1
|
Skaramagkas V, Kyprakis I, Karanasiou GS, Fotiadis DI, Tsiknakis M. A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2025; 6:261-268. [PMID: 39906266 PMCID: PMC11793860 DOI: 10.1109/ojemb.2025.3526457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Quality of Life (QoL) assessment has evolved over time, encompassing diverse aspects of human existence beyond just health. This paper presents a comprehensive review of the integration of Deep Learning (DL) techniques in QoL assessment, focusing on the analysis of wearable data. QoL, as defined by the World Health Organisation, encompasses physical, mental, and social well-being, making it a multifaceted concept. Traditional QoL assessment methods, often reliant on subjective reports or informal questioning, face challenges in quantification and standardization. To address these challenges, DL, a branch of machine learning inspired by the human brain, has emerged as a promising tool. DL models can analyze vast and complex datasets, including patient-reported outcomes, medical images, and physiological signals, enabling a deeper understanding of factors influencing an individual's QoL. Notably, wearable sensory devices have gained prominence, offering real-time data on vital signs and enabling remote healthcare monitoring. This review critically examines DL's role in QoL assessment through the use of wearable data, with particular emphasis on the subdomains of physical and psychological well-being. By synthesizing current research and identifying knowledge gaps, this review provides valuable insights for researchers, clinicians, and policymakers aiming to enhance QoL assessment with DL. Ultimately, the paper contributes to the adoption of advanced technologies to improve the well-being and QoL of individuals from diverse backgrounds.
Collapse
Affiliation(s)
- Vasileios Skaramagkas
- Biomedical Informatics and eHealth LaboratoryDepartment of Electrical and Computer EngineeringHellenic Mediterranean University71410HeraklionGreece
- Institute of Computer ScienceFoundation for Research and Technology Hellas (FORTH)70013HeraklionGreece
| | - Ioannis Kyprakis
- Biomedical Informatics and eHealth LaboratoryDepartment of Electrical and Computer EngineeringHellenic Mediterranean University71410HeraklionGreece
- Institute of Computer ScienceFoundation for Research and Technology Hellas (FORTH)70013HeraklionGreece
- Department of Science et TechniquesUniversity of Burgundy21000DijonFrance
| | - Georgia S. Karanasiou
- Unit of Medical Technology Intelligent Information SystemsUniversity of Ioannina45110IoanninaGreece
- Biomedical Research InstituteFORTH45110IoanninaGreece
| | - Dimitris I. Fotiadis
- Unit of Medical Technology Intelligent Information SystemsUniversity of Ioannina45110IoanninaGreece
- Biomedical Research InstituteFORTH45110IoanninaGreece
| | - Manolis Tsiknakis
- Biomedical Informatics and eHealth LaboratoryDepartment of Electrical and Computer EngineeringHellenic Mediterranean University71410HeraklionGreece
- Institute of Computer ScienceFoundation for Research and Technology Hellas (FORTH)70013HeraklionGreece
| |
Collapse
|
2
|
Kalanjiyam GP, Chandramohan T, Raman M, Kalyanasundaram H. Artificial intelligence: a new cutting-edge tool in spine surgery. Asian Spine J 2024; 18:458-471. [PMID: 38917854 PMCID: PMC11222879 DOI: 10.31616/asj.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 06/27/2024] Open
Abstract
The purpose of this narrative review was to comprehensively elaborate the various components of artificial intelligence (AI), their applications in spine surgery, practical concerns, and future directions. Over the years, spine surgery has been continuously transformed in various aspects, including diagnostic strategies, surgical approaches, procedures, and instrumentation, to provide better-quality patient care. Surgeons have also augmented their surgical expertise with rapidly growing technological advancements. AI is an advancing field that has the potential to revolutionize many aspects of spine surgery. We performed a comprehensive narrative review of the various aspects of AI and machine learning in spine surgery. To elaborate on the current role of AI in spine surgery, a review of the literature was performed using PubMed and Google Scholar databases for articles published in English in the last 20 years. The initial search using the keywords "artificial intelligence" AND "spine," "machine learning" AND "spine," and "deep learning" AND "spine" extracted a total of 78, 60, and 37 articles and 11,500, 4,610, and 2,270 articles on PubMed and Google Scholar. After the initial screening and exclusion of unrelated articles, duplicates, and non-English articles, 405 articles were identified. After the second stage of screening, 93 articles were included in the review. Studies have shown that AI can be used to analyze patient data and provide personalized treatment recommendations in spine care. It also provides valuable insights for planning surgeries and assisting with precise surgical maneuvers and decisionmaking during the procedures. As more data become available and with further advancements, AI is likely to improve patient outcomes.
