1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
JIANG B, GAO B, WEI S, LIANG Z, ZHANG L, ZHANG Y. [Progress in enrichment methods for protein N-phosphorylation]. Se Pu 2024; 42:623-631. [PMID: 38966971 PMCID: PMC11224942 DOI: 10.3724/sp.j.1123.2024.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Indexed: 07/06/2024] Open
Abstract
Protein phosphorylation is one of the most common and important post-translational modifications that regulates almost all life processes. In particular, protein phosphorylation regulates the development of major diseases such as tumors, neurodegenerative diseases, and diabetes. For example, excessive phosphorylation of Tau protein can cause neurofibrillary tangles, leading to Alzheimer's disease. Therefore, large-scale methods for identifying protein phosphorylation must be developed. Rapid developmentin efficient enrichment methods and biological mass spectrometry technologies have enabled the large-scale identification of low-abundance protein O-phosphorylation modifications in, allowing for a more thorough study of their biological functions. The N-phosphorylation modifications that occur on the side-chain amino groups of histidine, arginine, and lysine have recently received increased attention. For example, the biological function of histidine phosphorylation in prokaryotes has been well studied; this type of modification regulates signal transduction and sugar metabolism. Two mammalian pHis kinases (NME1 and NME2) and three pHis phosphatases (PHPT1, LHPP, and PGAM5) have been successfully identified using various biological methods. N-Phosphorylation is involved in multiple biological processes, and its functions cannot be ignored. However, N-phosphorylation is unstable under acidic and thermal conditions owing to the poor chemical stability of the P-N bond. Unfortunately, the current O-phosphorylation enrichment method, which relies on acidic conditions, is unsuitable for N-phosphorylation enrichment, resulting in a serious lag in the large-scale identification of protein N-phosphorylation. The lack of enrichment methods has also seriously hindered studies on the biological functions of N-phosphorylation. Therefore, the development of efficient enrichment methods that target protein N-phosphorylation is an urgent undertaking. Research on N-phosphorylation proteome enrichment methods is limited, hindering functional research. Thus, summarizing such methods is necessary to promote further functional research. This article introduces the structural characteristics and reported biological functions of protein N-phosphorylation, reviews the protein N-phosphorylation modification enrichment methods developed over the past two decades, and analyzes the advantages and disadvantages of each method. In this study, both antibody-based and nonantibody-dependent methods are described in detail. Owing to the stability of the molecular structure of histidine, the antibody method is currently limited to histidine phosphorylation enrichment research. Future studies will focus on the development of new enrichment ligands. Moreover, research on ligands will promote studies on other nonconventional phosphorylation targets, such as two acyl-phosphates (pAsp, pGlu) and S-phosphate (pCys). In summary, this review provides a detailed analysis of the history and development directions of N-phosphorylation enrichment methods.
Collapse
|
3
|
DeMarco AG, Hall MC. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates. Molecules 2023; 28:3675. [PMID: 37175085 PMCID: PMC10180314 DOI: 10.3390/molecules28093675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Protein phosphorylation is a ubiquitous post-translational modification controlled by the opposing activities of protein kinases and phosphatases, which regulate diverse biological processes in all kingdoms of life. One of the key challenges to a complete understanding of phosphoregulatory networks is the unambiguous identification of kinase and phosphatase substrates. Liquid chromatography-coupled mass spectrometry (LC-MS/MS) and associated phosphoproteomic tools enable global surveys of phosphoproteome changes in response to signaling events or perturbation of phosphoregulatory network components. Despite the power of LC-MS/MS, it is still challenging to directly link kinases and phosphatases to specific substrate phosphorylation sites in many experiments. Here, we survey common LC-MS/MS-based phosphoproteomic workflows for identifying protein kinase and phosphatase substrates, noting key advantages and limitations of each. We conclude by discussing the value of inducible degradation technologies coupled with phosphoproteomics as a new approach that overcomes some limitations of current methods for substrate identification of kinases, phosphatases, and other regulatory enzymes.
