1
|
Wei R, Teng Y, Ning R, Luo Z, Bai L, Han C. Comparison of different derivatisation for amino acids determination of foie gras by high performance liquid chromatography (HPLC). Br Poult Sci 2024; 65:790-799. [PMID: 39076129 DOI: 10.1080/00071668.2024.2375723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
1. In order to compare the difference between different derivatisations for amino acids determination of foie gras via, reversed phase high performance liquid chromatography (HPLC), O-phthalaldehyde and 9-fluorenyl-methyl chloroformate (OPA-FMOC group), phenylisothiocyanate (PITC group) and 6-Aminoquinolyl-N-hydrox-ysuccinimidyl Carbamate (AQC group) were applied to derivatisation reagent in this current experiment. The determination results of automatic amino acid analyser were applied, and 17 amino acids were detected by these three derivatisation methods.2. The running times of OPA-FMOC group, PITC group and AQC group were 18, 45 and 35 min, respectively. There was a large difference between the results of OPA-FMOC group and results from the automatic amino acid analyser, although the difference between the results from PITC and the automatic amino acid analyser was minimal.3. In conclusion, the running time of OPA-FMOC group was shorter than that of PITC group and AQC group; the accuracy of the former was better than the OPA-FMOC group and AQC group for the determination of amino acid of foie gras.
Collapse
Affiliation(s)
- R Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Y Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - R Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Z Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - L Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
2
|
Zhou X, Xing Y, Wang Y, Lv M, Zhang P, Zhu S, Ge J, Liu L, Zhao M, Gong H, Gong D, Geng T. OTUD1 regulates cytokine expression and related pathways in goose fatty liver by promoting deubiquitination of its target proteins. Poult Sci 2024; 103:104382. [PMID: 39437555 PMCID: PMC11532766 DOI: 10.1016/j.psj.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Goose fatty liver (or foie gras) does not develop inflammation even in severe steatosis, which is different from human nonalcoholic fatty liver disease (NAFLD), and it is considered as a unique model for NAFLD study. The deubiquitinating enzyme, Ovarian Tumor (OTU)-Deubiquitinase 1 (OTUD1), is involved in various cell biological processes by regulating the expression of cytokines. Its role and mechanism in the formation of goose fatty liver however are not clear yet. This study determined the expression of OTUD1 in goose fatty liver versus normal liver and OTUD1 expression in goose primary liver treated with glucose, fatty acids and insulin using qPCR and immunoblotting assays. OTUD1 gene overexpression and subsequent transcriptome sequencing analysis were performed to identify the differentially expressed genes (DEG) and the pathways where the DEGs are enriched. Immunoprecipitation and protein mass spectrometry were employed to screen the interacting proteins of OTUD1. The results showed that both the mRNA and protein abundances of OTUD1 in goose fatty liver were higher than those of normal liver. In goose primary hepatocytes, palmitic acid and oleic acid both increased the protein levels of OTUD1, while glucose and insulin inhibited the expression of the protein. Overexpression of OTUD1 significantly affected the expression of genes and pathways related to inflammatory/immune responses and cell growth/death. The interacting proteins of OTUD1 are mainly related to membrane transport, immune/inflammatory response, ubiquitination and signaling pathways. The interaction between OTUD1 and AP1G1 was validated by co-immunoprecipitation and immunoblotting assays. Consistently, the relative ubiquitination level of AP1G1 in goose fatty liver was lower than that of normal liver, which is correlated with increased protein abundance of AP1G1 and OTUD1 in goose fatty liver. In conclusion, the increased protein abundance of OTUD1 in goose fatty liver can regulate the expression of cytokines and related pathways during the formation of goose fatty liver by promoting the deubiquitination of the interacting proteins of OTUD1, including AP1G1.
