedical University InnsbruckInnsbruckAustria
| | - Nikolai Jaschke
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| | - Marcello Dallio
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Department of Precision MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria,Christian Doppler Laboratory for Mucosal ImmunologyMedical University InnsbruckInnsbruckAustria
| | | | - Carlo Sabbà
- Department of Interdisciplinary MedicineUniversity of BariBariItaly
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & MetabolismMedical University InnsbruckInnsbruckAustria
| |
Collapse
|
34
|
Haskew-Layton RE, Minkler JR. Chick Embryonic Primary Astrocyte Cultures Provide an Effective and Scalable Model for Authentic Research in a Laboratory Class. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2020; 18:A86-A92. [PMID: 32848516 PMCID: PMC7438172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 06/11/2023]
Abstract
Cell culture provides an impactful tool for undergraduates to study a range of neurobiological processes. While immortalized or cancer cell lines offer a level of convenience for undergraduate research, particularly for larger scale course-based undergraduate research experiences (CUREs) or project-based learning (PBL), primary cell cultures more closely retain the characteristics of the tissue of origin, allowing students to engage in a wider range of authentic research projects. Astrocytes have gained increasing attention for their role in modulating neuronal viability and are at the forefront of neuroprotection research. Here we describe a method of primary astrocyte culture preparation, derived from embryonic day 8 chicken embryos, optimized for a cell biology laboratory class. The primary astrocytes, prepared and maintained by undergraduates, were used as the model system for student-centered research projects in which students investigated cytoskeletal changes in response to drug treatments. Students reported several learning gains from the experience. The ease of the primary culture method for novice research students allows greater flexibility in designing authentic and scalable research experiences.
Collapse
Affiliation(s)
| | - Joseph R Minkler
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY 10522
| |
Collapse
|
35
|
Bergholtz SE, Briney CA, Najera SS, Perez M, Linehan WM, Meier JL. An Oncometabolite Isomer Rapidly Induces a Pathophysiological Protein Modification. ACS Chem Biol 2020; 15:856-861. [PMID: 32250583 DOI: 10.1021/acschembio.0c00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolites regulate protein function via covalent and noncovalent interactions. However, manipulating these interactions in living cells remains a major challenge. Here, we report a chemical strategy for inducing cysteine S-succination, a nonenzymatic post-translational modification derived from the oncometabolite fumarate. Using a combination of antibody-based detection and kinetic assays, we benchmark the in vitro and cellular reactivity of two novel S-succination "agonists," maleate and 2-bromosuccinate. Cellular assays reveal maleate to be a more potent and less toxic inducer of S-succination, which can activate KEAP1-NRF2 signaling in living cells. By enabling the cellular reconstitution of an oncometabolite-protein interaction with physiochemical accuracy and minimal toxicity, this study provides a methodological basis for better understanding the signaling role of metabolites in disease.
Collapse
Affiliation(s)
- Sarah E. Bergholtz
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Susana S. Najera
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States
| | - Minervo Perez
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| |
Collapse
|
36
|
Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30:300-314. [PMID: 32132672 PMCID: PMC7118080 DOI: 10.1038/s41422-020-0291-z] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The growing field of immunometabolism has taught us how metabolic cellular reactions and processes not only provide a means to generate ATP and biosynthetic precursors, but are also a way of controlling immunity and inflammation. Metabolic reprogramming of immune cells is essential for both inflammatory as well as anti-inflammatory responses. Four anti-inflammatory therapies, DMF, Metformin, Methotrexate and Rapamycin all work by affecting metabolism and/or regulating or mimicking endogenous metabolites with anti-inflammatory effects. Evidence is emerging for the targeting of specific metabolic events as a strategy to limit inflammation in different contexts. Here we discuss these recent developments and speculate on the prospect of targeting immunometabolism in the effort to develop novel anti-inflammatory therapeutics. As accumulating evidence for roles of an intricate and elaborate network of metabolic processes, including lipid, amino acid and nucleotide metabolism provides key focal points for developing new therapies, we here turn our attention to glycolysis and the TCA cycle to provide examples of how metabolic intermediates and enzymes can provide potential novel therapeutic targets.
