1
|
Obaid WA, Madany MMY, Waznah MS, Sonbol H, Aloufi AS, Korany SM, Reyad AM, Ahmed ES, Selim S, AbdElgawad H. Modulation of plant carbon and nitrogen metabolism by novel actinobacteria Rhodospirillum sp. to combat galaxolide toxicity in barley and maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109403. [PMID: 39884151 DOI: 10.1016/j.plaphy.2024.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
The phytotoxic effect of cosmetics such as galaxolide (HHCB) has been investigated, however, their metabolic basis of this impact is still obscure. Thus, we investigated the effect of HHCB on the biomass accumulation, photosynthesis, primary and secondary metabolites in two species from different functional groups i.e., barley (C3) and maize (C4). In addition, the metabolic bases of HHCB stress mitigating impact of the bioactive Rhodospirillum sp. JY3 were investigated. HHCB toxicity on plant growth and physiology was significantly reduced in PGPB treated plants. At metabolism level, sugars levels and metabolic enzymes (e.g., invertase, sucrose synthase, starch synthase) were increased. Consequentially, this provided a route for organic, amino and fatty acids biosynthesis. PGPB further mitigated the phytotoxic impact of HHCB upon the levels of organic acids (e.g., oxalic, citric, succinic, malic and isobutyric acids), amino acids, particularly proline, in addition to unsaturated fatty acids. Furthermore, plant growth-promoting bacteria (PGPB) treatment reduced HHCB toxicity through increasing antioxidant metabolites (e.g., polyamines and anthocyanin), their precursors (e.g., phenylalanine, naringenin, cinnamic and coumaric acids) and their related biosynthetic enzymes such as chalcone synthase and cinnamate-4-hydroxylase. Overall, this study, for the first time, significantly contributes to quenching the environmental hazards and maintaining agriculture sustainability using eco-friendly tools.
Collapse
Affiliation(s)
- Wael A Obaid
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Mahmoud M Y Madany
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Moayad S Waznah
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ahmed Mohamed Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt
| | - Enas S Ahmed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt; Biology Department, College of Science in Zulfi, Majmaah University, 11932, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Wang Y, Qin J, Wei M, Liao X, Shang W, Chen J, Subbarao KV, Hu X. Verticillium dahliae Elicitor VdSP8 Enhances Disease Resistance Through Increasing Lignin Biosynthesis in Cotton. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327679 DOI: 10.1111/pce.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a β-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the β-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengmeng Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiwen Liao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, California, USA
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Wang Y, Liao X, Shang W, Qin J, Xu X, Hu X. The secreted feruloyl esterase of Verticillium dahliae modulates host immunity via degradation of GhDFR. MOLECULAR PLANT PATHOLOGY 2024; 25:e13431. [PMID: 38353627 PMCID: PMC10866084 DOI: 10.1111/mpp.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiwen Liao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wenjing Shang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jun Qin
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East MallingWest MallingUK
| | - Xiaoping Hu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
4
|
Custódio L, Charles G, Magné C, Barba-Espín G, Piqueras A, Hernández JA, Ben Hamed K, Castañeda-Loaiza V, Fernandes E, Rodrigues MJ. Application of In Vitro Plant Tissue Culture Techniques to Halophyte Species: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:126. [PMID: 36616255 PMCID: PMC9824063 DOI: 10.3390/plants12010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Halophytes are plants able to thrive in environments characterized by severe abiotic conditions, including high salinity and high light intensity, drought/flooding, and temperature fluctuations. Several species have ethnomedicinal uses, and some are currently explored as sources of food and cosmetic ingredients. Halophytes are considered important alternative cash crops to be used in sustainable saline production systems, due to their ability to grow in saline conditions where conventional glycophyte crops cannot, such as salt-affected soils and saline irrigation water. In vitro plant tissue culture (PTC) techniques have greatly contributed to industry and agriculture in the last century by exploiting the economic potential of several commercial crop plants. The application of PTC to selected halophyte species can thus contribute for developing innovative production systems and obtaining halophyte-based bioactive products. This work aimed to put together and review for the first time the most relevant information on the application of PTC to halophytes. Several protocols were established for the micropropagation of different species. Various explant types have been used as starting materials (e.g., basal shoots and nodes, cotyledons, epicotyls, inflorescence, internodal segments, leaves, roots, rhizomes, stems, shoot tips, or zygotic embryos), involving different micropropagation techniques (e.g., node culture, direct or indirect shoot neoformation, caulogenesis, somatic embryogenesis, rooting, acclimatization, germplasm conservation and cryopreservation, and callogenesis and cell suspension cultures). In vitro systems were also used to study physiological, biochemical, and molecular processes in halophytes, such as functional and salt-tolerance studies. Thus, the application of PTC to halophytes may be used to improve their controlled multiplication and the selection of desired traits for the in vitro production of plants enriched in nutritional and functional components, as well as for the study of their resistance to salt stress.