Collapse
Affiliation(s)
- Xiaoyi Zhou
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Ya Xing
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Yuqing Wang
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Mengqing Lv
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Pei Zhang
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Suyan Zhu
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Jing Ge
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Long Liu
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Minmeng Zhao
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Haizhou Gong
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Daoqing Gong
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China
| | - Tuoyu Geng
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou 225003, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225003, China.
| |
Collapse
|
3
|
Luo X, Zhang J, Guo J, Zhao W, Tian Y, Xiang H, Kang H, Ye F, Chen S, Li H, Ma Z. Transcriptomic Analysis Reveals the Effects of miR-122 Overexpression in the Liver of Qingyuan Partridge Chickens. Animals (Basel) 2024; 14:2132. [PMID: 39061594 PMCID: PMC11274173 DOI: 10.3390/ani14142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The liver of chickens is essential for maintaining physiological activities and homeostasis. This study aims to investigate the specific function and molecular regulatory mechanism of microRNA-122 (miR-122), which is highly expressed in chicken liver. A lentivirus-mediated overexpression vector of miR-122 was constructed and used to infect 12-day-old female Qingyuan Partridge chickens. Transcriptome sequencing analysis was performed to identify differentially expressed genes in the liver. Overexpression of miR-122 resulted in 776 differentially expressed genes (DEGs). Enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed associations with lipid metabolism, cellular senescence, cell adhesion molecules, and the MAPK signaling pathway. Eight potential target genes of miR-122 (ARHGAP32, CTSD, LBH, PLEKHB2, SEC14L1, SLC2A1, SLC6A14, and SP8) were identified through miRNA target prediction platforms and literature integration. This study provides novel insights into the molecular regulatory mechanisms of miR-122 in chicken liver, highlighting its role in key biological processes and signaling pathways. These discoveries enhance our understanding of miR-122's impact on chicken liver function and offer valuable information for improving chicken production performance and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.); (J.Z.); (J.G.); (W.Z.); (Y.T.); (H.X.); (H.K.); (F.Y.); (S.C.); (H.L.)
| |
Collapse
|
4
|
Gao G, Liu R, Hu S, He M, Zhang J, Gao D, Li J, Hu J, Wang J, Wang Q, Li M, Jin L. Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet. J Anim Sci Biotechnol 2024; 15:60. [PMID: 38693536 PMCID: PMC11064361 DOI: 10.1186/s40104-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. RESULTS In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. CONCLUSIONS We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.
Collapse
Affiliation(s)
- Guangliang Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Rui Liu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengfeng Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwei Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwen Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qigui Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Wei R, Han C. Insights into the influence of three types of sugar on goose fatty liver formation from endoplasmic reticulum stress (ERS). Poult Sci 2024; 103:103466. [PMID: 38277893 PMCID: PMC10840336 DOI: 10.1016/j.psj.2024.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
This study analyzed the formation of goose fatty liver due to endoplasmic reticulum stress (ERS) caused by 3 types of sugar. Transcriptome analysis was performed for liver tissues from geese fed a traditional diet (maize flour), geese overfed with traditional diet, and geese overfed with diet supplemented with glucose, fructose, or sucrose. Correlation analysis of the liver tissue transcriptomes showed that differentially expressed genes (DEGs) involved in ERS were significantly negatively correlated with DEGs involved in inflammation response in the sucrose overfeeding group, and significantly positively correlated with the DEGs involved in lipid metabolism in fructose overfeeding group. Goose primary hepatocytes were isolated in vitro and then treated with glucose or fructose. Some were also treated with ERS inhibitor 4-phenylbutyric acid (4-PBA). In the hepatocytes, mRNA expression of X-Box Binding Protein 1 (XBP1), activating transcription factor 6 (AFT6) and glucose-regulated protein 78 (GRP78) genes increased in the two sugar groups (glucose and fructose), but were suppressed by adding 4-PBA. The mRNA expression data, protein kinase contents, and triglyceride (TG) and very low-density lipoprotein (VLDL) concentrations all suggest that ERS regulates lipid deposition induced by glucose and fructose via elevating lipid synthesis, inhibiting fatty acid oxidation, and decreasing lipid transportation. In conclusion, glucose, or fructose cause ERS and then ERS causes lipid deposition in goose primary hepatocytes. Three types of sugar cause lipid accumulation and then lipid accumulation prevents ERS during goose fatty liver formation, which suggests a potential mechanism protects goose livers from ERS. The different sugars may induce lipid deposition in different ways.
