1
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
2
|
Mrówczyńska E, Mazur AJ. Integrin-Linked Kinase (ILK) Plays an Important Role in the Laminin-Dependent Development of Dorsal Root Ganglia during Chicken Embryogenesis. Cells 2021; 10:cells10071666. [PMID: 34359835 PMCID: PMC8304069 DOI: 10.3390/cells10071666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Integrin-linked kinase (ILK) is mainly localized in focal adhesions where it interacts and modulates the downstream signaling of integrins affecting cell migration, adhesion, and survival. The interaction of dorsal root ganglia (DRG) cells, being part of the peripheral nervous system (PNS), with the extracellular matrix (ECM) via integrins is crucial for proper PNS development. A few studies have focused on ILK’s role in PNS development, but none of these have focused on chicken. Therefore, we decided to investigate ILK’s role in the development of Gallus gallus domesticus’s DRG. First, using RT-PCR, Western blotting, and in situ hybridization, we show that ILK is expressed in DRG. Next, by immunocytochemistry, we show ILK’s localization both intracellularly and on the cell membrane of DRG neurons and Schwann cell precursors (SCPs). Finally, we describe ILK’s involvement in multiple aspects of DRG development by performing functional experiments in vitro. IgG-mediated interruption of ILK’s action improved DRG neurite outgrowth, modulated their directionality, stimulated SCPs migration, and impacted growth cone morphology in the presence of laminin-1 or laminin-1 mimicking peptide IKVAV. Taken together, our results show that ILK is important for chicken PNS development, probably via its exposure to the ECM.
Collapse
Affiliation(s)
- Ewa Mrówczyńska
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| | - Antonina Joanna Mazur
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| |
Collapse
|
3
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
4
|
Bulgakova NA, Wellmann J, Brown NH. Diverse integrin adhesion stoichiometries caused by varied actomyosin activity. Open Biol 2018; 7:rsob.160250. [PMID: 28446705 PMCID: PMC5413901 DOI: 10.1098/rsob.160250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
Cells in an organism are subjected to numerous sources of external and internal forces, and are able to sense and respond to these forces. Integrin-mediated adhesion links the extracellular matrix outside cells to the cytoskeleton inside, and participates in sensing, transmitting and responding to forces. While integrin adhesion rapidly adapts to changes in forces in isolated migrating cells, it is not known whether similar or more complex responses occur within intact, developing tissues. Here, we studied changes in integrin adhesion composition upon different contractility conditions in Drosophila embryonic muscles. We discovered that all integrin adhesion components tested were still present at muscle attachment sites (MASs) when either cytoplasmic or muscle myosin II was genetically removed, suggesting a primary role of a developmental programme in the initial assembly of integrin adhesions. Contractility does, however, increase the levels of integrin adhesion components, suggesting a mechanism to balance the strength of muscle attachment to the force of muscle contraction. Perturbing contractility in distinct ways, by genetic removal of either cytoplasmic or muscle myosin II or eliminating muscle innervation, each caused unique alterations to the stoichiometry at MASs. This suggests that different integrin-associated proteins are added to counteract different kinds of force increase.
Collapse
Affiliation(s)
- Natalia A Bulgakova
- Department of Physiology, Development and Neuroscience and The Gurdon Institute, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jutta Wellmann
- Department of Physiology, Development and Neuroscience and The Gurdon Institute, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience and The Gurdon Institute, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
5
|
Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2015:748470. [PMID: 26788505 PMCID: PMC4695646 DOI: 10.1155/2015/748470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/28/2023]
Abstract
Our previous study reported that muscle cell enhancement factor 2C (MEF2C) was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK) in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.
Collapse
|
6
|
Wu H, Ren Y, Pan W, Dong Z, Cang M, Liu D. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells. Cell Biol Int 2015; 39:1264-73. [PMID: 26041412 DOI: 10.1002/cbin.10499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/30/2015] [Indexed: 12/21/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs.