Collapse
Affiliation(s)
- Guna Pratheep Kalanjiyam
- Spine Surgery Unit, Department of Orthopaedics, Meenakshi Mission Hospital and Research Centre, Madurai,
India
| | - Thiyagarajan Chandramohan
- Department of Orthopaedics, Government Stanley Medical College, Chennai,
India
- Department of Emergency Medicine, Government Stanley Medical College, Chennai,
India
| | - Muthu Raman
- Department of Orthopaedics, Tenkasi Government Hospital, Tenkasi,
India
| | | |
Collapse
|
3
|
Cashaback JGA, Allen JL, Chou AHY, Lin DJ, Price MA, Secerovic NK, Song S, Zhang H, Miller HL. NSF DARE-transforming modeling in neurorehabilitation: a patient-in-the-loop framework. J Neuroeng Rehabil 2024; 21:23. [PMID: 38347597 PMCID: PMC10863253 DOI: 10.1186/s12984-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
In 2023, the National Science Foundation (NSF) and the National Institute of Health (NIH) brought together engineers, scientists, and clinicians by sponsoring a conference on computational modelling in neurorehabiilitation. To facilitate multidisciplinary collaborations and improve patient care, in this perspective piece we identify where and how computational modelling can support neurorehabilitation. To address the where, we developed a patient-in-the-loop framework that uses multiple and/or continual measurements to update diagnostic and treatment model parameters, treatment type, and treatment prescription, with the goal of maximizing clinically-relevant functional outcomes. This patient-in-the-loop framework has several key features: (i) it includes diagnostic and treatment models, (ii) it is clinically-grounded with the International Classification of Functioning, Disability and Health (ICF) and patient involvement, (iii) it uses multiple or continual data measurements over time, and (iv) it is applicable to a range of neurological and neurodevelopmental conditions. To address the how, we identify state-of-the-art and highlight promising avenues of future research across the realms of sensorimotor adaptation, neuroplasticity, musculoskeletal, and sensory & pain computational modelling. We also discuss both the importance of and how to perform model validation, as well as challenges to overcome when implementing computational models within a clinical setting. The patient-in-the-loop approach offers a unifying framework to guide multidisciplinary collaboration between computational and clinical stakeholders in the field of neurorehabilitation.
Collapse
Affiliation(s)
- Joshua G A Cashaback
- Biomedical Engineering, Mechanical Engineering, Kinesiology and Applied Physiology, Biome chanics and Movement Science Program, Interdisciplinary Neuroscience Graduate Program, University of Delaware, 540 S College Ave, Newark, DE, 19711, USA.
| | - Jessica L Allen
- Department of Mechanical Engineering, University of Florida, Gainesville, USA
| | | | - David J Lin
- Division of Neurocritical Care and Stroke Service, Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Providence, USA
| | - Mark A Price
- Department of Mechanical and Industrial Engineering, Department of Kinesiology, University of Massachusetts Amherst, Amherst, USA
| | - Natalija K Secerovic
- School of Electrical Engineering, The Mihajlo Pupin Institute, University of Belgrade, Belgrade, Serbia
- Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems ETH Zürich, Zurich, Switzerland
| | - Seungmoon Song
- Mechanical and Industrial Engineering, Northeastern University, Boston, USA
| | - Haohan Zhang
- Department of Mechanical Engineering, University of Utah, Salt Lake City, USA
| | - Haylie L Miller
- School of Kinesiology, University of Michigan, 830 N University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Çakıt E, Karwowski W. Soft computing applications in the field of human factors and ergonomics: A review of the past decade of research. APPLIED ERGONOMICS 2024; 114:104132. [PMID: 37672916 DOI: 10.1016/j.apergo.2023.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
The main objectives of this study were to 1) review the literature on the applications of soft computing concepts to the field of human factors and ergonomics (HFE) between 2013 and 2022 and 2) highlight future developments and trends. Multiple soft computing methods and techniques have been investigated for their ability to address various applications in HFE effectively. These techniques include fuzzy logic, artificial neural networks, genetic algorithms, and their combinations. Applications of these methods in HFE have been highlighted in one hundred and four articles selected from 406 papers. The results of this study help address the challenges of complexity, vagueness, and imprecision in human factors and ergonomics research through the application of soft computing methodologies.