Collapse
Affiliation(s)
- Rongxue Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
6
|
Hong L, Sun Z, Xu D, Li W, Cao N, Fu X, Huang Y, Tian Y, Li B. Transcriptome and lipidome integration unveils mechanisms of fatty liver formation in Shitou geese. Poult Sci 2024; 103:103280. [PMID: 38042038 PMCID: PMC10711516 DOI: 10.1016/j.psj.2023.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023] Open
Abstract
Geese evolved from migratory birds, and when they consume excessive high-energy feed, glucose is converted into triglycerides. A large amount of triglyceride deposition can induce incomplete oxidation of fatty acids, leading to lipid accumulation in the liver and the subsequent formation of fatty liver. In the Chaoshan region of Guangdong, China, Shitou geese develop a unique form of fatty liver through 24 h overfeeding of brown rice. To investigate the mechanisms underlying the formation of fatty liver in Shitou geese, we collected liver samples from normally fed and overfed geese. The results showed that the liver size in the treatment group was significantly larger, weighing 3.5 times more than that in the control group. Extensive infiltration of lipid droplets was observed in the liver upon staining of tissue sections. Biochemical analysis revealed that compared to the control group, the treatment group showed significantly elevated levels of total cholesterol (T-CHO), triglycerides (TG), and glycogen in the liver. However, no significant differences were observed in the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which are common indicators of liver damage. Furthermore, we performed a combined transcriptomic and lipidomic analysis of the liver samples and identified 1,510 differentially expressed genes (DEGs) and 1,559 significantly differentially abundant metabolites (SDMs). The enrichment analysis of the DEGs revealed their enrichment in metabolic pathways, cellular process-related signaling pathways, and specific lipid metabolism pathways. We also conducted KEGG enrichment analysis of the SDMs and compared them with the enriched signaling pathways obtained from the DEGs. In this study, we identified 3 key signaling pathways involved in the formation of fatty liver in Shitou geese, namely, the biosynthesis of unsaturated fatty acids, glycerol lipid metabolism, and glycerophospholipid metabolism. In these pathways, genes such as glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), diacylglycerol O-acyltransferase 2 (DGAT2), lipase, endothelial (LIPG), lipoprotein lipase (LPL), phospholipase D family member 4 (PLD4), and phospholipase A2 group IVF (PLA2G4F) may regulate the synthesis of metabolites, including triacylglycerol (TG), phosphatidate (PA), 1,2-diglyceride (DG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). These genes and metabolites may play a predominant role in the development of fatty liver, ultimately promoting the accumulation of TG in the liver and leading to the progression of fatty liver.
Collapse
Affiliation(s)
- Longsheng Hong
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zongyi Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
7
|
Wei R, Teng Y, Han C, Wei S, Li L, Liu H, Hu S, Kang B, Xu H. Multi-omics reveals goose fatty liver formation from metabolic reprogramming. Front Vet Sci 2024; 11:1122904. [PMID: 38348107 PMCID: PMC10859500 DOI: 10.3389/fvets.2024.1122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
To comprehensively provide insight into goose fatty liver formation, we performed an integrative analysis of the liver transcriptome, lipidome, and amino acid metabolome, as well as peripheral adipose tissue transcriptome analysis using samples collected from the overfed geese and normally fed geese. Transcriptome analysis showed that liver metabolism pathways were mainly enriched in glucolipid metabolism, amino acid metabolism, inflammation response, and cell cycle; peripheral adipose tissue and the liver cooperatively regulated liver lipid accumulation during overfeeding. Liver lipidome patterns obviously changed after overfeeding, and 157 different lipids were yielded. In the liver amino acid metabolome, the level of Lys increased after overfeeding. In summary, this is the first study describing goose fatty liver formation from an integrative analysis of transcriptome, lipidome, and amino acid metabolome, which will provide a whole new dimension to understanding the mechanism of goose fatty liver formation.