Collapse
Affiliation(s)
- Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Gilbert Charles
- Géoarchitecture Territoires, Urbanisation, Biodiversité, Environnement, Faculty of Sciences and Techniques, University of Western Brittany, 6 av. V. Le Gorgeu, CS 93837, CEDEX 3, 29238 Brest, France
| | - Christian Magné
- Géoarchitecture Territoires, Urbanisation, Biodiversité, Environnement, Faculty of Sciences and Techniques, University of Western Brittany, 6 av. V. Le Gorgeu, CS 93837, CEDEX 3, 29238 Brest, France
| | - Gregorio Barba-Espín
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Abel Piqueras
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José A. Hernández
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Karim Ben Hamed
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, BP 95, Hammam-Lif 2050, Tunisia
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Eliana Fernandes
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
6
|
Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass. Int J Mol Sci 2022; 23:ijms23052779. [PMID: 35269921 PMCID: PMC8911106 DOI: 10.3390/ijms23052779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Due to increased global warming and climate change, drought has become a serious threat to horticultural crop cultivation and management. The purpose of this study was to investigate the effect of spermine (Spm) pretreatment on metabolic alterations of polyamine (PAs), γ-aminobutyric acid (GABA), proline (Pro), and nitrogen associated with drought tolerance in creeping bentgrass (Agrostis stolonifera). The results showed that drought tolerance of creeping bentgrass could be significantly improved by the Spm pretreatment, as demonstrated by the maintenance of less chlorophyll loss and higher photosynthesis, gas exchange, water use efficiency, and cell membrane stability. The Spm pretreatment further increased drought-induced accumulation of endogenous PAs, putrescine, spermidine, and Spm, and also enhanced PAs metabolism through improving arginine decarboxylases, ornithine decarboxylase, S-adenosylmethionine decarboxylase, and polyamine oxidase activities during drought stress. In addition, the Spm application not only significantly improved endogenous GABA content, glutamate content, activities of glutamate decarboxylase and α-ketoglutarase, but also alleviated decline in nitrite nitrogen content, nitrate reductase, glutamine synthetase, glutamate synthetase, and GABA aminotransferase activities under drought stress. The Spm-pretreated creeping bentgrass exhibited significantly lower ammonia nitrogen content and nitrite reductase activity as well as higher glutamate dehydrogenase activity than non-pretreated plants in response to drought stress. These results indicated beneficial roles of the Spm on regulating GABA and nitrogen metabolism contributing towards better maintenance of Tricarboxylic acid (TCA) cycle in creeping bentgrass. Interestingly, the Spm-enhanced Pro metabolism rather than more Pro accumulation could be the key regulatory mechanism for drought tolerance in creeping bentgrass. Current findings provide a comprehensive understanding of PAs interaction with other metabolic pathways to regulate drought tolerance in grass species.
Collapse
|
7
|
Wang M, Guo W, Li J, Pan X, Pan L, Zhao J, Zhang Y, Cai S, Huang X, Wang A, Liu Q. The miR528- AO Module Confers Enhanced Salt Tolerance in Rice by Modulating the Ascorbic Acid and Abscisic Acid Metabolism and ROS Scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8634-8648. [PMID: 34339211 DOI: 10.1021/acs.jafc.1c01096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The monocot lineage-specific miR528 was previously established as a multistress regulator. However, it remains largely unclear how miR528 participates in response to salinity stress in rice. Here, we show that miR528 positively regulates rice salt tolerance by down-regulating a gene encoding l-ascorbate oxidase (AO), thereby bolstering up the AO-mediated abscisic acid (ABA) synthesis and ROS scavenging. Overexpression of miR528 caused a substantial increase in ascorbic acid (AsA) and ABA contents but a significant reduction in ROS accumulation, resulting in the enhanced salt tolerance of rice plants. Conversely, knockdown of miR528 or overexpression of AO stimulated the expression of the AO gene, hence lowering the level of AsA, a critical antioxidant that promotes the ABA content but reduces the ROS level, and then compromising rice tolerance to salinity. Together, the findings reveal a novel mechanism of the miR528-AO module-mediated salt tolerance by modulating the processes of AsA and ABA metabolism as well as ROS detoxification, which adds a new regulatory role to the miR528-AO stress defense pathway in rice.
Collapse
Affiliation(s)
- Mei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Wenping Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Jun Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Xiangjian Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Lihao Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Yiwei Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Shitian Cai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Xia Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - An Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, P. R. China
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Yu J, Zhang H, Wang L, Wang S, Guo S, Miao Y, Chen S, Li Y, Dai S. NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis. BMC Genomics 2019; 20:990. [PMID: 31847807 PMCID: PMC6918623 DOI: 10.1186/s12864-019-6325-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Salinity has obvious effects on plant growth and crop productivity. The salinity-responsive mechanisms have been well-studied in differentiated organs (e.g., leaves, roots and stems), but not in unorganized cells such as callus. High-throughput quantitative proteomics approaches have been used to investigate callus development, somatic embryogenesis, organogenesis, and stress response in numbers of plant species. However, they have not been applied to callus from monocotyledonous halophyte alkaligrass (Puccinellia tenuifora). RESULTS The alkaligrass callus growth, viability and membrane integrity were perturbed by 50 mM and 150 mM NaCl treatments. Callus cells accumulated the proline, soluble sugar and glycine betaine for the maintenance of osmotic homeostasis. Importantly, the activities of ROS scavenging enzymes (e.g., SOD, APX, POD, GPX, MDHAR and GR) and antioxidants (e.g., ASA, DHA and GSH) were induced by salinity. The abundance patterns of 55 salt-responsive proteins indicate that salt signal transduction, cytoskeleton, ROS scavenging, energy supply, gene expression, protein synthesis and processing, as well as other basic metabolic processes were altered in callus to cope with the stress. CONCLUSIONS The undifferentiated callus exhibited unique salinity-responsive mechanisms for ROS scavenging and energy supply. Activation of the POD pathway and AsA-GSH cycle was universal in callus and differentiated organs, but salinity-induced SOD pathway and salinity-reduced CAT pathway in callus were different from those in leaves and roots. To cope with salinity, callus mainly relied on glycolysis, but not the TCA cycle, for energy supply.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Juanjuan Yu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liyue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Sining Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
9
|
Aikawa S, Nishida A, Hasunuma T, Chang JS, Kondo A. Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock. Metabolites 2019; 9:metabo9120297. [PMID: 31817542 PMCID: PMC6950573 DOI: 10.3390/metabo9120297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
In response to salt stress, cyanobacteria increases the gene expression of Na+/H+ antiporter and K+ uptake system proteins and subsequently accumulate compatible solutes. However, alterations in the concentrations of metabolic intermediates functionally related to the early stage of the salt stress response have not been investigated. The halophilic cyanobacterium Synechococcus sp. PCC 7002 was subjected to salt shock with 0.5 and 1 M NaCl, then we performed metabolomics analysis by capillary electrophoresis/mass spectrometry (CE/MS) and gas chromatography/mass spectrometry (GC/MS) after cultivation for 1, 3, 10, and 24 h. Gene expression profiling using a microarray after 1 h of salt shock was also conducted. We observed suppression of the Calvin cycle and activation of glycolysis at both NaCl concentrations. However, there were several differences in the metabolic changes after salt shock following exposure to 0.5 M and 1 M NaCl: (i): the main compatible solute, glucosylglycerol, accumulated quickly at 0.5 M NaCl after 1 h but increased gradually for 10 h at 1 M NaCl; (ii) the oxidative pentose phosphate pathway and the tricarboxylic acid cycle were activated at 0.5 M NaCl; and (iii) the multi-functional compound spermidine greatly accumulated at 1 M NaCl. Our results show that Synechococcus sp. PCC 7002 acclimated to different levels of salt through a salt stress response involving the activation of different metabolic pathways.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (S.A.); (A.K.)
| | - Atsumi Nishida
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (S.A.); (A.K.)
