1
|
Cui X, Zhang C, Fu C, Hu J, Li T, Li L. YY1 is involved in homologous recombination inhibition at guanine quadruplex sites in human cells. Nucleic Acids Res 2024; 52:7401-7413. [PMID: 38869071 PMCID: PMC11260479 DOI: 10.1093/nar/gkae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.
Collapse
Affiliation(s)
- Xinyu Cui
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengwen Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunqing Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinglei Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tengjiao Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Li M, Zhu G, Liu Y, Li X, Zhou Y, Li C, Wang M, Zhang J, Wang Z, Tan S, Chen W, Zhang H. Integrated genomic and proteomic analyses identify PYGL as a novel experimental therapeutic target for clear cell renal cell carcinoma. Heliyon 2024; 10:e28295. [PMID: 38545181 PMCID: PMC10966709 DOI: 10.1016/j.heliyon.2024.e28295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Sunitinib, the first-line targeted therapy for metastatic clear cell renal cell carcinoma (ccRCC), faces a significant challenge as most patients develop acquired resistance. Integrated genomic and proteomic analyses identified PYGL as a novel therapeutic target for ccRCC. PYGL knockdown inhibited cell proliferation, cloning capacity, migration, invasion, and tumorigenesis in ccRCC cell lines. PYGL expression was increased in sunitinib-resistant ccRCC cell lines, and CP-91149 targeting the PYGL could restore drug sensitivity in these cell lines. Moreover, chromatin immune-precipitation assays revealed that PYGL upregulation is induced by the transcription factor, hypoxia-inducible factor 1α. Overall, PYGL was identified as a novel diagnostic biomarker by combining genomic and proteomic approaches in ccRCC, and sunitinib resistance to ccRCC may be overcome by targeting PYGL.
Collapse
Affiliation(s)
- Mingyong Li
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guoqiang Zhu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiqi Liu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuxia Zhou
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Minglei Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqi Chen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, 421000 Hengyang, Hunan, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
3
|
Borkowetz A, Sommer U, Baretton G, Gruellich C, Bürk BT, Erb HHH, Thomas C. Identification of genomic drivers for the therapeutic response of Cabozantinib in patients with metastatic renal cell carcinoma. World J Urol 2024; 42:94. [PMID: 38386122 PMCID: PMC10884127 DOI: 10.1007/s00345-024-04783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE Cabozantinib (CAB) as monotherapy or in combination with immune checkpoint inhibitors is used for systemic treatment of metastatic renal cell carcinoma (mRCC). However, little is known about predictors of treatment response to CAB. For this reason, known genomic drivers were examined to identify potential predictors of treatment response with CAB. METHODS Twenty mRCC patients receiving monotherapy (≥ first-line) with CAB were prospectively included. DNA was extracted from archived primary tumors or metastatic tissue. Targeted DNA sequencing was performed using a gene panel including 328 genes (QIAseq Targeted DNA V3 Panel, Qiagen). The variant evaluation was performed using Varsome. The endpoints were treatment-failure-free-survival (TFFS) to CAB. RESULTS 26% of patients received systemic RCC treatment as the primary option. Six patients were treated with CAB in first-line (1L) and 12 patients in ≥ 2L. The median follow-up after initiation of systemic treatment was 26.7 months (mo). The PBRM1 (7 alleles), SETD2 (7 alleles), VHL (11 alleles), and CHEK2 (14 alleles) genes were most frequently altered. The median time to TFFS was 10.5 mo (95% confidence interval (CI) 6.2-14.7 mo). There was a longer treatment response to CAB in patients with alterations of the SETD2 gene (SETD2 alteration median TFFS not reached vs. no SETD2 alterations 8.4 mo (95% CI 5.2-11.6 mo); p = 0.024). CONCLUSION Pathogenic variant genes may indicate treatment response to systemic therapy in mRCC. Patients with alterations of the SETD2 gene show longer responses to CAB treatment.