Collapse
Affiliation(s)
- Rongxue Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shouhai Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Chen X, Yu T, Dou Y, Ji Q, Guo L, Geng Z. High dietary energy decreased reproductive performance through increasing lipid deposition in Yangzhou geese at late laying stage. Poult Sci 2023; 102:102915. [PMID: 37478622 PMCID: PMC10371814 DOI: 10.1016/j.psj.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Dietary metabolizable energy (ME) level could offer a well production performance through maintaining lipid homeostasis in poultry. In this study, a total of 540 geese (450 females and 90 males) at 64 wk of age with similar body weight (4,600 ± 382) were randomly divided into 5 groups with 3 replicates in each group and 30 females and 6 males (1♂:5♀) in each replicate. After 2 wk adaptation, the 5 groups were designed to provide diet with ME intakes of 9.65, 10.05, 10.70, 11.45, and 11.75 MJ/kg, respectively, according to production requirement. Body weight, egg production, hatchability, blood lipid, and fat deposition were recorded after 6 wk feeding. The expression of lipid synthesis-related genes, lipoprotein lipase (LPL) and fatty acid synthase (FASN), were determined by quantitative real-time PCR. Geese fed with high ME diet of 11.75 MJ/kg caused an increased liver and abdominal fat weight and low hatchability of set eggs. The ovarian weight and oviduct length were higher in geese fed dietary energy of 10.7 MJ/kg as compared to the 9.65 MJ/kg groups, whereas no significant difference was observed in geese fed dietary energy of 10.05 MJ/kg. Dietary energy level did not change the concentration of serum lipids at the late egg laying stage. The LPL expression exhibited linear and quadratic effect in response to dietary ME. The FASN expression showed quadratic effect and a relatively higher expression was exhibited in 10.05 and 11.45 MJ/kg than that of the 9.65 and 10.70 MJ/kg ME groups. According to the productivity, reproductive performance, and fat deposition, dietary ME of 10.13 to 10.28 MJ/kg could be suggested for breeding geese at their late laying stage.
Collapse
Affiliation(s)
- Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China.
| | - Taotao Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yuhao Dou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Qianyun Ji
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| |
Collapse
|
9
|
Bao Q, Wang L, Hu X, Yuan C, Zhang Y, Chang G, Chen G. Developmental Changes of Duckling Liver and Isolation of Primary Hepatocytes. Animals (Basel) 2023; 13:1820. [PMID: 37889689 PMCID: PMC10252113 DOI: 10.3390/ani13111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
The liver is the main site of fat synthesis and plays an important role in the study of fat deposition in poultry. In this study, we investigated the developmental changes of duckling livers and isolated primary duck hepatocytes. Firstly, we observed morphological changes in duckling livers from the embryonic period to the first week after hatching. Liver weight increased with age. Hematoxylin-eosin and Oil Red O staining analyses showed that hepatic lipids increased gradually during the embryonic period and declined post-hatching. Liver samples were collected from 21-day-old duck embryos for hepatocyte isolation. The hepatocytes showed limited self-renewal and proliferative ability and were maintained in culture for up to 7 days. Typical parenchymal morphology, with a characteristic polygonal shape, appeared after two days of culture. Periodic acid-Schiff (PAS) staining analysis confirmed the characteristics of duck embryo hepatocytes. PCR analysis showed that these cells from duck embryos expressed the liver cell markers ALB and CD36. Immunohistochemical staining and immunofluorescence analysis also confirmed ALB and CK18 expression. Our findings provide a novel insight regarding in vitro cell culture and the characteristics of hepatocytes from avian species, which could enable further studies concerning specific research on duck lipid metabolism.
Collapse
Affiliation(s)
- Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Laidi Wang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Xiaodan Hu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Chunyou Yuan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Guobin Chang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Wang Y, Song L, Ning M, Hu J, Cai H, Song W, Gong D, Liu L, Smith J, Li H, Huang Y. Identification of alternative splicing events related to fatty liver formation in duck using full-length transcripts. BMC Genomics 2023; 24:92. [PMID: 36858953 PMCID: PMC9976415 DOI: 10.1186/s12864-023-09160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of most common diseases in the world. Recently, alternative splicing (AS) has been reported to play a key role in NAFLD processes in mammals. Ducks can quickly form fatty liver similar to human NAFLD after overfeeding and restore to normal liver in a short time, suggesting that ducks are an excellent model to unravel molecular mechanisms of lipid metabolism for NAFLD. However, how alternative splicing events (ASEs) affect the fatty liver process in ducks is still unclear. RESULTS Here we identify 126,277 unique transcripts in liver tissue from an overfed duck (77,237 total transcripts) and its sibling control (69,618 total transcripts). We combined these full-length transcripts with Illumina RNA-seq data from five pairs of overfed ducks and control individuals. Full-length transcript sequencing provided us with structural information of transcripts and Illumina RNA-seq data reveals the expressional profile of each transcript. We found, among these unique transcripts, 30,618 were lncRNAs and 1,744 transcripts including 155 lncRNAs and 1,589 coding transcripts showed significantly differential expression in liver tissues between overfed ducks and control individuals. We also detected 27,317 ASEs and 142 of them showed significant relative abundance changes in ducks under different feeding conditions. Full-length transcript profiles together with Illumina RNA-seq data demonstrated that 10 genes involving in lipid metabolism had ASEs with significantly differential abundance in normally fed (control) and overfed ducks. Among these genes, protein products of five genes (CYP4F22, BTN, GSTA2, ADH5, and DHRS2 genes) were changed by ASEs. CONCLUSIONS This study presents an example of how to identify ASEs related to important biological processes, such as fatty liver formation, using full-length transcripts alongside Illumina RNA-seq data. Based on these data, we screened out ASEs of lipid-metabolism related genes which might respond to overfeeding. Our future ability to explore the function of genes showing AS differences between overfed ducks and their sibling controls, using genetic manipulations and co-evolutionary studies, will certainly extend our knowledge of genes related to the non-pathogenic fatty liver process.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Han Cai
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Weitao Song
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, No. 58 Cangjie Road, Hanjiang District, Yangzhou, 349019093, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Huifang Li
- Department of Waterfowl Breeding and Production, Jiangsu Institute of Poultry Science, No. 58 Cangjie Road, Hanjiang District, Yangzhou, 349019093, China.