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Correspondence: ; Tel.: +81-78-803-6356
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; (S.A.); (A.K.)
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan;
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
10
|
Salinity Tolerance in Fraxinus angustifolia Vahl.: Seed Emergence in Field and Germination Trials. FORESTS 2019. [DOI: 10.3390/f10110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of salinity on seed germination/emergence in narrow-leaved ash (Fraxinus angustifolia) was studied both under field and laboratory conditions, in order to detect critical values to NaCl exposure. Research Highlights: Novel statistical methods in germination ecology has been applied (i) to determine the effects of chilling length and salinity (up to 150 mM NaCl) on Fraxinus angustifolia subsp. oxycarpa seed emergence, and (ii) to estimate threshold limits treating germination response to salinity as a biomarker. Background and Objectives: Salinity cut values at germination stage had relevant interest for conservation and restoration aims of Mediterranean floodplain forests in coastal areas subjected to salt spray exposure and/or saline water introgression. Results: Salinity linearly decreased germination/emergence both in the field and laboratory tests. Absence of germination was observed at 60 mM NaCl in the field (70–84 mM NaCl depending on interpolation model) and at 150 mM NaCl for 4-week (but not for 24-week) chilling. At 50 mM NaCl, germination percentage was 50% (or 80%) of control for 4-week (or 24-week) chilling. Critical values for salinity were estimated between freshwater and 50 (75) mM NaCl for 4-week (24-week) chilling by Bayesian analysis. After 7-week freshwater recovery, critical cut-off values included all tested salinity levels up to 150 mM NaCl, indicating a marked resumption of seedling emergence. Conclusions: Fraxinus angustifolia is able to germinate at low salinity and to tolerate temporarily moderate salinity conditions for about two months. Prolonged chilling widened salinity tolerance.
Collapse
|
11
|
López-Galiano MJ, García-Robles I, González-Hernández AI, Camañes G, Vicedo B, Real MD, Rausell C. Expression of miR159 Is Altered in Tomato Plants Undergoing Drought Stress. PLANTS 2019; 8:plants8070201. [PMID: 31269704 PMCID: PMC6681330 DOI: 10.3390/plants8070201] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and its target SlMYB transcription factor genes in tomato plants of cv. Ailsa Craig grown in deprived water conditions or in response to mechanical damage caused by the Colorado potato beetle, a devastating insect pest of Solanaceae plants. Results showed that sly-miR159 regulatory function in the tomato plants response to distinct stresses might be mediated by differential stress-specific MYB transcription factor targeting. sly-miR159 targeting of SlMYB33 transcription factor transcript correlated with accumulation of the osmoprotective compounds proline and putrescine, which promote drought tolerance. This highlights the potential role of sly-miR159 in tomato plants’ adaptation to water deficit conditions.
Collapse
Affiliation(s)
| | | | - Ana I González-Hernández
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain
| | - Gemma Camañes
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain
| | - Begonya Vicedo
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, 12071 Castellón, Spain
| | - M Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain.
| |
Collapse
|
12
|
Yang H, Sun M, Lin S, Guo Y, Yang Y, Zhang T, Zhang J. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLoS One 2017; 12:e0187124. [PMID: 29131853 PMCID: PMC5683599 DOI: 10.1371/journal.pone.0187124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Soil salinization is becoming a limitation to the utilization of ornamental plants worldwide. Crossostephium chinensis (Linnaeus) Makino is often cultivated along the southeast coast of China for its desirable ornamental qualities and high salt tolerance. However, little is known about the genomic background of the salt tolerance mechanism in C. chinensis. In the present study, we used Illumina paired-end sequencing to systematically investigate leaf transcriptomes derived from C. chinensis seedlings grown under normal conditions and under salt stress. A total of 105,473,004 bp of reads were assembled into 163,046 unigenes, of which 65,839 (40.38% of the total) and 54,342 (33.32% of the total) were aligned in Swiss-Prot and Nr protein, respectively. A total of 11,331 (6.95%) differentially expressed genes (DEGs) were identified among three comparisons, including 2,239 in ‘ST3 vs ST0’, 5,880 in ‘ST9 vs ST3’ and 9,718 in ‘ST9 vs ST0’, and they were generally classified into 26 Gene Ontology terms and 58 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms. Many genes encoding important transcription factors (e.g., WRKY, MYB, and AP2/EREBP) and proteins involved in starch and sucrose metabolism, arginine and proline metabolism, plant hormone signal transduction, amino acid biosynthesis, plant-pathogen interactions and carbohydrate metabolism, among others, were substantially up-regulated under salt stress. These genes represent important candidates for studying the salt-response mechanism and molecular biology of C. chinensis and its relatives. Our findings provide a genomic sequence resource for functional genetic assignments in C. chinensis. These transcriptome datasets will help elucidate the molecular mechanisms responsible for salt-stress tolerance in C. chinensis and facilitate the breeding of new stress-tolerant cultivars for high-saline areas using this valuable genetic resource.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Ming Sun
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- * E-mail:
| | - Shuangji Lin
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yanhong Guo
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yongjuan Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Tengxun Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Jingxing Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| |
Collapse
|
13
|
Fatima S, Anjum T. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:848. [PMID: 28620396 PMCID: PMC5450013 DOI: 10.3389/fpls.2017.00848] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 05/20/2023]
Abstract
Biocontrol of plant diseases through induction of systemic resistance is an environmental friendly substitute to chemicals in crop protection measures. Different biotic and abiotic elicitors can trigger the plant for induced resistance. Present study was designed to explore the potential of Pseudomonas aeruginosa PM12 in inducing systemic resistance in tomato against Fusarium wilt. Initially the bioactive compound, responsible for ISR, was separated and identified from extracellular filtrate of P. aeruginosa PM12. After that purification and characterization of the bacterial crude extracts was carried out through a series of organic solvents. The fractions exhibiting ISR activity were further divided into sub-fractions through column chromatography. Sub fraction showing maximum ISR activity was subjected to Gas chromatography/mass spectrometry for the identification of compounds. Analytical result showed three compounds in the ISR active sub-fraction viz: 3-hydroxy-5-methoxy benzene methanol (HMB), eugenol and tyrosine. Subsequent bioassays proved that HMB is the potential ISR determinant that significantly ameliorated Fusarium wilt of tomato when applied as soil drench method at the rate of 10 mM. In the next step of this study, GC-MS analysis was performed to detect changes induced in primary and secondary metabolites of tomato plants by the ISR determinant. Plants were treated with HMB and Fusarium oxysporum in different combinations showing intensive re- modulations in defense related pathways. This work concludes that HMB is the potential elicitor involved in dynamic reprogramming of plant pathways which functionally contributes in defense responses. Furthermore the use of biocontrol agents as natural enemies of soil borne pathogens besides enhancing production potential of crop can provide a complementary tactic for sustainable integrated pest management.