Collapse
Affiliation(s)
- Angelika Borkowetz
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Cancer Consortium (DKTK), Site, Dresden, Germany.
| | - Ulrich Sommer
- Institute of Pathology, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Gustavo Baretton
- Institute of Pathology, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Carsten Gruellich
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Björn Thorben Bürk
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Site, Dresden, Germany
| | - Christian Thomas
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
4
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Meng J, Jiang A, Lu X, Gu D, Ge Q, Bai S, Zhou Y, Zhou J, Hao Z, Yan F, Wang L, Wang H, Du J, Liang C. Multiomics characterization and verification of clear cell renal cell carcinoma molecular subtypes to guide precise chemotherapy and immunotherapy. IMETA 2023; 2:e147. [PMID: 38868222 PMCID: PMC10989995 DOI: 10.1002/imt2.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 06/14/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor with different genetic and molecular alterations. Schemes for ccRCC classification system based on multiomics are urgent, to promote further biological insights. Two hundred and fifty-five ccRCC patients with paired data of clinical information, transcriptome expression profiles, copy number alterations, DNA methylation, and somatic mutations were collected for identification. Bioinformatic analyses were performed based on our team's recently developed R package "MOVICS." With 10 state-of-the-art algorithms, we identified the multiomics subtypes (MoSs) for ccRCC patients. MoS1 is an immune exhausted subtype, presented the poorest prognosis, and might be caused by an exhausted immune microenvironment, activated hypoxia features, but can benefit from PI3K/AKT inhibitors. MoS2 is an immune "cold" subtype, which represented more mutation of VHL and PBRM1, favorable prognosis, and is more suitable for sunitinib therapy. MoS3 is the immune "hot" subtype, and can benefit from the anti-PD-1 immunotherapy. We successfully verified the different molecular features of the three MoSs in external cohorts GSE22541, GSE40435, and GSE53573. Patients that received Nivolumab therapy helped us to confirm that MoS3 is suitable for anti-PD-1 therapy. E-MTAB-3267 cohort also supported the fact that MoS2 patients can respond more to sunitinib treatment. We also confirm that SETD2 is a tumor suppressor in ccRCC, along with the decreased SETD2 protein level in advanced tumor stage, and knock-down of SETD2 leads to the promotion of cell proliferation, migration, and invasion. In summary, we provide novel insights into ccRCC molecular subtypes based on robust clustering algorithms via multiomics data, and encourage future precise treatment of ccRCC patients.
Collapse
Affiliation(s)
- Jialin Meng
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Aimin Jiang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Xiaofan Lu
- Department of Cancer and Functional GenomicsInstitute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRAIllkirchFrance
| | - Di Gu
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Qintao Ge
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Suwen Bai
- The Second Affiliated Hospital, School of MedicineThe Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of ShenzhenShenzhenChina
| | - Yundong Zhou
- Department of Surgery, Ningbo Medical Center Lihuili HospitalNingbo UniversityNingboZhejiangChina
| | - Jun Zhou
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Zongyao Hao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Fangrong Yan
- Research Center of Biostatistics and Computational PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Linhui Wang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Haitao Wang
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacau SARChina
- Present address:
Center for Cancer ResearchBethesdaMarylandUSA
| | - Juan Du
- The Second Affiliated Hospital, School of MedicineThe Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of ShenzhenShenzhenChina
| | - Chaozhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Yan L, Liu S, Sun G, Ding B, Wang Z, Li H. Loss of SETD2-mediated downregulation of intracellular and exosomal miRNA-10b determines MAPK pathway activation and multidrug resistance in renal cancer. Mol Carcinog 2023; 62:1770-1781. [PMID: 37589422 DOI: 10.1002/mc.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
SET domain-containing 2 (SETD2) is the most frequently mutated gene among all the histone methyltransferases in clear cell renal cell carcinoma (ccRCC). Microarrays, RNA sequencing analysis and exosomes analysis of cellular supernatant were performed after transfection A498 cells with si-SETD2 or siRNA of negative control. Chromatin immunoprecipitation and Luciferase reporter assay were conducted to evaluate the interaction between SETD2 and miR-10b. Functional and drug experiments in vitro and in vivo were performed to verify the role of SETD2, miR-10b and MAP4K4. The results showed that loss of SETD2 mediated downregulation of intracellular and exosomal microRNA-10b. MAP4K4 were relevant to oncogenesis of ccRCC caused by loss of SETD2 and miR-10b. SETD2 could directly target miR-10b and regulate the expression of multidrug resistance (MDR)-1 (P-gp170) through JNK pathway, which was one of the downstream pathways of MAP4K4. The coordinated expression of SETD2/H3K36me3/miR-10b/MAPKs/JNK/MDR pathway was revealed to the progression of ccRCC.