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Wei R, Han C, Wei S, Teng Y, Li L, Liu H, Hu S, Kang B, Xu H. Integrative analysis of transcriptome and lipidome reveals fructose pro-steatosis mechanism in goose fatty liver. Front Nutr 2023; 9:1052600. [PMID: 36704791 PMCID: PMC9871465 DOI: 10.3389/fnut.2022.1052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
To further explore the fructose pro-steatosis mechanism, we performed an integrative analysis of liver transcriptome and lipidome as well as peripheral adipose tissues transcriptome analysis using samples collected from geese overfed with maize flour (control group) and geese overfed with maize flour supplemented with 10% fructose (treatment group). Overfeeding period of the treatment group was significantly shorter than that of the control group (p < 0.05). Dietary supplementation with 10% fructose induced more severe steatosis in goose liver. Compared with the control group, the treatment group had lower in ceramide levels (p < 0.05). The key differentially expressed genes (DEGs) (control group vs. treatment group) involved in liver fatty acid biosynthesis and steroid biosynthesis were downregulated. The conjoint analysis between DEGs and different lipids showed that fatty acid biosynthesis and steroid biosynthesis were the highest impact score pathways. In conclusion, fructose expedites goose liver lipid accumulation maximization during overfeeding.
Collapse
Affiliation(s)
- Rongxue Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shouhai Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Chen G, Zhang K, Tian G, Bai S, Ding X, Wang J, Lv L, Xuan Y, Zeng Q. Effects of a high-fat diet on the growth performance, lipid metabolism, and the fatty acids composition of liver and skin fat in Pekin ducks aged from 10 to 40 days. Poult Sci 2022; 102:102429. [PMID: 36587452 PMCID: PMC9816803 DOI: 10.1016/j.psj.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the effect of a high-fat diet on the growth performance, serum, liver, and skin lipid metabolism as well as the fatty acids composition of liver and skin fat in Pekin ducks from 10 to 40 d of age based on a pair-fed group. Two hundred forty healthy male ducks (10 d old, 470.53 ± 0.57 g) were randomly divided into 3 groups (8 replicates per cage of 10 ducks): a normal diet (ND, 3% fat), a high-fat diet (HFD, 9% fat), and a pair-fed diet (PFD, given the ND in an amount equal to that consumed of the HFD to eliminate the effects of feed intake). The results were as follows: compared to ND feeding, HFD feeding significantly decreased (P < 0.05) the feed intake and feed:gain ratio (F:G), along with serum triglyceride and nonesterified fatty acid contents. When compared with the ND and PFD, the HFD significantly decreased (P < 0.05) the liver weight and inhibited hepatic de novo lipogenesis (glucose-6-phosphate dehydrogenase and malate dehydrogenase activities), β-oxidation (carnitine palmitoyltransferase-1 content), and decreased saturated fatty acids and monounsaturated fatty acids deposition. Moreover, the HFD significantly increased (P < 0.05) the total fat content, lipid droplet area, and polyunsaturated fatty acids (PUFAs) content in the liver, as well as the abdominal fat weight, subcutaneous fat weight, the total fat and PUFAs content in skin fat. These results suggested that the HFD improved feed efficiency, which was related to HFD feeding inhibiting hepatic de novo lipogenesis and β-oxidation and promoting the deposition of fat in skin as well as altering the fatty acids composition of the liver and skin fat in Pekin ducks.