Collapse
Affiliation(s)
- Sabin Fatima
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| |
Collapse
|
14
|
Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. FRONTIERS IN PLANT SCIENCE 2017; 8:855. [PMID: 28588603 PMCID: PMC5440749 DOI: 10.3389/fpls.2017.00855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
In the present manuscript the short term effect (3-24 h) of a saline shock (NaCl 100 mM) on fresh weight, water content, respiration rate, ethylene production and Na+, Cl-, ACC and polyamine concentration was studied in four plant species with different salt sensitivity, pepper, lettuce, spinach, and beetroot. Higher reduction in fresh weight and water content as a consequence of saline shock was found in pepper and lettuce plants than in spinach and beetroot, the latter behaving as more salinity tolerant. In general, salinity led to rapid increases in respiration rate, ethylene production and ACC and polyamine (putrescine, spermidine, and spermine) concentrations in shoot and root. These increases were related to plant salinity sensitivity, since they were higher in the most sensitive species and vice versa. However, ethylene and respiration rates in salt stressed plants recovered similar values to controls after 24 h of treatment in salt tolerant plants, while still remaining high in the most sensitive. On the other hand, sudden increases in putrescine, spermidine, and spermine concentration were higher and occurred earlier in pepper and lettuce, the most sensitive species, than in spinach and beetroot, the less sensitive ones. These increases tended to disappear after 24 h, except in lettuce. These changes would support the conclusion that ethylene and polyamine increases could be considered as a plant response to saline shock and related to the plant species sensitivity to this stress. In addition, no competition between polyamines and ethylene biosynthesis for their common precursor was observed.
Collapse
Affiliation(s)
- Pedro J. Zapata
- Departamento de Tecnología Agroalimentaria, Universidad Miguel HernándezOrihuela, Spain
| | - María Serrano
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - Manuel F. García-Legaz
- Departamento de Agroquímica y Medioambiente, Universidad Miguel HernándezOrihuela, Spain
| | - M. T. Pretel
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - M. A. Botella
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
- *Correspondence: M. A. Botella,
| |
Collapse
|
15
|
Du J, Shu S, Shao Q, An Y, Zhou H, Guo S, Sun J. Mitigative effects of spermidine on photosynthesis and carbon-nitrogen balance of cucumber seedlings under Ca(NO3)2 stress. JOURNAL OF PLANT RESEARCH 2016; 129:79-91. [PMID: 26659857 DOI: 10.1007/s10265-015-0762-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Ca(NO3)2 stress is one of the most serious constraints to plants production and limits the plants growth and development. Application of polyamines is a convenient and effective approach for enhancing plant salinity tolerance. The present investigation aimed to discover the photosynthetic carbon-nitrogen (C-N) mechanism underlying Ca(NO3)2 stress tolerance by spermidine (Spd) of cucumber (Cucumis sativus L. cv. Jinyou No. 4). Seedling growth and photosynthetic capacity [including net photosynthetic rate (P N), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr)] were significantly inhibited by Ca(NO3)2 stress (80 mM). However, a leaf-applied Spd (1 mM) treatment alleviated the reduction in growth and photosynthesis in cucumber caused by Ca(NO3)2 stress. Furthermore, the application of exogenous Spd significantly decreased the accumulation of NO3 (-) and NH4 (+) caused by Ca(NO3)2 stress and remarkably increased the activities of N metabolism enzymes simultaneously. In addition, photosynthesis N-use efficiency (PNUE) and free amino acids were significantly enhanced by exogenous Spd in response to Ca(NO3)2 stress, thus promoting the biosynthesis of N containing compounds and soluble protein. Also, the amounts of several carbohydrates (including sucrose, fructose and glucose), total C content and the C/N radio increased significantly in the presence of Spd. Based on our results, we suggest that exogenous Spd could effectively accelerate nitrate transformation into amino acids and improve cucumber plant photosynthesis and C assimilation, thereby enhancing the ability of the plants to maintain their C/N balance, and eventually promote the growth of cucumber plants under Ca(NO3)2 stress.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaosai Shao
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yahong An
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Heng Zhou
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
16
|
Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. PLANT CELL REPORTS 2015; 34:141-56. [PMID: 25348337 DOI: 10.1007/s00299-014-1695-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.