Collapse
Affiliation(s)
- Erman Çakıt
- Department of Industrial Engineering, Gazi University, 06570, Ankara, Turkey.
| | - Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, 32816-2993, USA
| |
Collapse
|
5
|
Gkikas S, Tsiknakis M. Automatic assessment of pain based on deep learning methods: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107365. [PMID: 36764062 DOI: 10.1016/j.cmpb.2023.107365] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The automatic assessment of pain is vital in designing optimal pain management interventions focused on reducing suffering and preventing the functional decline of patients. In recent years, there has been a surge in the adoption of deep learning algorithms by researchers attempting to encode the multidimensional nature of pain into meaningful features. This systematic review aims to discuss the models, the methods, and the types of data employed in establishing the foundation of a deep learning-based automatic pain assessment system. METHODS The systematic review was conducted by identifying original studies searching digital libraries, namely Scopus, IEEE Xplore, and ACM Digital Library. Inclusion and exclusion criteria were applied to retrieve and select those of interest, published until December 2021. RESULTS A total of one hundred and ten publications were identified and categorized by the number of information channels used (unimodal versus multimodal approaches) and whether the temporal dimension was also used. CONCLUSIONS This review demonstrates the importance of multimodal approaches for automatic pain estimation, especially in clinical settings, and also reveals that significant improvements are observed when the temporal exploitation of modalities is included. It provides suggestions regarding better-performing deep architectures and learning methods. Also, it provides suggestions for adopting robust evaluation protocols and interpretation methods to provide objective and comprehensible results. Furthermore, the review presents the limitations of the available pain databases for optimally supporting deep learning model development, validation, and application as decision-support tools in real-life scenarios.
Collapse
Affiliation(s)
- Stefanos Gkikas
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Estavromenos, Heraklion, 71410, Greece; Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research & Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece.
| | - Manolis Tsiknakis
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Estavromenos, Heraklion, 71410, Greece; Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research & Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece.
| |
Collapse
|
6
|
Zhang B, Dong X, Hu Y, Jiang X, Li G. Classification and prediction of spinal disease based on the SMOTE-RFE-XGBoost model. PeerJ Comput Sci 2023; 9:e1280. [PMID: 37346612 PMCID: PMC10280425 DOI: 10.7717/peerj-cs.1280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/15/2023] [Indexed: 06/23/2023]
Abstract
Spinal diseases are killers that cause long-term disturbance to people with complex and diverse symptoms and may cause other conditions. At present, the diagnosis and treatment of the main diseases mainly depend on the professional level and clinical experience of doctors, which is a breakthrough problem in the field of medicine. This article proposes the SMOTE-RFE-XGBoost model, which takes the physical angle of human bone as the research index for feature selection and classification model construction to predict spinal diseases. The research process is as follows: two groups of people with normal and abnormal spine conditions are taken as the research objects of this article, and the synthetic minority oversampling technique (SMOTE) algorithm is used to address category imbalance. Three methods, least absolute shrinkage and selection operator (LASSO), tree-based feature selection, and recursive feature elimination (RFE), are used for feature selection. Logistic regression (LR), support vector machine (SVM), parsimonious Bayes, decision tree (DT), random forest (RF), gradient boosting tree (GBT), extreme gradient boosting (XGBoost), and ridge regression models are used to classify the samples, construct single classification models and combine classification models and rank the feature importance. According to the accuracy and mean square error (MSE) values, the SMOTE-RFE-XGBoost combined model has the best classification, with accuracy, MSE and F1 values of 97.56%, 0.1111 and 0.8696, respectively. The importance of four indicators, lumbar slippage, cervical tilt, pelvic radius and pelvic tilt, was higher.