Collapse
Affiliation(s)
- Haiqing Wu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, China
| | - Yu Ren
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, China
| | - Wei Pan
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, China
| | - Zhenguo Dong
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, China
| | - Ming Cang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, China
| | - Dongjun Liu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, China
| |
Collapse
|
7
|
Shishido S, Bönig H, Kim YM. Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 2014; 4:99. [PMID: 24904821 PMCID: PMC4033044 DOI: 10.3389/fonc.2014.00099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant problem, resulting in poor responsiveness to first-line treatment or relapse after transient remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not play a very significant role. By contrast, the molecular interactions between microenvironment and leukemia cells are often neglected in the design of novel therapies against drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells, also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to chemotherapy results in persistence of resistant clones with or without detectable minimal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain elusive. Specifically, studies using anti-functional antibodies and genetic models have identified integrin alpha4 as a critical molecule regulating BM homing and active retention of normal and leukemic cells. Pre-clinical evidence has been provided that interference with alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facilitate eradication of ALL cells in an MRD setting. To this end, Andreeff and colleagues recently provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We here review the available evidence supporting the targeting of alpha4 as a novel strategy for treatment of drug resistant leukemia.
Collapse
Affiliation(s)
- Stephanie Shishido
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University , Frankfurt , Germany
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
8
|
Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, Lemak A, Bultsma Y, Houliston S, Schwarzer D, Divecha N, Arrowsmith CH, Fischle W. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54:905-919. [PMID: 24813945 DOI: 10.1016/j.molcel.2014.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stefan Winter
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Alexander Lemak
- Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Yvette Bultsma
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Nullin Divecha
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Specificity and Commonality of the Phosphoinositide-Binding Proteome Analyzed by Quantitative Mass Spectrometry. Cell Rep 2014; 6:578-91. [DOI: 10.1016/j.celrep.2013.12.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 12/03/2013] [Accepted: 12/26/2013] [Indexed: 01/03/2023] Open
|
10
|
Best MD. Global approaches for the elucidation of phosphoinositide-binding proteins. Chem Phys Lipids 2013; 182:19-28. [PMID: 24220499 DOI: 10.1016/j.chemphyslip.2013.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/13/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022]
Abstract
Phosphoinositide lipids (PIPns) control numerous critical biological pathways, typically through the regulation of protein function driven by non-covalent protein-lipid binding interactions. Despite the importance of these systems, the unraveling of the full scope of protein-PIPn interactions has represented a significant challenge due to the massive complexity associated with these events, including the large number of diverse proteins that bind to these lipids, variations in the mechanisms by which proteins bind to lipids, and the presence of multiple distinct PIPn isomers. As a result of this complexity, global methods in which numerous proteins that bind PIPns can be identified and characterized simultaneously from complex samples, which have been enabled by key technological advancements, have become popular as an efficient means for tackling this challenge. This review article provides an overview of advancements in large-scale methods for profiling protein-PIPn binding, including experimental methods, such as affinity enrichment, microarray analysis and activity-based protein profiling, as well as computational methods, and combined computational/experimental efforts.
Collapse
Affiliation(s)
- Michael D Best
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, United States.
| |
Collapse
|
11
|
Catimel B, Kapp E, Yin MX, Gregory M, Wong LSM, Condron M, Church N, Kershaw N, Holmes AB, Burgess AW. The PI(3)P interactome from a colon cancer cell. J Proteomics 2013; 82:35-51. [DOI: 10.1016/j.jprot.2013.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/21/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
|
12
|
Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 2012; 24:569-81. [DOI: 10.1016/j.ceb.2012.06.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/12/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
|
13
|
Wymann MP, Schultz C. The chemical biology of phosphoinositide 3-kinases. Chembiochem 2012; 13:2022-35. [PMID: 22965647 DOI: 10.1002/cbic.201200089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 07/13/2012] [Indexed: 01/14/2023]
Abstract
Since its discovery in the late 1980s, phosphoinositide 3-kinase (PI3K), and its isoforms have arguably reached the forefront of signal transduction research. Regulation of this lipid kinase, its functions, its effectors, in short its entire signaling network, has been extensively studied. PI3K inhibitors are frequently used in biochemistry and cell biology. In addition, many pharmaceutical companies have launched drug-discovery programs to identify modulators of PI3Ks. Despite these efforts and a fairly good knowledge of the PI3K signaling network, we still have only a rudimentary picture of the signaling dynamics of PI3K and its lipid products in space and time. It is therefore essential to create and use novel biological and chemical tools to manipulate the phosphoinositide signaling network with spatial and temporal resolution. In this review, we discuss the current and potential future tools that are available and necessary to unravel the various functions of PI3K and its isoforms.