Collapse
Affiliation(s)
- Chinta Sudhakar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, 515 003, India,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang C, Fan L, Gao H, Wu X, Li J, Lv G, Gong B. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:17-26. [PMID: 24869798 DOI: 10.1016/j.plaphy.2014.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/24/2014] [Indexed: 05/05/2023]
Abstract
We detected physiological change and gene expression related to PA metabolism in melon roots under controlled and hypoxic conditions with or without 5 mM GABA. Roots with hypoxia treatment showed a significant increase in glutamate decarboxylase (GAD) activity and endogenous GABA concentration. Concurrently, PA biosynthesis and degradation accelerated with higher gene expression and enzymes activity. However, endogenous GABA concentrations showed a large and rapid increase in Hypoxia + GABA treated roots. This led to a marked increase in Glu concentration by feedback inhibition of GAD activity. Hypoxia + GABA treatment enhanced arginine (Arg), ornithine (Orn) and methionine (Met) levels, promoting enzyme gene expression levels and arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activities in roots. Hypoxia + GABA treatment significantly increased concentrations of free putrescine (Put), spermidine (Spd) and spermine (Spm) from day two to eight, promoting the PA conversion to soluble conjugated and insoluble bound forms. However, PA degradation was significantly inhibited in hypoxia + GABA treated roots by significantly decreasing gene expression and activity of diamine oxidase (DAO) and polyamine oxidase (PAO). However, exogenous GABA showed a reduced effect in control compared with hypoxic conditions. Our data suggest that alleviating effect of exogenous GABA to hypoxia is closely associated with physiological regulation of PA metabolism. We propose a potential negative feedback mechanism of higher endogenous GABA levels from combined effects of hypoxia and exogenous GABA, which alleviate the hypoxia damage by accelerating PA biosynthesis and conversion as well as preventing PA degradation in melon plants.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China
| | - Longquan Fan
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China
| | - Hongbo Gao
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China.
| | - Xiaolei Wu
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China
| | - Jingrui Li
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China
| | - Guiyun Lv
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China
| | - Binbin Gong
- College of Horticulture, Agricultural University of Hebei, Lekai South Street 2596, Baoding 071001, Hebei, China
| |
Collapse
|
18
|
Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 2013; 14:13171-93. [PMID: 23803653 PMCID: PMC3742181 DOI: 10.3390/ijms140713171] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/15/2013] [Accepted: 05/27/2013] [Indexed: 12/30/2022] Open
Abstract
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity.
Collapse
|
19
|
Changes in the levels of jasmonates and free polyamines induced by Na2SO4 and NaCl in roots and leaves of the halophyte Prosopis strombulifera. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0052-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R. Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:49-58. [PMID: 22118615 DOI: 10.1016/j.plantsci.2011.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 05/18/2023]
Abstract
The effect of heat stress on the accumulation of proline and on the level of polyamines (PAs) in tobacco plants was investigated. Responses to heat stress were compared in the upper and lower leaves and roots of tobacco plants that constitutively over-express a modified gene for the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthetase (P5CSF129A) and in the corresponding wild-type. In the initial phases of heat stress (after 2h at 40°C), the accumulation of proline increased in the wild type but slightly decreased in the transformants. The response to heat stress in proline-over-producing tobacco plants involved a transient increase in the levels of free and conjugated putrescine (Put) and in the levels of free spermidine (Spd), norspermidine (N-Spd) and spermine (Spm) after a 2-h lag phase, which correlated with stimulation of the activity of the corresponding biosynthetic enzymes. Diamine oxidase (DAO) activity increased in both plant genotypes, most significantly in the leaves of WT plants. Polyamine oxidase (PAO) activity increased in the roots of WT plants and decreased in the leaves and roots of the transformants. After 6h of heat stress, proline accumulation was observed in the transformants, especially in the lower leaves; much more modest increase was observed in the WT plants. A decrease in the levels of free and conjugated Put coincided with down-regulation of the activity of ornithine decarboxylase and marked stimulation of DAO activity in the leaves and roots of the transformants. PAO activity increased in the roots of the transformants but decreased in the leaves. Conversely, in WT tobacco subjected to 6h of heat stress, slight increases in free and conjugated PA levels were observed and the activity of DAO only increased in the roots; PAO activity did not change from the value observed during the initial phase of heat stress. 6 Hours' heat stress had no effect on the level of malondialdehyde (MDA; a product of lipid peroxidation), in the upper leaves of either genotype. After a recovery period (2h at 25°C), most of the studied parameters exhibited values comparable to those observed in untreated plants. The coordination of the proline and polyamine biosynthetic pathways during heat stress conditions is discussed.
Collapse
Affiliation(s)
- Milena Cvikrová
- Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
21
|
Inhibition of photosystems I and II activities in salt stress-exposed Fenugreek (Trigonella foenum graecum). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:14-20. [DOI: 10.1016/j.jphotobiol.2011.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022]
|
22
|
Ku HM, Hu CC, Chang HJ, Lin YT, Jan FJ, Chen CT. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1147-54. [PMID: 21831656 DOI: 10.1016/j.plaphy.2011.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/08/2011] [Indexed: 05/08/2023]
Abstract
Proline accumulation is responsible for stress adaptation in many plants. To distinguish the involvement of two proline synthetic pathways, the virus induced gene silencing (VIGS) system that silenced the expression of genes encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC:1.5.1.12) and ornithine-δ-aminotransferase (OAT; EC 2.6.1.13) was performed, separately or concomitantly, in four-week-old Nicotiana benthamiana. Leaf discs of VIGS-treated tobacco were subjected to the treatment of drought, abscisic acid (ABA), or polyethylene glycol (PEG). The treated leaf discs were then collected for the determination of mRNA, chlorophyll, proline and polyamine level. Under drought stress or PEG treatment, most proline accumulation was inhibited in P5CS-silenced plants and only a small portion was inhibited in OAT-silenced plants under drought stress and no inhibition was observed under PEG treatment. Under ABA treatment, proline accumulation was inhibited completely in P5CS-silenced plants but unaffected in OAT-silenced plants. The degradation of chlorophyll was enhanced in P5CS-silenced plants but retarded in OAT-silenced plants under PEG treatment. Under ABA treatment, the degradation of chlorophyll was unaffected in both P5CS-silenced and OAT-silenced plants. The increase of polyamine level was unaffected in P5CS-silenced plants but increased in OAT-silenced plants under PEG treatment. Under ABA treatment, the increase of polyamine level was unaffected in P5CS-silenced plants but the polyamine level was increased later in OAT-silenced plants. Therefore, P5CS plays a major role in proline accumulation under drought, PEG, or ABA treatment, while OAT plays a minor role in drought or PEG treatment and does not participate in ABA treatment. OAT appears to have a close relationship with the regulation of polyamine levels in PEG and ABA treatments.