Collapse
Affiliation(s)
- Biao Zhang
- School of Computer Science, Liaocheng University, Liaocheng, Shandong, China
| | - Xinyan Dong
- School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Yuwei Hu
- School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Xuchu Jiang
- School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Gongchi Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Muşat EC, Borz SA. Learning from Acceleration Data to Differentiate the Posture, Dynamic and Static Work of the Back: An Experimental Setup. Healthcare (Basel) 2022; 10:916. [PMID: 35628053 PMCID: PMC9140631 DOI: 10.3390/healthcare10050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Information on body posture, postural change, and dynamic and static work is essential in understanding biomechanical exposure and has many applications in ergonomics and healthcare. This study aimed at evaluating the possibility of using triaxial acceleration data to classify postures and to differentiate between dynamic and static work of the back in an experimental setup, based on a machine learning (ML) approach. A movement protocol was designed to cover the essential degrees of freedom of the back, and a subject wearing a triaxial accelerometer implemented this protocol. Impulses and oscillations from the signals were removed by median filtering, then the filtered dataset was fed into two ML algorithms, namely a multilayer perceptron with back propagation (MLPBNN) and a random forest (RF), with the aim of inferring the most suitable algorithm and architecture for detecting dynamic and static work, as well as for correctly classifying the postures of the back. Then, training and testing subsets were delimitated and used to evaluate the learning and generalization ability of the ML algorithms for the same classification problems. The results indicate that ML has a lot of potential in differentiating between dynamic and static work, depending on the type of algorithm and its architecture, and the data quantity and quality. In particular, MLPBNN can be used to better differentiate between dynamic and static work when tuned properly. In addition, static work and the associated postures were better learned and generalized by the MLPBNN, a fact that could provide the basis for cheap real-world offline applications with the aim of getting time-scaled postural profiling data by accounting for the static postures. Although it wasn't the case in this study, on bigger datasets, the use of MLPBPNN may come at the expense of high computational costs in the training phase. The study also discusses the factors that may improve the classification performance in the testing phase and sets new directions of research.
Collapse
Affiliation(s)
| | - Stelian Alexandru Borz
- Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Şirul Beethoven 1, 500123 Brasov, Romania;
| |
Collapse
|
8
|
D’Antoni F, Russo F, Ambrosio L, Bacco L, Vollero L, Vadalà G, Merone M, Papalia R, Denaro V. Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105971. [PMID: 35627508 PMCID: PMC9141006 DOI: 10.3390/ijerph19105971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022]
Abstract
Low Back Pain (LBP) is currently the first cause of disability in the world, with a significant socioeconomic burden. Diagnosis and treatment of LBP often involve a multidisciplinary, individualized approach consisting of several outcome measures and imaging data along with emerging technologies. The increased amount of data generated in this process has led to the development of methods related to artificial intelligence (AI), and to computer-aided diagnosis (CAD) in particular, which aim to assist and improve the diagnosis and treatment of LBP. In this manuscript, we have systematically reviewed the available literature on the use of CAD in the diagnosis and treatment of chronic LBP. A systematic research of PubMed, Scopus, and Web of Science electronic databases was performed. The search strategy was set as the combinations of the following keywords: “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Neural Network”, “Computer Aided Diagnosis”, “Low Back Pain”, “Lumbar”, “Intervertebral Disc Degeneration”, “Spine Surgery”, etc. The search returned a total of 1536 articles. After duplication removal and evaluation of the abstracts, 1386 were excluded, whereas 93 papers were excluded after full-text examination, taking the number of eligible articles to 57. The main applications of CAD in LBP included classification and regression. Classification is used to identify or categorize a disease, whereas regression is used to produce a numerical output as a quantitative evaluation of some measure. The best performing systems were developed to diagnose degenerative changes of the spine from imaging data, with average accuracy rates >80%. However, notable outcomes were also reported for CAD tools executing different tasks including analysis of clinical, biomechanical, electrophysiological, and functional imaging data. Further studies are needed to better define the role of CAD in LBP care.
Collapse
Affiliation(s)
- Federico D’Antoni
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
| | - Fabrizio Russo
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
- Correspondence: (F.R.); (M.M.)
| | - Luca Ambrosio
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Luca Bacco
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
- ItaliaNLP Lab, Istituto di Linguistica Computazionale “Antonio Zampolli”, National Research Council, Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
- Webmonks S.r.l., Via del Triopio, 5, 00178 Rome, Italy
| | - Luca Vollero
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
| | - Gianluca Vadalà
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Mario Merone
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
- Correspondence: (F.R.); (M.M.)
| | - Rocco Papalia
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Vincenzo Denaro
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| |
Collapse
|
9
|
Vogel F, Vahle NM, Gertheiss J, Tomasik MJ. Supervised learning for analysing movement patterns in a virtual reality experiment. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211594. [PMID: 35601447 PMCID: PMC9039785 DOI: 10.1098/rsos.211594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
The projection into a virtual character and the concomitant illusionary body ownership can lead to transformations of one's entity. Both during and after the exposure, behavioural and attitudinal changes may occur, depending on the characteristics or stereotypes associated with the embodied avatar. In the present study, we investigated the effects on physical activity when young students experience being old. After assignment (at random) to a young or an older avatar, the participants' body movements were tracked while performing upper body exercises. We propose and discuss the use of supervised learning procedures to assign these movement patterns to the underlying avatar class in order to detect behavioural differences. This approach can be seen as an alternative to classical feature-wise testing. We found that the classification accuracy was remarkably good for support vector machines with linear kernel and deep learning by convolutional neural networks, when inserting time sub-sequences extracted at random and repeatedly from the original data. For hand movements, associated decision boundaries revealed a higher level of local, vertical positions for the young avatar group, indicating increased agility in their performances. This occurrence held for both guided movements as well as achievement-orientated exercises.