Collapse
Affiliation(s)
- Andrew G. DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Finicle B, Eckenstein K, Revenko A, Anderson B, Wan W, McCracken A, Gil D, Fruman D, Hanessian S, Seth P, Edinger A. Simultaneous inhibition of endocytic recycling and lysosomal fusion sensitizes cells and tissues to oligonucleotide therapeutics. Nucleic Acids Res 2023; 51:1583-1599. [PMID: 36727438 PMCID: PMC9976930 DOI: 10.1093/nar/gkad023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of oligonucleotides in extrahepatic tissues.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Kazumi H Eckenstein
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | | | | | - W Brad Wan
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | | | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Huang H, Drici L, Lassen PS, Palmisano G, Larsen MR. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells. J Proteomics 2023; 273:104796. [PMID: 36538968 DOI: 10.1016/j.jprot.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic β-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in β-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated β-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Lylia Drici
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Pernille S Lassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Departament of Parasitology, Institute of Biomedical Sciences - University of São Paulo, Avenida Prof. Lineu Prestes, 1374 - Edifício Biomédicas II, Cidade Universitária "Armando Salles Oliveira" - CEP, 05508-000 São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
6
|
Fass DM, Lewis MC, Ahmad R, Szucs MJ, Zhang Q, Fleishman M, Wang D, Kim MJ, Biag J, Carr SA, Scolnick EM, Premont RT, Haggarty SJ. Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. Mol Psychiatry 2022; 27:3272-3285. [PMID: 35505090 PMCID: PMC9630168 DOI: 10.1038/s41380-022-01557-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Despite tremendous effort, the molecular and cellular basis of cognitive deficits in schizophrenia remain poorly understood. Recent progress in elucidating the genetic architecture of schizophrenia has highlighted the association of multiple loci and rare variants that may impact susceptibility. One key example, given their potential etiopathogenic and therapeutic relevance, is a set of genes that encode proteins that regulate excitatory glutamatergic synapses in brain. A critical next step is to delineate specifically how such genetic variation impacts synaptic plasticity and to determine if and how the encoded proteins interact biochemically with one another to control cognitive function in a convergent manner. Towards this goal, here we study the roles of GPCR-kinase interacting protein 1 (GIT1), a synaptic scaffolding and signaling protein with damaging coding variants found in schizophrenia patients, as well as copy number variants found in patients with neurodevelopmental disorders. We generated conditional neural-selective GIT1 knockout mice and found that these mice have deficits in fear conditioning memory recall and spatial memory, as well as reduced cortical neuron dendritic spine density. Using global quantitative phospho-proteomics, we revealed that GIT1 deletion in brain perturbs specific networks of GIT1-interacting synaptic proteins. Importantly, several schizophrenia and neurodevelopmental disorder risk genes are present within these networks. We propose that GIT1 regulates the phosphorylation of a network of synaptic proteins and other critical regulators of neuroplasticity, and that perturbation of these networks may contribute specifically to cognitive deficits observed in schizophrenia and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Michael C. Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Sage Therapeutics, Cambridge, MA, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Wyss Institute at Harvard University, Boston, MA, USA
| | - Matthew J. Szucs
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Myung Jong Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan Biag
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Edward M. Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Richard T. Premont
- Harrington Discovery Institute, Cleveland, OH, 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
7
|
Gao R, Li X, Gao H, Zhao K, Liu X, Liu J, Wang Q, Zhu Y, Chen H, Xiang S, Zhan Y, Yin R, Yu M, Ning H, Yang X, Li C. Protein phosphatase 2A catalytic subunit β suppresses PMA/ionomycin-induced T-cell activation by negatively regulating PI3K/Akt signaling. FEBS J 2022; 289:4518-4535. [PMID: 35068054 DOI: 10.1111/febs.16370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The precise regulation of the T-cell activation process is critical for overall immune homeostasis. Although protein phosphatase 2A (PP2A) is required for T-cell development and function, the role of PPP2CB, which is the catalytic subunit β isoform of PP2A, remains unknown. In the present study, using a T cell-specific knockout mouse of PPP2CB (PPP2CBfl/fl Lck-Cre+ ), we demonstrated that PPP2CB was dispensable for T-cell development in the thymus and peripheral lymphoid organs. Furthermore, PPP2CB deletion did not affect T-cell receptor (TCR)-induced T-cell activation or cytokine-induced T-cell responses; however, it specifically enhanced phorbol myristate acetate (PMA) plus ionomycin-induced T-cell activation with increased cellular proliferation, elevated CD69 and CD25 expression, and enhanced cytokine production (inteferon-γ, interleukin-2 and tumor necrosis factor). Mechanistic analyses suggested that the PPP2CB deletion enhanced activation of the phosphoinositide 3-kinase/Akt signaling pathway and Ca2+ flux following stimulation with PMA plus ionomycin. Moreover, the specific PI3K inhibitor rescued the augmented cell activation in PPP2CB-deficient T cells. Using mass spectrometry-based phospho-peptide analysis, we identified potential substrates of PPP2CB during PMA plus ionomycin-induced T-cell activation. Collectively, our study provides evidence of the specific role of PPP2CB in controlling PMA plus ionomycin-induced T-cell activation.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xin Li