Collapse
Affiliation(s)
- Hsin-Mei Ku
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. MICROBIOLOGY-SGM 2011; 158:139-146. [PMID: 21852347 DOI: 10.1099/mic.0.052621-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present study we have assessed, by transcriptional and metabolic profiling, the systemic defence response of Arabidopsis thaliana plants to the leaf pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) induced by the beneficial fungus Trichoderma asperelloides T203. Expression analysis (qPCR) of a set of 137 Arabidopsis genes related to Pst defence responses showed that T203 root colonization is not associated with major detectable transcriptomic changes in leaves. However, plants challenged with the bacterial pathogen showed quantitative differences in gene expression when pre-inoculated with T203, supporting priming of the plant by this beneficial fungus. Among the defence-related genes affected by T203, lipid transfer protein (LTP)4, which encodes a member of the lipid transfer pathogenesis-related family, is upregulated, whereas the WRKY40 transcription factor, known to contribute to Arabidopsis susceptibility to bacterial infection, shows reduced expression. On the other hand, root colonization by this beneficial fungus substantially alters the plant metabolic profile, including significant changes in amino acids, polyamines, sugars and citric acid cycle intermediates. This may in part reflect an increased energy supply required for the activation of plant defences and growth promotion effects mediated by Trichoderma species.
Collapse
Affiliation(s)
- Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jan Lisec
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Michaël Méret
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ilan Chet
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ada Viterbo
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
24
|
Gao H, Jia Y, Guo S, Lv G, Wang T, Juan L. Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1217-25. [PMID: 21458885 DOI: 10.1016/j.jplph.2011.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 05/23/2023]
Abstract
We investigated the effects of short-term root-zone hypoxic stress and exogenous calcium application or deficiency in an anoxic nutrient solution on nitrogen metabolism in the roots of the muskmelon cultivar Xiyu No. 1. Seedlings grown in the nutrient solution under hypoxic stress for 6d displayed significantly reduced plant growth and soluble protein concentrations. However, NO₃⁻ uptake rate and activities of nitrate reductase and glutamate synthase were significantly increased. We also found higher amounts of nitrate, ammonium, amino acids, heat-stable proteins, polyamines, H₂O₂, as well as higher polyamine oxidase activity in the roots. In comparison to the reactions seen under hypoxic stress, exogenous calcium application led to a marked increase in plant weights, photosynthesis parameters, NO₃⁻ uptake rate and contents of nitrate, ammonium, amino acids (e.g., glutamic acid, proline, glycine, cystine, γ-aminobutyric acid), soluble and heat-stable proteins, free spermine, and insoluble bound polyamines. Meanwhile, exogenous calcium application resulted in significantly increased activities for nitrate reductase, glutamine synthetase, and glutamate synthase but decreased activities for diamine and polyamine oxidase, as well as lower H₂O₂ content in roots during exposure to hypoxia. However, calcium deficiency in the nutrient solution decreased plant weight, photosynthesis parameters, NO₃⁻ reduction, amino acids (e.g., alanine, aspartic acid, glutamic acid, γ-aminobutyric acid), protein, all polyamines except for free putrescine, and the activities of glutamate synthase and glutamine synthetase. Additionally, there was an increase in the NO₃⁻ uptake rate, polyamine oxidase activity and H₂O₂ contents under hypoxia-Ca. Simultaneously, exogenous calcium had little effect on nitrate absorption and transformation, photosynthetic parameters, and plant growth under normoxic conditions. These results suggest that calcium confers short-term hypoxia tolerance in muskmelon, most likely by promoting nitrate uptake and accelerating its transformation into amino acids, heat-stable proteins or polyamines, as well as by decreasing polyamine degradation in muskmelon seedlings.
Collapse
Affiliation(s)
- Hongbo Gao
- College of Horticulture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
25
|
Lokhande VH, Nikam TD, Penna S. Differential osmotic adjustment to iso-osmotic NaCl and PEG stress in the in vitro cultures of Sesuvium portulacastrum (L.) L. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12892-010-0008-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Amirjani M. Effect of Salinity Stress on Growth, Mineral Composition, Proline Content, Antioxidant Enzymes of Soybean. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajpp.2010.350.360] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Parvin S, Kim YJ, Pulla RK, Sathiyamoorthy S, Miah MG, Kim YJ, Wasnik NG, Yang DC. Identification and characterization of spermidine synthase gene from Panax ginseng. Mol Biol Rep 2009; 37:923-32. [PMID: 19685160 DOI: 10.1007/s11033-009-9725-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
Abstract
A full length spermidine synthase (PgSPD) cDNA was isolated and characterized from the root of Panax ginseng C. A. Meyer. The cDNA was 1,188 nucleotides long and had an open reading frame of 1,002 bp with a deduced amino acid sequence of 333 residues. The calculated molecular mass of the matured protein is approximately 36.38 kDa with a predicated isoelectric point of 5.02. A GenBank BlastX search revealed that the deduced amino acid of PgSPD shares a high degree homology with the Lotus japonicas (78.5% identity, 84% similarity). In the present study we analyzed the expression of PgSPD under various environmental stresses at different time points using real time-PCR. We also determined polyamine content in adventitious roots under salt and chilling stress using HPLC. Our results reveal that PgSPD is slightly induced by mannitol and CuSO4. Otherwise, salt, chilling, abscisic acid and jasmonic acid triggered a significant induction (more than tenfold) of PgSPD within 12-24 h post-treatment, especially; PgSPD was prominently induced by salt (41.5-fold). These results suggest that the transcript of Spd gene involved in PA biosynthesis shows different profiles of expression in response to environmental stress.