Collapse
Affiliation(s)
- Libin Yan
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyue Liu
- Department of Endocrinology, School of Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, China
| | - Guoliang Sun
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Beichen Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhize Wang
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Kumari S, Singh M, Kumar S, Muthuswamy S. SETD2 controls m6A modification of transcriptome and regulates the molecular oncogenesis of glioma. Med Oncol 2023; 40:249. [PMID: 37490181 DOI: 10.1007/s12032-023-02121-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
SETD2 is known for its epigenetic regulatory function and a frequently mutated gene in multiple cancers. Recently, it has been inferred that SETD2 regulates m6A mRNA methylation (epitranscriptome) via H3K36me3. The m6A RNA methylation is vital for tumor maintenance, self-renewal, and tumorigenesis. RNA modifications are executed by writers, readers, and erasers. m6A modifiers work along with the molecular cues, H3K36me3, laid down by SETD2. A positive correlation observed between SETD2 and RNA modifiers signifies their direct role in epitranscriptomics. Hence, understanding the epitranscriptomics will provide a new facet for molecular oncogenesis. Glioma is a common, malignant grade IV tumor with limited therapeutic alternatives and a poor prognosis. Yet, its function in glioma is not fully defined. In the present study, thorough investigations were done in the m6A RNA methylation regulators expression, the molecular pathways leading to tumor progression, and their respective outcomes in SETD2-mediated RNA methylation. In vitro analysis reveals that SETD2 knockdown positively affected the oncogenic properties of the glioma cell line and a global reduction in m6A levels in the transcriptome. The reduction of m6A in the transcriptome can be attributed to the decreased expression of METTL3 and METTL14. Therefore, we conclude that SETD2-mediated m6A modifications are crucial for glioma oncogenesis.
Collapse
Affiliation(s)
- Subhadra Kumari
- Human Molecular Genetics (HMG) Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mandakini Singh
- RNA Biology Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- RNA Biology Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Srinivasan Muthuswamy
- Human Molecular Genetics (HMG) Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Pallauf M, Ged Y, Singla N. Molecular differences in renal cell carcinoma between males and females. World J Urol 2023; 41:1727-1739. [PMID: 36905442 DOI: 10.1007/s00345-023-04347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
PURPOSE The disparity in renal cell carcinoma (RCC) risk and treatment outcome between males and females is well documented, but the underlying molecular mechanisms remain poorly elucidated. METHODS We performed a narrative review synthesizing contemporary evidence on sex-specific molecular differences in healthy kidney tissue and RCC. RESULTS In healthy kidney tissue, gene expression differs significantly between males and females, including autosomal and sex-chromosome-linked genes. The differences are most prominent for sex-chromosome-linked genes and attributable to Escape from X chromosome-linked inactivation and Y chromosome loss. The frequency distribution of RCC histologies varies between the sexes, particularly for papillary, chromophobe, and translocation RCC. In clear-cell and papillary RCC, sex-specific gene expressions are pronounced, and some of these genes are amenable to pharmacotherapy. However, for many, the impact on tumorigenesis remains poorly understood. In clear-cell RCC, molecular subtypes and gene expression pathways have distinct sex-specific trends, which also apply to the expression of genes implicated in tumor progression. CONCLUSION Current evidence suggests meaningful genomic differences between male and female RCC, highlighting the need for sex-specific RCC research and personalized sex-specific treatment approaches.