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Qi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaxin Zhu
- School of Life Sciences, Hebei University, Baoding, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| |
Collapse
|
8
|
Jayashankar V, Selwan E, Hancock SE, Verlande A, Goodson MO, Eckenstein KH, Milinkeviciute G, Hoover BM, Chen B, Fleischman AG, Cramer KS, Hanessian S, Masri S, Turner N, Edinger AL. Drug-like sphingolipid SH-BC-893 opposes ceramide-induced mitochondrial fission and corrects diet-induced obesity. EMBO Mol Med 2021; 13:e13086. [PMID: 34231322 PMCID: PMC8350895 DOI: 10.15252/emmm.202013086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ceramide-induced mitochondrial fission drives high-fat diet (HFD)-induced obesity. However, molecules targeting mitochondrial dynamics have shown limited benefits in murine obesity models. Here, we reveal that these compounds are either unable to block ceramide-induced mitochondrial fission or require extended incubation periods to be effective. In contrast, targeting endolysosomal trafficking events important for mitochondrial fission rapidly and robustly prevented ceramide-induced disruptions in mitochondrial form and function. By simultaneously inhibiting ARF6- and PIKfyve-dependent trafficking events, the synthetic sphingolipid SH-BC-893 blocked palmitate- and ceramide-induced mitochondrial fission, preserved mitochondrial function, and prevented ER stress in vitro. Similar benefits were observed in the tissues of HFD-fed mice. Within 4 h of oral administration, SH-BC-893 normalized mitochondrial morphology in the livers and brains of HFD-fed mice, improved mitochondrial function in white adipose tissue, and corrected aberrant plasma leptin and adiponectin levels. As an interventional agent, SH-BC-893 restored normal body weight, glucose disposal, and hepatic lipid levels in mice consuming a HFD. In sum, the sphingolipid analog SH-BC-893 robustly and acutely blocks ceramide-induced mitochondrial dysfunction, correcting diet-induced obesity and its metabolic sequelae.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Elizabeth Selwan
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Sarah E Hancock
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Amandine Verlande
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Maggie O Goodson
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Kazumi H Eckenstein
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | | | - Brianna M Hoover
- Division of Hematology/OncologyDepartment of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Bin Chen
- Department of ChemistryUniversité de MontréalMontréalQCCanada
| | - Angela G Fleischman
- Division of Hematology/OncologyDepartment of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Karina S Cramer
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCAUSA
| | | | - Selma Masri
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Nigel Turner
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Aimee L Edinger
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
9
|
Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells. Expert Rev Proteomics 2021; 18:661-674. [PMID: 34468274 PMCID: PMC8628306 DOI: 10.1080/14789450.2021.1976152] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many pathologies, including cancer, have been associated with aberrant phosphorylation-mediated signaling networks that drive altered cell proliferation, migration, metabolic regulation, and can lead to systemic inflammation. Phosphoproteomics, the large-scale analysis of protein phosphorylation sites, has emerged as a powerful tool to define signaling network regulation and dysregulation in normal and pathological conditions. AREAS COVERED We provide an overview of methodology for global phosphoproteomics as well as enrichment of specific subsets of the phosphoproteome, including phosphotyrosine and phospho-motif enrichment of kinase substrates. We review quantitative methods, advantages and limitations of different mass spectrometry acquisition formats, and computational approaches to extract biological insight from phosphoproteomics data. Throughout, we discuss various applications and their challenges in implementation. EXPERT OPINION Over the past 20 years the field of phosphoproteomics has advanced to enable deep biological and clinical insight through the quantitative analysis of signaling networks. Future areas of development include Clinical Laboratory Improvement Amendments (CLIA)-approved methods for analysis of clinical samples, continued improvements in sensitivity to enable analysis of small numbers of rare cells and tissue microarrays, and computational methods to integrate data resulting from multiple systems-level quantitative analytical methods.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| |
Collapse
|
10
|
Chelius C, Huso W, Reese S, Doan A, Lincoln S, Lawson K, Tran B, Purohit R, Glaros T, Srivastava R, Harris SD, Marten MR. Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans. Mol Cell Proteomics 2020; 19:1310-1329. [PMID: 32430394 PMCID: PMC8014999 DOI: 10.1074/mcp.ra119.001769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a β-glucan synthase inhibitor (micafungin) was added to a growing A. nidulans shake-flask culture. From this flask, transcriptomic and phosphoproteomic data were acquired over 10 and 120 min, respectively. To differentiate statistically-significant dynamic behavior from noise, a multivariate adaptive regression splines (MARS) model was applied to both data sets. Over 1800 genes were dynamically expressed and over 700 phosphorylation sites had changing phosphorylation levels upon micafungin exposure. Twelve kinases had altered phosphorylation and phenotypic profiling of all non-essential kinase deletion mutants revealed putative connections between PrkA, Hk-8-4, and Stk19 and the CWIS pathway. Our collective data implicate actin regulation, endocytosis, and septum formation as critical cellular processes responding to activation of the CWIS pathway, and connections between CWIS and calcium, HOG, and SIN signaling pathways.