Collapse
Affiliation(s)
- Shohana Parvin
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, 1 Seocheon, Giheung-gu Yongin-si, Gyeonggi-do, 449-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Suriyan CU, Chalermpol K. Proline Accumulation, Photosynthetic Abilities and Growth Characters of Sugarcane (Saccharum officinarum L.) Plantlets in Response to Iso-Osmotic Salt and Water-Deficit Stress. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(09)60008-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Duan J, Li J, Guo S, Kang Y. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1620-35. [PMID: 18242770 DOI: 10.1016/j.jplph.2007.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/29/2007] [Accepted: 11/26/2007] [Indexed: 05/18/2023]
Abstract
We investigated the effects of short-term salinity stress and spermidine application to salinized nutrient solution on polyamine metabolism and various stress defense reactions in the roots of two cucumber (Cucumis sativus L.) cultivars, Changchun mici and Jinchun No. 2. Seedlings grown in nutrient solution salinized with 50mM NaCl for 8d displayed reduced relative water content, net photosynthetic rates and plant growth, together with increased lipid peroxidation and electrolyte leakage in the roots. These changes were more marked in cv. Jinchun No. 2 than in cv. Changchun mici, confirming that the latter cultivar is more salinity-tolerant than the former. Salinity stress caused an increase in superoxide and hydrogen peroxide production, particularly in cv. Jinchun No. 2 roots, while the salinity-induced increase in antioxidant enzyme activities and proline contents in the roots was much larger in cv. Changchun mici than in cv. Jinchun No. 2. In comparison to cv. Jinchun No. 2, cv. Changchun mici showed a marked increase in arginine decarboxylase, ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase activities, as well as free spermidine and spermine, soluble conjugated and insoluble bound putrescine, spermidine and spermine contents in the roots during exposure to salinity. On the other hand, spermidine application to salinized nutrient solution resulted in alleviation of the salinity-induced membrane damage in the roots and plant growth and photosynthesis inhibition, together with an increase in polyamine and proline contents and antioxidant enzyme activities in the roots of cv. Jinchun No. 2 but not of cv. Changchun mici. These results suggest that spermidine confers short-term salinity tolerance on cucumber probably through inducing antioxidant enzymes and osmoticants.
Collapse
Affiliation(s)
- Jiuju Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
30
|
Zhao J, Shi G, Yuan Q. Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) Backer leaves. Biometals 2008; 21:665-74. [PMID: 18587652 DOI: 10.1007/s10534-008-9151-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 06/07/2008] [Indexed: 01/16/2023]
Abstract
Influence of ladder concentration of nickel (Ni) on the leaves of Hydrocharis dubia were studied after 3 days treatment. The accumulation of Ni, the content of polyamines, proline, malondialdehyde (MDA) and soluble protein, as well as the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves were investigated. The result indicated that the toxicity of Ni manifested in respective aspect of physiological and biochemical characters. Significant increase of Ni concentration in the leaf tissue was observed, which was concentration dependent. Visible symptoms of Ni toxicity: chlorosis and necrosis occurred following the 3rd day. Meantime, treatment with Ni resulted in the increase in the generation rate of O2(*-) in the leaves. SOD and CAT activities decreased significantly in response to Ni treatment, it was possibly the reason of accumulation of O2(*-). However, a several-fold decrease in POD activities was found. Our results indicated that because of prolonged increases in O2(*-) level, oxidative damage, measured as the level of lipid peroxidation, occured in the leaves of Ni treated fronds. The changes of the content of polyamines (PAs) were also investigated in the leaves of Hydrocharis dubia. Ni treatment significantly increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby significantly reducing the ratio of free (Spd + Spm)/Put in leaves, which has been considered as the signal under stress. Although the trend that PS-conjugated PAs and PIS-bound PAs changed the same as free PAs, they changed in more less extent.
Collapse
Affiliation(s)
- Juan Zhao
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China.
| | | | | |
Collapse
|
31
|
Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids 2007; 34:35-45. [PMID: 17356805 DOI: 10.1007/s00726-007-0501-8] [Citation(s) in RCA: 362] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/31/2007] [Indexed: 11/27/2022]
Abstract
In this review we will concentrate in the results published the last years regarding the involvement of polyamines in the plant responses to abiotic stresses, most remarkably on salt and drought stress. We will also turn to other types of abiotic stresses, less studied in relation to polyamine metabolism, such as mineral deficiencies, chilling, wounding, heavy metals, UV, ozone and paraquat, where polyamine metabolism is also modified. There is a great amount of data demonstrating that under many types of abiotic stresses, an accumulation of the three main polyamines putrescine, spermidine and spermine does occur. However, there are still many doubts concerning the role that polyamines play in stress tolerance. Several environmental challenges (osmotic stress, salinity, ozone, UV) are shown to induce ADC activity more than ODC. The rise in Put is mainly attributed to the increase in ADC activity as a consequence of the activation of ADC genes and their mRNA levels. On the other hand, free radicals are now accepted as important mediators of tissue injury and cell death. The polycationic nature of polyamines, positively charged at physiological pH, has attracted the attention of researchers and has led to the hypothesis that polyamines could affect physiological systems by binding to anionic sites, such as those associated with nucleic acids and membrane phospholipids. These amines, involved with the control of numerous cellular functions, including free radical scavenger and antioxidant activity, have been found to confer protection from abiotic stresses but their mode of action is not fully understood yet. In this review, we will also summarize information about the involvement of polyamines as antioxidants against the potential abiotic stress-derived oxidative damage.