Collapse
Affiliation(s)
- Maximilian Pallauf
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 213, Baltimore, MD, 21287, USA
- Department of Urology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Yasser Ged
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirmish Singla
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 213, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Yin J, Qi TF, Li L, Wang Y. Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Regulated by H3K36me3. Anal Chem 2023; 95:9672-9679. [PMID: 37296074 PMCID: PMC10372775 DOI: 10.1021/acs.analchem.3c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Trimethylation of lysine 36 on histone H3 (H3K36me3), an epigenetic mark associated with actively transcribed genes, plays an important role in multiple cellular processes, including transcription elongation, DNA methylation, DNA repair, etc. Aberrant expression and mutations of the main methyltransferase for H3K36me3, i.e., SET domain-containing 2 (SETD2), were shown to be associated with various cancers. Here, we performed targeted profiling of 154 epitranscriptomic reader, writer, and eraser (RWE) proteins using a scheduled liquid chromatography-parallel-reaction monitoring (LC-PRM) method coupled with the use of stable isotope-labeled (SIL) peptides as internal standards to investigate how H3K36me3 modulates the chromatin occupancies of epitranscriptomic RWE proteins. Our results showed consistent changes in chromatin occupancies of RWE proteins upon losses of H3K36me3 and H4K16ac and a role of H3K36me3 in recruiting METTL3 to chromatin following induction of DNA double-strand breaks. In addition, protein-protein interaction network and Kaplan-Meier survival analyses revealed the importance of METTL14 and TRMT11 in kidney cancer. Taken together, our work unveiled cross-talks between histone epigenetic marks (i.e., H3K36me3 and H4K16ac) and epitranscriptomic RWE proteins and uncovered the potential roles of these RWE proteins in H3K36me3-mediated biological processes.
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Deparment of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Deparment of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
10
|
Miao W, Porter DF, Lopez-Pajares V, Siprashvili Z, Meyers RM, Bai Y, Nguyen DT, Ko LA, Zarnegar BJ, Ferguson ID, Mills MM, Jilly-Rehak CE, Wu CG, Yang YY, Meyers JM, Hong AW, Reynolds DL, Ramanathan M, Tao S, Jiang S, Flynn RA, Wang Y, Nolan GP, Khavari PA. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 2023; 186:80-97.e26. [PMID: 36608661 PMCID: PMC10171372 DOI: 10.1016/j.cell.2022.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023]
Abstract
Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.
Collapse
Affiliation(s)
- Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa A Ko
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian J Zarnegar
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian D Ferguson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Matthew M Mills
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | | | - Cheng-Guo Wu
- Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey W Hong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ryan A Flynn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Program in Cancer Biology, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
11
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
12
|
Deng Y, Guo K, Tang Z, Feng Y, Cai S, Ye J, Xi Y, Li J, Liu R, Cai C, Tan Z, Zhang Y, Han Z, Zeng G, Zhong W. Identification and experimental validation of a tumor-infiltrating lymphocytes-related long noncoding RNA signature for prognosis of clear cell renal cell carcinoma. Front Immunol 2022; 13:1046790. [PMID: 36505457 PMCID: PMC9730408 DOI: 10.3389/fimmu.2022.1046790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common aggressive malignant tumor of the urinary system. Given the heterogeneity of the tumor microenvironment, immunotherapy may not fully exert its role in the treatment of advanced patients. Long noncoding RNA (lncRNA) has been reported to be critically associated with the differentiation and maturation of tumor-infiltrating lymphocytes (TILs), which work against tumor cells. In this study, we identified 10 TIL-related lncRNAs (AL590094.1, LINC02027, LINC00460, AC147651.1, AC026401.3, LINC00944, LINC01615, AP000439.2, AL162586.1, and AC084876.1) by Pearson correlation, univariate Cox regression, Lasso regression, and multivariate Cox regression based on The Cancer Genome Atlas (TCGA) database. A risk score model was established based on these lncRNAs. Next, a nomogram was constructed to predict the overall survival. By employing differentially expressed genes (DEGs) between groups with high and low risk scores, gene ontology (GO) enrichment analysis was performed to identify the major biological processes (BP) related to immune DEGs. We analyzed the mutation data of the groups and demonstrated that SETD2 and BAP1 had the highest mutation frequency in the high-risk group. The "CIBERSORT" R package was used to detect the abundance of TILs in the groups. The expression of lymphocyte markers was compared. We also determined the expression of two lncRNAs (AC084876.1 and AC026401.3) and their relationship with lymphocyte markers in the kidney tissue of ccRCC patients and showed that there was a positive correlation between AC084876.1 and FoxP3. Proliferation, migration, and invasion of AC084876.1-downregulated ccRCC cell lines were inhibited, and the expression of PD-L1 and TGF-β secretion decreased. To our knowledge, this is the first bioinformatics study to establish a prognostic model for ccRCC using TIL-related lncRNAs. These lncRNAs were associated with T-cell activities and may serve as biomarkers of disease prognosis.