Collapse
Affiliation(s)
- Cynthia Chelius
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Walker Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Samantha Reese
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexander Doan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen Lincoln
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Kelsi Lawson
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Bao Tran
- BioScience Mass Spectrometry Facility, The U.S. Army CCDC Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Maryland, USA
| | - Raj Purohit
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Trevor Glaros
- BioSciences Division, B11 Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Steven D Harris
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Synthetic Sphingolipids with 1,2-Pyridazine Appendages Improve Antiproliferative Activity in Human Cancer Cell Lines. ACS Med Chem Lett 2020; 11:686-690. [PMID: 32435371 PMCID: PMC7236038 DOI: 10.1021/acsmedchemlett.9b00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
A synthetic sphingolipid related to a ring-constrained hydroxymethyl pyrrolidine analog of FTY720 that was known to starve cancer cells to death was chemically modified to include a series of alkoxy-tethered 3,6-substituted 1,2-pyridazines. These derivatives exhibited excellent antiproliferative activity against eight human cancer cell lines from four different cancer types. A 2.5- to 9-fold reduction in IC50 in these cell lines was observed relative to the lead compound, which lacked the appended heterocycle.
Collapse
|
12
|
Valdés A, Zhao H, Pettersson U, Lind SB. Phosphorylation Time-Course Study of the Response during Adenovirus Type 2 Infection. Proteomics 2020; 20:e1900327. [PMID: 32032466 DOI: 10.1002/pmic.201900327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Indexed: 12/31/2022]
Abstract
PTMs such as phosphorylations are usually involved in signal transduction pathways. To investigate the temporal dynamics of phosphoproteome changes upon viral infection, a model system of IMR-90 cells infected with human adenovirus type 2 (Ad2) is used in a time-course quantitative analysis combining titanium dioxide (TiO2 ) particle enrichment and SILAC-MS. Quantitative data from 1552 phosphorylated sites clustered the highly altered phosphorylated sites to the signaling by rho family GTPases, the actin cytoskeleton signaling, and the cAMP-dependent protein kinase A signaling pathways. Their activation is especially pronounced at early time post-infection. Changes of several phosphorylated sites involved in the glycolysis pathway, related to the activation of the Warburg effect, point at virus-induced energy production. For Ad2 proteins, 32 novel phosphorylation sites are identified and as many as 52 phosphorylated sites on 17 different Ad2 proteins are quantified, most of them at late time post-infection. Kinase predictions highlighted activation of PKA, CDK1/2, MAPK, and CKII. Overlaps of kinase motif sequences for viral and human proteins are observed, stressing the importance of phosphorylation during Ad2 infection.
Collapse
Affiliation(s)
- Alberto Valdés
- Section of Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, 751 24, Sweden.,Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Hongxing Zhao
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Ulf Pettersson
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Sara Bergström Lind
- Section of Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, 751 24, Sweden
| |
Collapse
|
13
|
Design, synthesis and anticancer activity of constrained sphingolipid-phenoxazine/phenothiazine hybrid constructs targeting protein phosphatase 2A. Bioorg Med Chem Lett 2019; 29:2681-2685. [PMID: 31383588 DOI: 10.1016/j.bmcl.2019.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Inspired by the cytotoxicity of perphenazine toward cancer cells and its ability to activate the serine/threonine protein phosphatase 2A (PP2A), we prepared series of ether-carbon linked analogs of a constrained synthetic sphingolipid analog 3, known for its cytotoxicity, nutrient transporter down-regulation and vacuolation properties, incorporating the tricyclic neuroleptics phenoxazine and phenothiazine to represent hybrid structures with possible synergistic cytotoxic activity. While the original activity of the lead compound 3 was diminished by fusion with the phenoxazine or phenothiazine tethered moieties, the corresponding 3-pyridyltetryl ether analog 10 showed cytotoxicity and nutrient transporter down-regulation similar to the lead compound 3, although it separated these PP2A-dependent phenotypes from that of vacuolation.
Collapse
|
14
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|