Collapse
Affiliation(s)
- M D Groppa
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
32
|
Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. PLANT BIOTECHNOLOGY 2007. [PMID: 0 DOI: 10.5511/plantbiotechnology.24.117] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Ji-Hong Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University
| | | | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University
| | - Yusuke Ban
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Takaya Moriguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba
- National Institute of Fruit Tree Science, Tsukuba
| |
Collapse
|
33
|
M'rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaâl M. Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1022-31. [PMID: 16971214 DOI: 10.1016/j.jplph.2005.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/18/2005] [Indexed: 05/11/2023]
Abstract
Thellungiella halophila seedlings grown on a solid substrate for 25 days on standard medium were challenged with NaCl. Growth, tissue hydration, ion accumulation, photosynthesis, lipid peroxidation and antioxidant enzymatic activities were studied on rosette leaves. Three accessions of Arabidopsis thaliana were cultivated under the same conditions. During the first two weeks of salt treatment, the growth of T. halophila leaves was restricted by NaCl. No significant difference appeared between T. halophila and A. thaliana concerning biomass deposition, or hydric and ionic parameters. However, all A. thaliana plants displayed foliar damage, and died during the third week of salt (50mM NaCl) treatment. Almost all (94%) T. halophila plants remained alive, but did not display any sign of altered physiological condition. Tissue hydration, chlorophyll content, stomatal conductance, photosynthetic quantum yield, and photosynthetic rate were very similar to those of control plants. Lipid peroxidation, estimated from thermoluminescence, was very low and insensitive to salt treatment. Only slight changes occurred in antioxidant enzymatic activities (SOD, several peroxidases, and catalase). From the absence of physiological disorder symptoms, we infer that salt was efficiently compartmentalized in leaf vacuoles. In salt-treated A. thaliana, the photosynthetic quantum yield was diminished, and lipid peroxidation was augmented. These observations reinforce the conclusion that T. halophila could accumulate salt in its leaves without damage, in contrast to A. thaliana.
Collapse
Affiliation(s)
- Sabah M'rah
- Physiologie et Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 2006; 16:446-56. [PMID: 16699540 DOI: 10.1038/sj.cr.7310056] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyamines are implicated in regulating various developmental processes in plants, but their exact roles and how they govern these processes still remain elusive. We report here an Arabidopsis bushy and dwarf mutant, bud2, which results from the complete deletion of one member of the small gene family that encodes S-adenosylmethionine decarboxylases (SAMDCs) necessary for the formation of the indispensable intermediate in the polyamine biosynthetic pathway. The bud2 plant has enlarged vascular systems in inflorescences, roots, and petioles, and an altered homeostasis of polyamines. The double mutant of bud2 and samdc1, a knockdown mutant of another SAMDC member, is embryo lethal, demonstrating that SAMDCs are essential for plant embryogenesis. Our results suggest that polyamines are required for the normal growth and development of higher plants.
Collapse
Affiliation(s)
- Chunmin Ge
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Roy RN, Laskar S, Sen SK. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res 2006; 161:121-6. [PMID: 16427514 DOI: 10.1016/j.micres.2005.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
It was found that the bioactive compound, dibutyl phthalate, was produced by a new soil isolate Streptomyces albidoflavus 321.2. Once this active compound was recovered by ethyl acetate from the fermented broth, being possible to isolate 13.4 mg/l, it was purified by paper, silica gel column, thin layer and gas chromatography. Structure was determined by analysing UV, IR and GC-MS spectra. During analysis, such active compound showed strong activity against gram-positive and gram-negative bacteria, as well as unicellular and filamentous fungi. The antimicrobial activity of the compound was reversed by the amino acid proline. No acute toxicity was observed.
Collapse
Affiliation(s)
- R N Roy
- Department of Botany, School of Life Sciences, Visva-Bharati, Santiniketan-731235, India
| | | | | |
Collapse
|
36
|
Houdusse F, Zamarreño AM, Garnica M, García-Mina J. The importance of nitrate in ameliorating the effects of ammonium and urea nutrition on plant development: the relationships with free polyamines and plant proline contents. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:1057-1067. [PMID: 32689201 DOI: 10.1071/fp05042] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 06/07/2005] [Indexed: 06/11/2023]
Abstract
In order to investigate the possible involvement of free polyamines and proline in the mechanism underlying the action of nitrate in correcting the negative effects associated with ammonium and urea nutrition in certain plant species, we studied plant contents of free polyamines and proline associated with nitrogen nutrition involving different nitrogen forms (nitrate, ammonium, urea) in two plant species, wheat and pepper. The results showed that ammonium nutrition and, to a lesser extent, urea nutrition were associated with significant increases in plant putrescine content that were well correlated with reductions in plant growth. These negative effects of ammonium and urea nutrition were corrected by the presence of nitrate in the nutrient solution; the presence of nitrate was also related to a significant decrease in the plant putrescine content. These results are compatible with a specific effect of nitrate reducing ammonium accumulation through the improvement of ammonium assimilation. As for the plant proline content, in pepper a slight increase in this parameter was associated with ammonium and urea nutrition, but it was also decreased by the presence of nitrate in the nutrient solution. These changes, however, were not so clearly related to the variations in plant growth as in the case of putrescine content. These results are compatible with the hypothesis that putrescine biosynthesis might be related to proline degradation by a specific pathway related to ammonium detoxification.
Collapse
Affiliation(s)
- Fabrice Houdusse
- Research and Development Department, Inabonos-Roullier Group, Poligono Arazuri-Orcoyen, C/C no. 32. 31160 Orcoyen (Navarra), Spain
| | - Angel M Zamarreño
- Research and Development Department, Inabonos-Roullier Group, Poligono Arazuri-Orcoyen, C/C no. 32. 31160 Orcoyen (Navarra), Spain
| | - Maria Garnica
- Research and Development Department, Inabonos-Roullier Group, Poligono Arazuri-Orcoyen, C/C no. 32. 31160 Orcoyen (Navarra), Spain
| | - Josemaria García-Mina
- Research and Development Department, Inabonos-Roullier Group, Poligono Arazuri-Orcoyen, C/C no. 32. 31160 Orcoyen (Navarra), Spain
| |
Collapse
|