Collapse
Affiliation(s)
- Yulin Deng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Guo
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenfeng Tang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanghua Cai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China,Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuanxue Xi
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,*Correspondence: Weide Zhong, ; Guohua Zeng, ; Zhaodong Han,
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Weide Zhong, ; Guohua Zeng, ; Zhaodong Han,
| | - Weide Zhong
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China,Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Weide Zhong, ; Guohua Zeng, ; Zhaodong Han,
| |
Collapse
|
13
|
Li K, Tan L, Li Y, Lyu Y, Zheng X, Jiang H, Zhang X, Wen H, Feng C. Cuproptosis identifies respiratory subtype of renal cancer that confers favorable prognosis. Apoptosis 2022; 27:1004-1014. [DOI: 10.1007/s10495-022-01769-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
|
14
|
Lin E, Zhu P, Ye C, Huang M, Liu X, Tian K, Tang Y, Zeng J, Cheng S, Liu J, Liu Y, Yu Y. Integrative Analysis of the Genomic and Immune Microenvironment Characteristics Associated With Clear Cell Renal Cell Carcinoma Progression: Implications for Prognosis and Immunotherapy. Front Immunol 2022; 13:830220. [PMID: 35677048 PMCID: PMC9168804 DOI: 10.3389/fimmu.2022.830220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Unlike early clear cell renal cell carcinoma (ccRCC), locally advanced and metastatic ccRCC present poor treatment outcomes and prognosis. As immune checkpoint inhibitors have achieved favorable results in the adjuvant treatment of metastatic ccRCC, we aimed to investigate the immunogenomic landscape during ccRCC progression and its potential impact on immunotherapy and prognosis. Using multi-omics and immunotherapy ccRCC datasets, an integrated analysis was performed to identify genomic alterations, immune microenvironment features, and related biological processes during ccRCC progression and evaluate their relevance to immunotherapy response and prognosis. We found that aggressive and metastatic ccRCC had higher proportions of genomic alterations, including SETD2 mutations, Del(14q), Del(9p), and higher immunosuppressive cellular and molecular infiltration levels. Of these, the Del(14q) might mediate immune escape in ccRCC via the VEGFA-VEGFR2 signaling pathway. Furthermore, immune-related pathways associated with ccRCC progression did not affect the immunotherapeutic response to ccRCC. Conversely, cell cycle pathways not only affected ccRCC progression and prognosis, but also were related to ccRCC immunotherapeutic response resistance. Overall, we described the immunogenomic characteristics of ccRCC progression and their correlations with immunotherapeutic response and prognosis, providing new insights into their prediction and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - ManLi Huang
- Department of Operating Room, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Liu Z, Li M. Circular RNAs and their role in renal cell carcinoma: a current perspective. Cancer Cell Int 2021; 21:469. [PMID: 34488780 PMCID: PMC8422676 DOI: 10.1186/s12935-021-02181-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of long non-coding RNAs, that results from a special type of alternative splicing referred to as back-splicing. They are widely distributed in eukaryotic cells and demonstrate tissue-specific expression patterns in humans. CircRNAs actively participate in various important biological activities like gene transcription, pre-mRNA splicing, translation, sponging miRNA and proteins, etc. With such diverse biological functions, circRNAs not only play a crucial role in normal human physiology, as well as in multiple diseases, including cancer. In this review, we summarized our current understanding of circRNAs and their role in renal cell carcinoma (RCC), the most common cancer of kidneys. Studies have shown that the expression level of several circRNAs are considerably varied in RCC samples and RCC cell lines suggesting the potential role of these circRNAs in RCC progression. Several circRNAs promote RCC development and progression mostly via the miRNA/target gene axis making them ideal candidates for novel anti-cancer therapy. Apart from these, there are a few circRNAs that are significantly downregulated in RCC and overexpression of these circRNAs leads to suppression of RCC growth. Differential expression patterns and novel functions of circRNAs in RCC suggest that circRNAs can be utilized as potential biomarkers and therapeutic targets for RCC therapy. However, our current understanding of the role of circRNA in RCC is still in its infancy and much comprehensive research is needed to achieve clinical translation of circRNAs as biomarkers and therapeutic targets in developing effective treatment options for RCC.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