Collapse
Affiliation(s)
- Frederike Vogel
- Department of Mathematics and Statistics, School of Economics and Social Sciences, Helmut Schmidt University, Hamburg, Germany
| | - Nils M. Vahle
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Nordrhein-Westfalen, Germany
| | - Jan Gertheiss
- Department of Mathematics and Statistics, School of Economics and Social Sciences, Helmut Schmidt University, Hamburg, Germany
| | - Martin J. Tomasik
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Nordrhein-Westfalen, Germany
| |
Collapse
|
10
|
Villalobos A, Mac Cawley A. Prediction of slaughterhouse workers' RULA scores and knife edge using low-cost inertial measurement sensor units and machine learning algorithms. APPLIED ERGONOMICS 2022; 98:103556. [PMID: 34419785 DOI: 10.1016/j.apergo.2021.103556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The high prevalence of work-related musculoskeletal disorders (WRMSDs) has been a concern in the meat-processing industry, owing to the manual nature of the work and the high upper-limb and neck exposure to movements that can lead to WRMSD. The ability to perform an accurate and fast assessment of WRMSDs remains a challenge in industrial environments. Most assessment methodologies rely on standard survey-based methods, which are time- and labor-intensive. In this paper, we present an application of inertial measurement units (IMUs) to measure human activity, and the use of artificial intelligence and machine learning techniques to perform task classification and ergonomic assessments in workplace settings. We present the results obtained by using simple low-cost IMUs worn on slaughterhouse worker wrists to capture information on their movements. We describe the use of this information to detect the risk factors of the wrists/hands that can lead to WRMSDs. The results indicate that by using low-cost IMU-based sensors on the wrists of slaughterhouse workers, we can accurately classify the sharpness of the knife and predict the worker RULA score.
Collapse
Affiliation(s)
- Adolfo Villalobos
- Department of Industrial and Systems Engineering. Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile.
| | - Alejandro Mac Cawley
- Department of Industrial and Systems Engineering. Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
11
|
Abstract
Recently, deep learning algorithms have become one of the most popular methods and forms of algorithms used in the medical imaging analysis process. Deep learning tools provide accuracy and speed in the process of diagnosing and classifying lumbar spine problems. Disk herniation and spinal stenosis are two of the most common lower back diseases. The process of diagnosing pain in the lower back can be considered costly in terms of time and available expertise. In this paper, we used multiple approaches to overcome the problem of lack of training data in disc state classification and to enhance the performance of disc state classification tasks. To achieve this goal, transfer learning from different datasets and a proposed region of interest (ROI) technique were implemented. It has been demonstrated that using transfer learning from the same domain as the target dataset may increase performance dramatically. Applying the ROI method improved the disc state classification results in VGG19 2%, ResNet50 16%, MobileNetV2 5%, and VGG16 2%. The results improved VGG16 4% and in VGG19 6%, compared with the transfer from ImageNet. Moreover, it has been stated that the closer the data to be classified is to the data that the system trained on, the better the achieved results will be.
Collapse
|
12
|
Danilov GV, Shifrin MA, Kotik KV, Ishankulov TA, Orlov YN, Kulikov AS, Potapov AA. Artificial Intelligence Technologies in Neurosurgery: a Systematic Literature Review Using Topic Modeling. Part II: Research Objectives and Perspectives. Sovrem Tekhnologii Med 2021; 12:111-118. [PMID: 34796024 PMCID: PMC8596229 DOI: 10.17691/stm2020.12.6.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
The current increase in the number of publications on the use of artificial intelligence (AI) technologies in neurosurgery indicates a new trend in clinical neuroscience. The aim of the study was to conduct a systematic literature review to highlight the main directions and trends in the use of AI in neurosurgery.