Collapse
Affiliation(s)
- Matthias P Wymann
- Institute of Biochemistry & Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | |
Collapse
|
14
|
Abstract
Traditionally, proteomics is the high-throughput characterization of the global complement of proteins in a biological system using cutting-edge technologies (robotics and mass spectrometry) and bioinformatics tools (Internet-based search engines and databases). As the field of proteomics has matured, a diverse range of strategies have evolved to answer specific problems. Chemical proteomics is one such direction that provides the means to enrich and detect less abundant proteins (the 'hidden' proteome) from complex mixtures of wide dynamic range (the 'deep' proteome). In pharmacology, chemical proteomics has been utilized to determine the specificity of drugs and their analogues, for anticipated known targets, only to discover other proteins that bind and could account for side effects observed in preclinical and clinical trials. As a consequence, chemical proteomics provides a valuable accessory in refinement of second- and third-generation drug design for treatment of many diseases. However, determining definitive affinity capture of proteins by a drug immobilized on soft gel chromatography matrices has highlighted some of the challenges that remain to be addressed. Examples of the different strategies that have emerged using well-established drugs against pharmaceutically important enzymes, such as protein kinases, metalloproteases, PDEs, cytochrome P450s, etc., indicate the potential opportunity to employ chemical proteomics as an early-stage screening approach in the identification of new targets.
Collapse
Affiliation(s)
- Chris W Sutton
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, West Yorkshire, UK.
| |
Collapse
|
15
|
Rowland MM, Gong D, Bostic HE, Lucas N, Cho W, Best MD. Microarray analysis of Akt PH domain binding employing synthetic biotinylated analogs of all seven phosphoinositide headgroup isomers. Chem Phys Lipids 2011; 165:207-15. [PMID: 22178158 DOI: 10.1016/j.chemphyslip.2011.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
Abstract
Signaling lipids control many of the most important biological pathways, typically by recruiting cognate protein binding targets to cell surfaces, thereby regulating both their function and subcellular localization. A critical family of signaling lipids is that of the phosphatidylinositol polyphosphates (PIP(n)s), which is composed of seven isomers that vary based on phosphorylation pattern. A key protein that is activated upon PIP(n) binding is Akt, which then plays important roles in regulating the cell cycle, and is thus aberrant in disease. Characterization of protein-PIP(n) binding interactions is hindered by the complexity of the membrane environment and of the PIP(n) structures. Herein, we describe two rapid assays of use for characterizing protein-PIP(n) binding interactions. First, a microplate-based binding assay was devised to characterize the binding of effectors to immobilized synthetic PIP(n) headgroup-biotin conjugates corresponding to all seven isomers. The assay was implemented for simultaneous analysis of Akt-PH domain, indicating PI(3,4,5)P(3) and PI(3,4)P(2) as the primary ligands. In addition, density-dependant studies indicated that the amount of ligand immobilized on the surface affected the amplitude of protein binding, but not the affinity, for Akt-PH. Since the PIP(n) ligand motifs used in this analysis lack the membrane environment and glycerolipid backbone, yet still exhibit high-affinity protein binding, these results narrow down the structural requirements for Akt recognition. Additionally, binding detection was also achieved through microarray analysis via the robotic pin printing of ligands onto glass slides in a miniaturized format. Here, fluorescence-based detection provided sensitive detection of binding using minimal amounts of materials. Due to their high-throughput and versatile attributes, these assays provide invaluable tools for probing and perturbing protein-membrane binding interactions.