16
|
YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat Chem Biol 2021; 17:161-168. [PMID: 33199912 PMCID: PMC7854983 DOI: 10.1038/s41589-020-00695-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2020] [Accepted: 10/14/2020] [Indexed: 01/28/2023]
Abstract
The DNA guanine quadruplexes (G4) play important roles in multiple cellular processes, including DNA replication, transcription and maintenance of genome stability. Here, we showed that Yin and Yang 1 (YY1) can bind directly to G4 structures. ChIP-seq results revealed that YY1-binding sites overlap extensively with G4 structure loci in chromatin. We also observed that the dimerization of YY1 and its binding with G4 structures contribute to YY1-mediated long-range DNA looping. Displacement of YY1 from G4 structure sites disrupts substantially the YY1-mediated DNA looping. Moreover, treatment with G4-stabilizing ligands modulates the expression of not only those genes with G4 structures in their promoters, but also those associated with distal G4 structures that are brought to close proximity via YY1-mediated DNA looping. Together, we identified YY1 as a DNA G4-binding protein, and revealed that YY1-mediated long-range DNA looping requires its dimerization and occurs, in part, through its recognition of G4 structure.
Collapse
|
17
|
Li L, Williams P, Gao Z, Wang Y. VEZF1-guanine quadruplex DNA interaction regulates alternative polyadenylation and detyrosinase activity of VASH1. Nucleic Acids Res 2020; 48:11994-12003. [PMID: 33231681 PMCID: PMC7708047 DOI: 10.1093/nar/gkaa1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
Vascular endothelial zinc finger 1 (VEZF1) plays important roles in endothelial lineage definition and angiogenesis. Vasohibins 1 and 2 (VASH1 and VASH2) can form heterodimers with small vasohibin-binding protein (SVBP) and were recently shown to regulate angiogenesis by acting as tubulin detyrosinases. Here, we showed that VEZF1 binds directly with DNA guanine quadruplex (G quadruplex, G4) structures in vitro and in cells, which modulates the levels of the two isoforms of VASH1 mRNA. Disruption of this interaction, through genetic depletion of VEZF1 or treatment of cells with G4-stabilizing small molecules, led to increased production of the long over short isoform of VASH1 (i.e. VASH1A and VASH1B, respectively) mRNA and elevated tubulin detyrosinase activity in cells. Moreover, disruption of VEZF1-G4 interactions in human umbilical vein endothelial cells resulted in diminished angiogenesis. These results suggest that the interaction between VEZF1 and G4 structures assumes a crucial role in angiogenesis, which occurs through regulating the relative levels of the two isoforms of VASH1 mRNA and the detyrosinase activity of the VASH1-SVBP complex. Together, our work revealed VEZF1 as a G4-binding protein, identified a novel regulatory mechanism for tubulin detyrosinase, and illustrated that the VEZF1- and VASH1-mediated angiogenesis pathways are functionally connected.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Preston Williams
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zi Gao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Wang Y, Zhang Y, Wang P, Fu X, Lin W. Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Mol Cancer 2020; 19:149. [PMID: 33054773 PMCID: PMC7559063 DOI: 10.1186/s12943-020-01266-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignant kidney tumor and has a high incidence rate. Circular RNAs (circRNAs) are noncoding RNAs with widespread distribution and diverse cellular functions. They are highly stable and have organ- and tissue-specific expression patterns. CircRNAs have essential functions as microRNA sponges, RNA-binding protein- and transcriptional regulators, and protein translation templates. Recent reports have shown that circRNAs are abnormally expressed in RCC and act as important regulators of RCC carcinogenesis and progression. Moreover, circRNAs have emerged as potential biomarkers for RCC diagnosis and prognosis and targets for developing new treatments. However, further studies are needed to better understand the functions of circRNAs in RCC. In this review, we summarize and discuss the recent research progress on RCC-associated circRNAs, with a focus on their potential for RCC diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ying Wang
- Kidney Disease Center, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, 322000, Zhejiang, China
| | - Yunjing Zhang
- Kidney Disease Center, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, 322000, Zhejiang, China
| | - Ping Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Weiqiang Lin
- Kidney Disease Center, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, 322000, Zhejiang, China.