Collapse
Affiliation(s)
- G V Danilov
- Scientific Board Secretary; N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia; Head of the Laboratory of Biomedical Informatics and Artificial Intelligence; N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - M A Shifrin
- Scientific Consultant, Laboratory of Biomedical Informatics and Artificial Intelligence; N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - K V Kotik
- Physics Engineer, Laboratory of Biomedical Informatics and Artificial Intelligence; N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - T A Ishankulov
- Engineer, Laboratory of Biomedical Informatics and Artificial Intelligence; N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - Yu N Orlov
- Head of the Department of Computational Physics and Kinetic Equations; Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 4 Miusskaya Sq., Moscow, 125047, Russia
| | - A S Kulikov
- Staff Anesthesiologist; N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A A Potapov
- Professor, Academician of the Russian Academy of Sciences, Chief Scientific Supervisor N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| |
Collapse
|
13
|
Falla D, Devecchi V, Jiménez-Grande D, Rügamer D, Liew BXW. Machine learning approaches applied in spinal pain research. J Electromyogr Kinesiol 2021; 61:102599. [PMID: 34624604 DOI: 10.1016/j.jelekin.2021.102599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023] Open
Abstract
The purpose of this narrative review is to provide a critical reflection of how analytical machine learning approaches could provide the platform to harness variability of patient presentation to enhance clinical prediction. The review includes a summary of current knowledge on the physiological adaptations present in people with spinal pain. We discuss how contemporary evidence highlights the importance of not relying on single features when characterizing patients given the variability of physiological adaptations present in people with spinal pain. The advantages and disadvantages of current analytical strategies in contemporary basic science and epidemiological research are reviewed and we consider how analytical machine learning approaches could provide the platform to harness the variability of patient presentations to enhance clinical prediction of pain persistence or recurrence. We propose that machine learning techniques can be leveraged to translate a potentially heterogeneous set of variables into clinically useful information with the potential to enhance patient management.
Collapse
Affiliation(s)
- Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| | - Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - David Jiménez-Grande
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - David Rügamer
- Department of Statistics, Ludwig-Maximilians-Universität München, Germany
| | - Bernard X W Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, UK
| |
Collapse
|
14
|
Wang Z, Sato K, Nawrin SS, Widatalla NS, Kimura Y, Nagatomi R. Low Back Pain Exacerbation Is Predictable Through Motif Identification in Center of Pressure Time Series Recorded During Dynamic Sitting. Front Physiol 2021; 12:696077. [PMID: 34594234 PMCID: PMC8476954 DOI: 10.3389/fphys.2021.696077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Low back pain (LBP) is a common health problem - sitting on a chair for a prolonged time is considered a significant risk factor. Furthermore, the level of LBP may vary at different times of the day. However, the role of the time-sequence property of sitting behavior in relation to LBP has not been considered. During the dynamic sitting, small changes, such as slight or big sways, have been identified. Therefore, it is possible to identify the motif consisting of such changes, which may be associated with the incidence, exacerbation, or improvement of LBP. Method: Office chairs installed with pressure sensors were provided to a total of 22 office workers (age = 43.4 ± 8.3 years) in Japan. Pressure sensors data were collected during working days and hours (from morning to evening). The participants were asked to answer subjective levels of pain including LBP. Center of pressure (COP) was calculated from the load level, the changes in COP were analyzed by applying the Toeplitz inverse covariance-based clustering (TICC) analysis, COP changes were categorized into several states. Based on the states, common motifs were identified as a recurring sitting behavior pattern combination of different states by motif-aware state assignment (MASA). Finally, the identified motif was tested as a feature to infer the changing levels of LBP within a day. Changes in the levels of LBP from morning to evening were categorized as exacerbated, did not change, or improved based on the survey questions. Here, we present a novel approach based on social spider algorithm (SSA) and probabilistic neural network (PNN) for the prediction of LBP. The specificity and sensitivity of the LBP inference were compared among ten different models, including SSA-PNN. Result: There exists a common motif, consisting of stable sitting and slight sway. When LBP level improved toward the evening, the frequency of motif appearance was higher than when LBP was exacerbated (p < 0.05) or the level did not change. The performance of the SSA-PNN optimization was better than that of the other algorithms. Accuracy, precision, recall, and F1-score were 59.20, 72.46, 40.94, and 63.24%, respectively. Conclusion: A lower frequency of a common motif of the COP dynamic changes characterized by stable sitting and slight sway was found to be associated with the exacerbation of LBP in the evening. LBP exacerbation is predictable by AI-based analysis of COP changes during the sitting behavior of the office workers.