Collapse
Affiliation(s)
- Meng M Rowland
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, United States
| | | | | | | | | | | |
Collapse
|
16
|
Wehrle-Haller B. Structure and function of focal adhesions. Curr Opin Cell Biol 2011; 24:116-24. [PMID: 22138388 DOI: 10.1016/j.ceb.2011.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/17/2023]
Abstract
Integrin-dependent cell adhesions come in different shapes and serve in different cell types for tasks ranging from cell-adhesion, migration, and the remodeling of the extracellular matrix to the formation and stabilization of immunological and chemical synapses. A major challenge consists in the identification of adhesion-specific as well as common regulatory mechanisms, motivating the need for a deeper analysis of protein-protein interactions in the context of intact focal adhesions. Specifically, it is critical to understand how small differences in binding of integrins to extracellular ligands and/or cytoplasmic adapter proteins affect the assembly and function of an entire focal adhesion. By using the talin-integrin pair as a starting point, I would like to discuss how specific protein-protein and protein-lipid interactions can control the behavior and function of focal adhesions. By responding to chemical and mechanical cues several allosterically regulated proteins create a dynamic multifunctional protein network that provides both adhesion to the extracellular matrix as well as intracellular signaling in response to mechanical changes in the cellular environment.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- University of Geneva, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1. Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
17
|
Rowland MM, Bostic HE, Gong D, Speers AE, Lucas N, Cho W, Cravatt BF, Best MD. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 2011; 50:11143-61. [PMID: 22074223 DOI: 10.1021/bi201636s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P₃-binding proteins.
Collapse
Affiliation(s)
- Meng M Rowland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Integrin-linked kinase (ILK) is a highly evolutionarily conserved intracellular protein that was originally identified as an integrin-interacting protein, and extensive genetic and biochemical studies have shown that ILK expression is vital during both embryonic development and tissue homeostasis. At the cellular and tissue levels, ILK regulates signaling pathways for cell adhesion-mediated cell survival (anoikis), apoptosis, proliferation and mitosis, migration, invasion, and vascularization and tumor angiogenesis. ILK also has central roles in cardiac and smooth-muscle contractility, and ILK dysregulation causes cardiomyopathies in humans. ILK protein levels are increased in several human cancers and often the expression level predicts poor patient outcome. Abundant evidence has accumulated suggesting that, of the diverse functions of ILK, some may require kinase activity whereas others depend on protein-protein interactions and are, therefore, independent of kinase activity. However, the past several years have seen an ongoing debate about whether ILK indeed functions as a protein serine/threonine kinase. This debate centers on the atypical protein kinase domain of ILK, which lacks some amino-acid residues thought to be essential for phosphotransferase activity. However, similar deficiencies are present in the catalytic domains of other kinases now known to possess protein kinase activity. Numerous studies have shown that ILK phosphorylates peptide substrates in vitro, corresponding to ILK-mediated phosphorylations in intact cells, and a recent report characterizing in vitro phosphotransferase activity of highly purified, full-length ILK, accompanied by detailed enzyme kinetic analyses, shows that, at least in vitro, ILK is a bona fide protein kinase. However, several genetic studies suggest that, not all biological functions of ILK require kinase activity, and that it can function as an adaptor/scaffold protein. Here, we review evidence for and against ILK being an active kinase, and provide a framework for strategies to further analyze the kinase and adaptor functions of ILK in different cellular contexts.
Collapse
|
19
|
Faralli JA, Newman JR, Sheibani N, Dedhar S, Peters DM. Integrin-linked kinase regulates integrin signaling in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011; 52:1684-92. [PMID: 21071740 DOI: 10.1167/iovs.10-6397] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether integrin-linked kinase (ILK) controls the organization of the actin cytoskeleton in the trabecular meshwork (TM) by regulating integrin co-signaling. METHODS The cell binding domain and the Heparin II (Hep II) domain of fibronectin were used to activate α5β1 and α4β1 integrin signaling, respectively, in differentiated human TM (HTM) cells. The role of ILK was determined using either ILK small interfering RNA (siRNA) to knockout ILK expression or the ILK inhibitors, KP392 and QLT0267. The knockdown of ILK expression was verified by Western blot analysis. The presence of actin stress fibers and focal adhesions was determined by labeling cultures with phalloidin and anti-talin or ILK antibodies, respectively. RESULTS Cell spreading in differentiated HTM cells required ILK, since ILK siRNA and the ILK inhibitors significantly reduced cell spreading, actin polymerization, and the localization of talin and ILK in focal adhesions (FAs). Both cell spreading and the localization of talin and ILK to FAs in differentiated HTM cells could be rescued by inducing α4β1 integrin signaling with a recombinant Hep II domain of fibronectin, even though α4β1 integrins were not found in FAs. In the absence of ILK inhibition, the Hep II domain had minimal effect on α5β1 integrin-mediated spreading. CONCLUSIONS This study suggests that cooperative α5β1/α4β1 integrin signaling may be regulated by ILK trans-dominantly and that alterations in ILK activity may affect actin cytoskeleton organization and contractility in the TM.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
20
|
Dixon MJ, Gray A, Boisvert FM, Agacan M, Morrice NA, Gourlay R, Leslie NR, Downes CP, Batty IH. A screen for novel phosphoinositide 3-kinase effector proteins. Mol Cell Proteomics 2011; 10:M110.003178. [PMID: 21263009 DOI: 10.1074/mcp.m110.003178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets for PtdIns(3,4)P(2) have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P(2). A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P(2) selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain.