| |
Collapse
|
19
|
Raimondo F, Pitto M. Prognostic significance of proteomics and multi-omics studies in renal carcinoma. Expert Rev Proteomics 2020; 17:323-334. [PMID: 32428425 DOI: 10.1080/14789450.2020.1772058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Renal carcinoma, and in particular its most common variant, the clear cell subtype, is often diagnosed incidentally through abdominal imaging and frequently, the tumor is discovered at an early stage. However, 20% to 40% of patients undergoing nephrectomy for clinically localized renal cancer, even after accurate histological and clinical classification, will develop metastasis or recurrence, justifying the associated mortality rate. Therefore, even if renal carcinoma is not among the most frequent nor deadly cancers, a better prognostication is needed. AREAS COVERED Recently proteomics or other omics combinations have been applied to both cancer tissues, on the neoplasia itself and surrounding microenvironment, cultured cells, and biological fluids (so-called liquid biopsy) generating a list of prognostic molecular tools that will be reviewed in the present paper. EXPERT OPINION Although promising, none of the approaches listed above has been yet translated in clinics. This is likely due to the peculiar genetic and phenotypic heterogeneity of this cancer, which makes nearly each tumor different from all the others. Attempts to overcome this issue will be also revised. In particular, we will discuss how the application of omics-integrated approaches could provide the determinants of response to the different targeted drugs.
Collapse
Affiliation(s)
- Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| | - Marina Pitto
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| |
Collapse
|
20
|
Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 2020; 11:3349-3356. [PMID: 32231741 PMCID: PMC7097956 DOI: 10.7150/jca.38391] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of malignant tumors; and a great deal of attention has been paid to the histone methylation level in recent years. As a 230-kD epigenetic regulator, the histone H3 lysine 36 histone (H3K36) methyltransferase SETD2 is a key enzyme of the nuclear receptor SET domain-containing (NSD) family, which is associated with a specific hyperphosphorylated domain, a large subunit of RNA polymerase II (RNAPII), named RNAPII subunit B1 (RPB1), and SETD2 which methylates the ly-36 position of dimethylated histone H3 (H3K36me2) to generate trimethylated H3K36 (H3K36me3). SETD2 is involved in various cellular processes, including transcriptional regulation, DNA damage repair, non-histone protein-related functions and some other processes. Great efforts of high-throughput sequencing have revealed that SETD2 is mutated or its function is lost in a range of solid cancers, including renal cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, osteosarcoma, and so on. Mutation, or functional loss, of the SETD2 gene produces dysfunction in corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemotherapy resistance, and unfavorable prognosis, suggesting that SETD2 possibly acts as a tumor suppressor. However, its underlying mechanism remains largely unexplored. In the present study, we summarized the latest advances of effects of SETD2 expression at the mRNA and protein levels in solid cancers, and its potential molecular and cellular functions as well as clinical applications were also reviewed.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Wei-Qing Zhao
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Cheng Fang
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Xin Yang
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Mei Ji
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| |
Collapse
|
21
|
Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, Fang D. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 2020; 10:9. [PMID: 32021684 PMCID: PMC6995143 DOI: 10.1186/s13578-020-0374-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone marks control many cellular processes including DNA damage repair. This review will focus primarily on the active histone mark H3K36me3 in the regulation of DNA damage repair and the maintenance of genomic stability after DNA damage. There are diverse clues showing H3K36me3 participates in DNA damage response by directly recruiting DNA repair machinery to set the chromatin at a “ready” status, leading to a quick response upon damage. Reduced H3K36me3 is associated with low DNA repair efficiency. This review will also place a main emphasis on the H3K36me3-mediated DNA damage repair in the tumorigenesis of the newly found oncohistone mutant tumors. Gaining an understanding of different aspects of H3K36me3 in DNA damage repair, especially in cancers, would share the knowledge of chromatin and DNA repair to serve to the drug discovery and patient care.
Collapse
Affiliation(s)
- Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongfei Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
22
|
Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76:2899-2916. [PMID: 31147750 PMCID: PMC11105573 DOI: 10.1007/s00018-019-03144-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|