Collapse
Affiliation(s)
- Ziheng Wang
- Department of Medicine and Science in Sports and Exercise, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keizo Sato
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Saida Salima Nawrin
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Namareq Salah Widatalla
- Next Generation Biological Information Technology, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshitaka Kimura
- Next Generation Biological Information Technology, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Artificial Intelligence (AI) in Obstetrics and Gynecology Medical Care, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Tewarie IA, Hulsbergen AFC, Gormley WB, Peul WC, Broekman MLD. Artificial Intelligence in Clinical Neurosurgery: More than Machinery. World Neurosurg 2021; 149:302-303. [PMID: 33940691 DOI: 10.1016/j.wneu.2021.02.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Ishaan Ashwini Tewarie
- Department of Neurosurgery, Computational Neurosciences Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Medicine, Erasmus University Rotterdam, The Netherlands; Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands
| | - Alexander F C Hulsbergen
- Department of Neurosurgery, Computational Neurosciences Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands
| | - William B Gormley
- Department of Neurosurgery, Computational Neurosciences Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wilco C Peul
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Computational Neurosciences Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Asan O, Choudhury A. Research Trends in Artificial Intelligence Applications in Human Factors Health Care: Mapping Review. JMIR Hum Factors 2021; 8:e28236. [PMID: 34142968 PMCID: PMC8277302 DOI: 10.2196/28236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Despite advancements in artificial intelligence (AI) to develop prediction and classification models, little research has been devoted to real-world translations with a user-centered design approach. AI development studies in the health care context have often ignored two critical factors of ecological validity and human cognition, creating challenges at the interface with clinicians and the clinical environment. OBJECTIVE The aim of this literature review was to investigate the contributions made by major human factors communities in health care AI applications. This review also discusses emerging research gaps, and provides future research directions to facilitate a safer and user-centered integration of AI into the clinical workflow. METHODS We performed an extensive mapping review to capture all relevant articles published within the last 10 years in the major human factors journals and conference proceedings listed in the "Human Factors and Ergonomics" category of the Scopus Master List. In each published volume, we searched for studies reporting qualitative or quantitative findings in the context of AI in health care. Studies are discussed based on the key principles such as evaluating workload, usability, trust in technology, perception, and user-centered design. RESULTS Forty-eight articles were included in the final review. Most of the studies emphasized user perception, the usability of AI-based devices or technologies, cognitive workload, and user's trust in AI. The review revealed a nascent but growing body of literature focusing on augmenting health care AI; however, little effort has been made to ensure ecological validity with user-centered design approaches. Moreover, few studies (n=5 against clinical/baseline standards, n=5 against clinicians) compared their AI models against a standard measure. CONCLUSIONS Human factors researchers should actively be part of efforts in AI design and implementation, as well as dynamic assessments of AI systems' effects on interaction, workflow, and patient outcomes. An AI system is part of a greater sociotechnical system. Investigators with human factors and ergonomics expertise are essential when defining the dynamic interaction of AI within each element, process, and result of the work system.
Collapse
Affiliation(s)
- Onur Asan
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Avishek Choudhury
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States
| |
Collapse
|
17
|
Lang VA, Lundh T, Ortiz-Catalan M. Mathematical and computational models for pain: a systematic review. PAIN MEDICINE 2021; 22:2806-2817. [PMID: 34051102 PMCID: PMC8665994 DOI: 10.1093/pm/pnab177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE There is no single prevailing theory of pain that explains its origin, qualities, and alleviation. Although many studies have investigated various molecular targets for pain management, few have attempted to examine the etiology or working mechanisms of pain through mathematical or computational model development. In this systematic review, we identified and classified mathematical and computational models for characterizing pain. METHODS The databases queried were Science Direct and PubMed, yielding 560 articles published prior to January 1st, 2020. After screening for inclusion of mathematical or computational models of pain, 31 articles were deemed relevant. RESULTS Most of the reviewed articles utilized classification algorithms to categorize pain and no-pain conditions. We found the literature heavily focused on the application of existing models or machine learning algorithms to identify the presence or absence of pain, rather than to explore features of pain that may be used for diagnostics and treatment. CONCLUSIONS Although understudied, the development of mathematical models may augment the current understanding of pain by providing directions for testable hypotheses of its underlying mechanisms. Additional focus is needed on developing models that seek to understand the underlying mechanisms of pain, as this could potentially lead to major breakthroughs in its treatment.