Collapse
Affiliation(s)
- G.H. Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - K.Y. Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - G. Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - S.P. Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - X.M. Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - J.P. Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - L. Lv
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - Y. Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China
| | - Q.F. Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, China,Corresponding author:
| |
Collapse
|
13
|
Zhang Y, Zhang A, Wang L, Yang T, Dong B, Wang Z, Bi Y, Chen G, Chang G. Metabolomics and Proteomics Characterizing Hepatic Reactions to Dietary Linseed Oil in Duck. Int J Mol Sci 2022; 23:ijms232415690. [PMID: 36555340 PMCID: PMC9778787 DOI: 10.3390/ijms232415690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The imbalance in polyunsaturated fatty acid (PUFA) composition in human food is ubiquitous and closely related to obesity and cardiovascular diseases. The development of n-3 PUFA-enriched poultry products is of great significance for optimizing fatty acid composition. This study aimed to improve our understanding of the effects of dietary linseed oil on hepatic metabolism using untargeted metabolomics and 4D label-free proteome analysis. A total of 91 metabolites and 63 proteins showed differences in abundance in duck livers between the high linseed oil and control groups. Pathway analysis revealed that the biosynthesis of unsaturated fatty acids, linoleic acid, glycerophospholipid, and pyrimidine metabolisms were significantly enriched in ducks fed with linseed oil. Meanwhile, dietary linseed oil changed liver fatty acid composition, which was reflected in the increase in the abundance of downstream metabolites, such as α-linolenic acid (ALA; 18:3n-3) as a substrate, including n-3 PUFA and its related glycerophospholipids, and a decrease in downstream n-6 PUFA synthesis using linoleic acid (LA; 18:2n-6) as a substrate. Moreover, the anabolism of PUFA in duck livers showed substrate-dependent effects, and the expression of related proteins in the process of fatty acid anabolism, such as FADS2, LPIN2, and PLA2G4A, were significantly regulated by linseed oil. Collectively, our work highlights the ALA substrate dependence during n-3 PUFA synthesis in duck livers. The present study expands our knowledge of the process products of PUFA metabolism and provides some potential biomarkers for liver health.
Collapse
|
14
|
Betaine Promotes Fat Accumulation and Reduces Injury in Landes Goose Hepatocytes by Regulating Multiple Lipid Metabolism Pathways. Animals (Basel) 2022; 12:ani12121530. [PMID: 35739867 PMCID: PMC9219492 DOI: 10.3390/ani12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Betaine is a well-established supplement used in livestock feeding. In our previous study, betaine was shown to result in the redistribution of body fat, a healthier steatosis phenotype, and an increased liver weight and triglyceride storage of the Landes goose liver, which is used for foie-gras production. However, these effects are not found in other species and strains, and the underlying mechanism is unclear. Here, we studied the underpinning molecular mechanisms by developing an in vitro fatty liver cell model using primary Landes goose hepatocytes and a high-glucose culture medium. Oil red-O staining, a mitochondrial membrane potential assay, and a qRT-PCR were used to quantify lipid droplet characteristics, mitochondrial β-oxidation, and fatty acid metabolism-related gene expression, respectively. Our in vitro model successfully simulated steatosis caused by overfeeding. Betaine supplementation resulted in small, well-distributed lipid droplets, consistent with previous experiments in vivo. In addition, mitochondrial membrane potential was restored, and gene expression of fatty acid synthesis genes (e.g., sterol regulatory-element binding protein, diacylglycerol acyltransferase 1 and 2) was lower after betaine supplementation. By contrast, the expression of lipid hydrolysis transfer genes (mitochondrial transfer protein and lipoprotein lipase) was higher. Overall, the results provide a scientific basis and theoretical support for the use of betaine in animal production.