Collapse
Affiliation(s)
- Miles J Dixon
- The Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J 2009; 29:281-91. [PMID: 20033063 DOI: 10.1038/emboj.2009.376] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/23/2009] [Indexed: 12/29/2022] Open
Abstract
Dynamic interactions of cells with their environment regulate multiple aspects of tissue morphogenesis and function. Integrins are the major class of cell surface receptors that recognize and bind extracellular matrix proteins, resulting in the engagement and organization of the cytoskeleton as well as activation of signalling pathways to regulate cell behaviour and morphogenetic processes. The ternary complex of integrin-linked kinase (ILK), PINCH, and parvin (IPP complex), which was identified more than a decade ago, interacts with the cytoplasmic tail of beta integrins and couples them to the actin cytoskeleton. In addition, ILK has been shown to act as a serine/threonine kinase and to directly activate several signalling pathways downstream of integrins. However, the kinase activity of ILK and the precise functions of the IPP complex have remained elusive and controversial. This review focuses on the recent advances made towards understanding the specialized roles this complex and its individual components have acquired during evolution.
Collapse
|
23
|
How ILK and kindlins cooperate to orchestrate integrin signaling. Curr Opin Cell Biol 2009; 21:670-5. [DOI: 10.1016/j.ceb.2009.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 12/18/2022]
|
24
|
Bantscheff M, Scholten A, Heck AJR. Revealing promiscuous drug-target interactions by chemical proteomics. Drug Discov Today 2009; 14:1021-9. [PMID: 19596079 DOI: 10.1016/j.drudis.2009.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/22/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
The (poly-)pharmacological activities of a drug can only be understood if its interactions with cellular components are comprehensively characterized. Mass spectrometry-based chemical proteomics approaches have recently emerged as powerful tools for the characterization of drug-target interactions in samples from cell lines and tissues. At the same time, off-target activities can be identified. This information can contribute toward optimization of candidate drug molecules and reduction of side effects. In this review, we describe recent advances in chemical proteomics and outline potential applications in drug discovery.
Collapse
|
25
|
Catimel B, Yin MX, Schieber C, Condron M, Patsiouras H, Catimel J, Robinson DEJE, Wong LSM, Nice EC, Holmes AB, Burgess AW. PI(3,4,5)P3 Interactome. J Proteome Res 2009; 8:3712-26. [DOI: 10.1021/pr900320a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Meng-Xin Yin
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Schieber
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melanie Condron
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Heather Patsiouras
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Diane E. J. E. Robinson
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Leon S.-M. Wong
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edouard C. Nice
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew B. Holmes
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Antony W. Burgess
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R, Manevich Y, Beeson C, Neumann CA. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 2009; 28:1505-17. [PMID: 19369943 PMCID: PMC2688529 DOI: 10.1038/emboj.2009.101] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 03/20/2009] [Indexed: 01/12/2023] Open
Abstract
It is widely accepted that reactive oxygen species (ROS) promote tumorigenesis. However, the exact mechanisms are still unclear. As mice lacking the peroxidase peroxiredoxin1 (Prdx1) produce more cellular ROS and die prematurely of cancer, they offer an ideal model system to study ROS-induced tumorigenesis. Prdx1 ablation increased the susceptibility to Ras-induced breast cancer. We, therefore, investigated the role of Prdx1 in regulating oncogenic Ras effector pathways. We found Akt hyperactive in fibroblasts and mammary epithelial cells lacking Prdx1. Investigating the nature of such elevated Akt activation established a novel role for Prdx1 as a safeguard for the lipid phosphatase activity of PTEN, which is essential for its tumour suppressive function. We found binding of the peroxidase Prdx1 to PTEN essential for protecting PTEN from oxidation-induced inactivation. Along those lines, Prdx1 tumour suppression of Ras- or ErbB-2-induced transformation was mediated mainly via PTEN.