Collapse
|
37
|
Manuel AM, Walla MD, Dorn MT, Tanis RM, Piroli GG, Frizzell N. Fumarate and oxidative stress synergize to promote stability of C/EBP homologous protein in the adipocyte. Free Radic Biol Med 2020; 148:70-82. [PMID: 31883977 PMCID: PMC6961135 DOI: 10.1016/j.freeradbiomed.2019.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
C/EBP homologous protein (CHOP) is a transcription factor that is elevated in adipose tissue across many models of diabetes and metabolic stress. Although increased CHOP levels are associated with the terminal response to endoplasmic reticulum stress and apoptosis, there is no evidence for CHOP mediated apoptosis in the adipose tissue during diabetes. CHOP protein levels increase in parallel with protein succination, a fumarate derived cysteine modification, in the adipocyte during metabolic stress. We investigated the factors contributing to sustained CHOP proteins levels in the adipocyte, with an emphasis on the regulation of CHOP protein turnover by metabolite-driven modification of Keap1 cysteines. CHOP protein stability was investigated in conditions of nutrient stress due to high glucose or elevated fumarate (fumarase knockdown model); where cysteine succination is specifically elevated. CHOP protein turnover is significantly reduced in models of elevated glucose and fumarate with a ~30% increase in CHOP stability (p > 0.01), in part due to decreased CHOP phosphorylation. Sustained CHOP levels occur in parallel with elevated heme-oxygenase-1, a production of increased Nrf2 transcriptional activity and Keap1 modification. While Keap1 is directly succinated in the presence of excess fumarate derived from genetic knockdown of fumarase (fumarate levels are elevated >20-fold), it is the oxidative modification of Keap1 that predominates in adipocytes matured in high glucose (fumarate increases 4-5 fold). Elevated fumarate indirectly regulates CHOP stability through the induction of oxidative stress. The antioxidant N-acetylcysteine (NAC) reduces fumarate levels, protein succination and CHOP levels in adipocytes matured in high glucose. Elevated CHOP does not contribute elevated apoptosis in adipocytes, but plays a redox-dependent role in decreasing the adipocyte secretion of interleukin-13, an anti-inflammatory chemokine. NAC treatment restores adipocyte IL-13 secretion, confirming the redox-dependent regulation of a potent anti-inflammatory eotaxin. This study demonstrates that physiological increases in the metabolite fumarate during high glucose exposure contributes to the presence of oxidative stress and sustained CHOP levels in the adipocyte during diabetes. The results reveal a novel metabolic link between mitochondrial metabolic stress and reduced anti-inflammatory adipocyte signaling as a consequence of reduced CHOP protein turnover.
Collapse
Affiliation(s)
- Allison M Manuel
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Michael D Walla
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29205, USA
| | - Margaret T Dorn
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Ross M Tanis
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA.
| |
Collapse
|
38
|
Nellessen A, Nyamoya S, Zendedel A, Slowik A, Wruck C, Beyer C, Fragoulis A, Clarner T. Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metab Brain Dis 2020; 35:353-362. [PMID: 31529356 DOI: 10.1007/s11011-019-00488-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a pathophysiological hallmark of many CNS diseases, among multiple sclerosis (MS). Accordingly, boosting the astrocytic transcription factor nuclear factor E2-related factor 2 (Nrf2) system in an MS mouse model efficiently ameliorates oligodendrocyte loss, neuroinflammation and axonal damage. Moreover, Dimethylfumarate, an efficient activator of Nrf2, has recently been approved as therapeutic option in MS treatment. Here, we use the cuprizone mouse model of MS to induce oxidative stress, selective oligodendrocyte loss, microglia and astrocyte activation as well as axonal damage in both wild type and Nrf2-deficient mice. We found increased oligodendrocyte apoptosis and loss, pronounced neuroinflammation and higher levels of axonal damage in cuprizone-fed Nrf2-deficient animals when compared to wild type controls. In addition, Nrf2-deficient animals showed a higher susceptibility towards cuprizone within the commissura anterior white matter tract, a structure that is relatively insensitive to cuprizone in wild type animals. Our data highlight the cuprizone model as a suitable tool to study the complex interplay of oxidative stress, neuroinflammation and axonal damage. Further studies will have to show whether distinct expression patterns of Nrf2 are involved in the variable susceptibility towards cuprizone in the mouse.
Collapse
Affiliation(s)
- Anna Nellessen
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
- Faculty of Medicine, LMU Munich, Department of Anatomy, Neuroanatomy, Pettenkoferstr. 11, 80336, Munich, Germany
- Rostock University Medical Center, Rostock, Institut für Anatomie, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|