Collapse
|
15
|
Wei R, Deng D, Teng Y, Lu C, Luo Z, Abdulai M, Liu H, Xu H, Li L, Hu S, Hu J, Wei S, Zeng X, Han C. Study on the effect of different types of sugar on lipid deposition in goose fatty liver. Poult Sci 2022; 101:101729. [PMID: 35172237 PMCID: PMC8850742 DOI: 10.1016/j.psj.2022.101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
|
16
|
Cao Z, Ma B, Cui C, Zhao J, Liu S, Qiu Y, Zheng Y, Gao M, Luan X. Protective effects of AdipoRon on the liver of Huoyan goose fed a high-fat diet. Poult Sci 2022; 101:101708. [PMID: 35150940 PMCID: PMC8844248 DOI: 10.1016/j.psj.2022.101708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Adiponectin can participate in the regulation of glucose and lipid metabolism, energy regulation, immune response, resistance to inflammation, oxidative stress, and apoptosis. Studies in rodents demonstrated that the small molecule compound adiponectin receptor agonist AdipoRon could activate the adiponectin receptor and played the same biological role as adiponectin. To explore the influence and regulation of AdipoRon on lipid metabolism disorder in Huoyan goose liver, in this study, goslings were fed a high-fat diet and then administered different dosages of AdipoRon. Subsequently, goose body weight, liver index, liver histopathological changes, blood glucose, blood and liver lipid, biochemical indexes related to liver function and oxidative stress, and the expression levels of genes related to lipid metabolism, inflammation, apoptosis, and autophagy, adiponectin and its receptors, key molecules of adiponectin involved signal pathway, and transcription factors in the liver, were detected using H&E and Oil red O staining, ELISA, and qRT-PCR methods. The results indicated that AdipoRon could alter the expression of lipid metabolism-related genes, inflammatory factors, apoptosis and autophagy genes, and adiponectin and its receptor genes in liver tissues through signaling pathways such as AMPK and p38 MAPK, as well as the involvement of transcription factors such as PPARα, PPARγ, SIRT1, and FOXO1, reduce the lipid content in blood and liver tissues of geese fed high-fat diets, improve liver antioxidant capacity, regulate apoptosis and autophagy of hepatocytes, and reduce liver inflammatory injury. Our study suggests that AdipoRon has a protective effect on fatty liver injury in goslings fed a high-fat diet.
Collapse
Affiliation(s)
- Zhongzan Cao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ben Ma
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Chengyu Cui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Jiahui Zhao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Sidi Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Yunqiao Qiu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Yan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ming Gao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Xinhong Luan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China.
| |
Collapse
|
17
|
Chadaeva I, Ponomarenko P, Kozhemyakina R, Suslov V, Bogomolov A, Klimova N, Shikhevich S, Savinkova L, Oshchepkov D, Kolchanov NA, Markel A, Ponomarenko M. Domestication Explains Two-Thirds of Differential-Gene-Expression Variance between Domestic and Wild Animals; The Remaining One-Third Reflects Intraspecific and Interspecific Variation. Animals (Basel) 2021; 11:2667. [PMID: 34573632 PMCID: PMC8465180 DOI: 10.3390/ani11092667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Belyaev's concept of destabilizing selection during domestication was a major achievement in the XX century. Its practical value has been realized in commercial colors of the domesticated fox that never occur in the wild and has been confirmed in a wide variety of pet breeds. Many human disease models involving animals allow to test drugs before human testing. Perhaps this is why investigators doing transcriptomic profiling of domestic versus wild animals have searched for breed-specific patterns. Here we sequenced hypothalamic transcriptomes of tame and aggressive rats, identified their differentially expressed genes (DEGs), and, for the first time, applied principal component analysis to compare them with all the known DEGs of domestic versus wild animals that we could find. Two principal components, PC1 and PC2, respectively explained 67% and 33% of differential-gene-expression variance (hereinafter: log2 value) between domestic and wild animals. PC1 corresponded to multiple orthologous DEGs supported by homologs; these DEGs kept the log2 value sign from species to species and from tissue to tissue (i.e., a common domestication pattern). PC2 represented stand-alone homologous DEG pairs reversing the log2 value sign from one species to another and from tissue to tissue (i.e., representing intraspecific and interspecific variation).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (P.P.); (R.K.); (V.S.); (A.B.); (N.K.); (S.S.); (L.S.); (D.O.); (N.A.K.); (A.M.)