Collapse
Affiliation(s)
- Juxiang Cao
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics Medical Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer Schulte
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics Medical Medical University of South Carolina, Charleston, SC, USA
| | | | - Nicholas R Leslie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee, UK
| | - Agnieszka Zagozdzon
- Department of Pathology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yefim Manevich
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics Medical Medical University of South Carolina, Charleston, SC, USA
| | - Craig Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Carola A Neumann
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics Medical Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Ave., MSC-505, Charleston, SC 29425, USA. Tel.: +843 792 8367; Fax: 843 792 2475; E-mail:
| |
Collapse
|
27
|
McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase--essential roles in physiology and cancer biology. J Cell Sci 2008; 121:3121-32. [PMID: 18799788 DOI: 10.1242/jcs.017996] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integrin-linked kinase (ILK) is a multifunctional intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The use of recently developed Cre-lox-driven recombination and RNA-interference technologies has enabled the evaluation of the physiological roles of ILK in several major organ systems. Significant developmental and tissue-homeostasis defects occur when the gene that encodes ILK is deleted, whereas the expression of ILK is often elevated in human malignancies. Although the cause(s) of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration, supporting the concept that ILK is a relevant therapeutic target in human cancer. Furthermore, a global analysis of the ILK 'interactome' has yielded several novel interactions, and has revealed exciting and unexpected cellular functions of ILK that might have important implications for the development of effective therapeutic agents.
Collapse
Affiliation(s)
- Paul C McDonald
- British Columbia Cancer Agency, BC Cancer Research Centre, Department of Cancer Genetics, Vancouver, BC, Canada
| | | | | |
Collapse
|
28
|
Favre N, Camps M, Arod C, Chabert C, Rommel C, Pasquali C. Chemokine receptor CCR2 undergoes transportin1-dependent nuclear translocation. Proteomics 2008; 8:4560-76. [PMID: 18846510 DOI: 10.1002/pmic.200800211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemokines (CCs) are small chemoattractant cytokines involved in a wide variety of biological and pathological processes. Released by cells in the milieu, and extracellular matrix and activating signalling cascades upon binding to specific G protein-coupled receptors (GPCRs), they trigger many cellular events. In various pathologies, CCs are directly responsible for excessive recruitment of leukocytes to inflammatory sites and recent studies using chemokine receptor (CCR) antagonists permitted these molecules to reach the market for medical use. While interaction of CCs with their receptors has been extensively documented, downstream GPCR signalling cascades triggered by CC are less well understood. Given the pivotal role of chemokine receptor 2 (CCR2) in monocyte recruitment, activation and differentiation and its implication in several autoimmune-inflammatory pathologies, we searched for potential new CCR2-interacting proteins by engineering a modified CCR2 that we used as bait. Herein, we show the direct interaction of CCR2 with transportin1 (TRN1), which we demonstrate is followed by CCR2 receptor internalization. Further characterization of this novel interaction revealed that TRN1-binding to CCR2 increased upon time in agonist treated cells and promotes its nuclear translocation in a TRN1-dependent manner. Finally, we provide evidence that following translocation, the receptor localizes at the outer edge of the nuclear envelope where it is finally released from TRN1.
Collapse
|
29
|
Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB. The PI(3,5)P2 and PI(4,5)P2 Interactomes. J Proteome Res 2008; 7:5295-313. [DOI: 10.1021/pr800540h] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Schieber
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melanie Condron
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Heather Patsiouras
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lisa Connolly
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edouard C. Nice
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Antony W. Burgess
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew B. Holmes
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|