| |
Collapse
|
18
|
Lu CC, Wei RX, Deng DH, Luo ZY, Abdulai M, Liu HH, Kang B, Hu SQ, Li L, Xu HY, Hu JW, Wei SH, Han CC. Effect of different types of sugar on gut physiology and microbiota in overfed goose. Poult Sci 2021; 100:101208. [PMID: 34102480 PMCID: PMC8187246 DOI: 10.1016/j.psj.2021.101208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/11/2023] Open
Abstract
To explored the difference of goose fatty liver formation induced-by different types of sugar from the intestinal physiology and the gut microflora, an integrated analysis of intestinal physiology and gut microbiota metagenomes was performed using samples collected from the geese including the normal-feeding geese and the overfed geese which were overfed with maize flour or overfeeding dietary supplementation with 10% sugar (glucose, fructose or sucrose, respectively), respectively. The results showed that the foie gras weight of the fructose group and the sucrose group was heavier (P < 0.05) than other groups. Compared with the control group, the ileum weight was significantly higher (P < 0.01), and the cecum weight was significantly lower in the sugar treatment groups (P < 0.001). Compared with the control group, the ratio of villi height to crypt depth in the fructose group was the highest in jejunum (P < 0.05); the trypsin activity of the ileum was higher in the fructose group and the sucrose group (P < 0.05). At the phylum level, Firmicutes, Proteobacteria and Bacteroidetes were the main intestinal flora of geese; and the abundance of Firmicutes in the jejunum was higher in the sugar treatment groups than that of the maize flour group. At the genus level, the abundance of Lactobacillus in the jejunum was higher (P < 0.05) in the sugar treatment groups than that of the maize flour group. In conclusion, forced-feeding diet supplementation with sugar induced stronger digestion and absorption capacity, increased the abundance of Firmicutes and Bacteroidetes and the abundance of Lactobacillus (especially fructose and sucrose) in the gut. So, the fructose and sucrose had higher induction on hepatic steatosis in goose fatty liver formation.
Collapse
Affiliation(s)
- C C Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - R X Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - D H Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Z Y Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - M Abdulai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - B Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - S Q Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - H Y Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - J W Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - S H Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - C C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
19
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
20
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
21
|
Wei RX, Ye FJ, He F, Song Q, Xiong XP, Yang WL, Gang X, Hu JW, Hu B, Xu HY, Li L, Liu HH, Zeng XY, Chen L, Kang B, Han CC. Comparison of overfeeding effects on gut physiology and microbiota in two goose breeds. Poult Sci 2020; 100:100960. [PMID: 33652539 PMCID: PMC7936201 DOI: 10.1016/j.psj.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
To have a better understanding of how the “gut–liver axis” mediates the lipid deposition in the liver, a comparison of overfeeding influence on intestine physiology and microbiota between Gang Goose and Tianfu Meat Goose was performed in this study. After force-feeding, compared with Gang Goose, Tianfu Meat Goose had better fat storage capacity in liver (397.94 vs. 166.54 for foie gras weight (g), P < 0.05; 6.37 vs. 2.92% for the ratio of liver to body, P < 0.05; 60.01 vs. 46.64% for fat content, P < 0.05) and the less subcutaneous adipose tissue weight (1240.96 g vs. 1440.46 g, P < 0.05). After force-feeding, the digestion–absorption capacity of Tianfu Meat Goose was higher than that of Gang Goose (5.56 vs. 3.64 and 4.63 vs. 3.68 for the ratio of villus height to crypt depth in duodenum and ileum, respectively, P < 0.05; 1394.96 vs. 782.59 and 1314.76 vs. 766.17 for the invertase activity (U/mg-prot), in duodenum and ileum, respectively, P < 0.05; 6038.36 vs. 3088.29 and 4645.29 vs. 3927.61 for the activity of maltase (U/mg-prot), in duodenum and ileum, respectively, P < 0.05). Force-feeding decreased the gene expression of Escherichia coli in the ileum of Tianfu Meat Goose; force-feeding increased the number of gut microbiota Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction band in Tianfu Meat Goose and decreased the number in Gang Goose. In conclusion, compared with Gang Goose, the lipid deposition in the liver and the intestine digestion–absorption capacity and stability were higher in Tianfu Meat Goose. Thereby, Tianfu Meat Goose is the better breed for foie gras production for prolonged force-feeding; Gang Goose possesses better fat storage capacity in subcutaneous adipose tissue. However, Gang Goose has lower gut stability responding to force-feeding, so Gang Goose is suited to force-feeding in a short time to gain the body weight and subcutaneous fat as an overfed duck for roast duck.
Collapse
Affiliation(s)
- R X Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F J Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Q Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X P Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - W L Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Gang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - J W Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H Y Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Y Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - L Chen
- Xichang Huanong Poultry Co., Xichang, Sichuan 615000, P.R. China
| | - B Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - C C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|