Collapse
Affiliation(s)
- Victoria Ashley Lang
- Center for Bionics and Pain Research, Sweden.,Department of Electrical Engineering, Chalmers University of Technology, Sweden
| | - Torbjörn Lundh
- Center for Bionics and Pain Research, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Sweden.,Department of Mathematical Sciences, University of Gothenburg, Sweden
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Sweden.,Department of Electrical Engineering, Chalmers University of Technology, Sweden.,Operational Area 3, Sahlgrenska University Hospital, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
18
|
Hwang J, Lee J, Lee KS. A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches. PLoS One 2021; 16:e0246870. [PMID: 33571318 PMCID: PMC7877597 DOI: 10.1371/journal.pone.0246870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collected. The data set was divided into a training set (90% of data) and a test set (10% of data). Different combinations of variables including demographic and anthropometric information of individual participants and postures was tested and compared to find the most predictive model. The MLP regression and 3 different polynomial regressions (linear, quadratic, and cubic) were conducted and the performance of regression was compared. The results showed that including all variables showed better performance than other combinations of variables. In general, MLP regression showed higher performance than polynomial regressions. Especially, MLP regression considering all variables achieved the highest performance of grip strength prediction (RMSE = 69.01N, R = 0.88, ICC = 0.92). This deep learning-based regression (MLP) would be useful to predict on-site- and individual-specific grip strength in the workspace to reduce the risk of musculoskeletal disorders in the upper extremity.
Collapse
Affiliation(s)
- Jaejin Hwang
- Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, United States of America
| | - Jinwon Lee
- Department of Mechanical Engineering, Texas A&M, College Station, TX, United States of America
| | - Kyung-Sun Lee
- Department of Industrial Health, Catholic University of Pusan, Busan, Republic of Korea
| |
Collapse
|
19
|
Jiménez-Grande D, Farokh Atashzar S, Martinez-Valdes E, Marco De Nunzio A, Falla D. Kinematic biomarkers of chronic neck pain measured during gait: A data-driven classification approach. J Biomech 2021; 118:110190. [PMID: 33581443 DOI: 10.1016/j.jbiomech.2020.110190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022]
Abstract
People with chronic neck pain (CNP) often present with altered gait kinematics. This paper investigates, combines, and compares the kinematic features from linear and nonlinear walking trajectories to design supervised machine learning models which differentiate asymptomatic individuals from those with CNP. For this, 126 features were extracted from seven body segments of 20 asymptomatic subjects and 20 individuals with non-specific CNP. Neighbourhood Component Analysis (NCA) was used to identify body segments and the corresponding significant features which have the maximum discriminative power for conducting classification. We assessed the efficacy of NCA combined with K- Nearest Neighbour (K-NN), Support Vector Machine and Linear Discriminant Analysis. By applying NCA, all classifiers increased their performance for both linear and nonlinear walking trajectories. Notably, features selected by NCA which magnify the classification power of the computational model were solely from the head, trunk and pelvis kinematics. Our results revealed that the nonlinear trajectory provides the best classification performance through the NCA-K-NN algorithms with an accuracy of 90%, specificity of 100% and sensitivity of 83.3%. The selected features by NCA are introduced as key biomarkers of gait kinematics for classifying non-specific CNP. This paper provides insight into changes in gait kinematics which are present in people with non-specific CNP which can be exploited for classification purposes. The result highlights the importance of curvilinear gait kinematic features which potentially could be utilized in future research to predict recurrent episodes of neck pain.
Collapse
Affiliation(s)
- David Jiménez-Grande
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - S Farokh Atashzar
- Electrical & Computer Engineering, as well as Mechanical & Aerospace Engineering at New York University (NYU), USA
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | | | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| |
Collapse
|
20
|
Tewarie IA, Senders JT, Kremer S, Devi S, Gormley WB, Arnaout O, Smith TR, Broekman MLD. Survival prediction of glioblastoma patients-are we there yet? A systematic review of prognostic modeling for glioblastoma and its clinical potential. Neurosurg Rev 2020; 44:2047-2057. [PMID: 33156423 PMCID: PMC8338817 DOI: 10.1007/s10143-020-01430-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma is associated with a poor prognosis. Even though survival statistics are well-described at the population level, it remains challenging to predict the prognosis of an individual patient despite the increasing number of prognostic models. The aim of this study is to systematically review the literature on prognostic modeling in glioblastoma patients. A systematic literature search was performed to identify all relevant studies that developed a prognostic model for predicting overall survival in glioblastoma patients following the PRISMA guidelines. Participants, type of input, algorithm type, validation, and testing procedures were reviewed per prognostic model. Among 595 citations, 27 studies were included for qualitative review. The included studies developed and evaluated a total of 59 models, of which only seven were externally validated in a different patient cohort. The predictive performance among these studies varied widely according to the AUC (0.58-0.98), accuracy (0.69-0.98), and C-index (0.66-0.70). Three studies deployed their model as an online prediction tool, all of which were based on a statistical algorithm. The increasing performance of survival prediction models will aid personalized clinical decision-making in glioblastoma patients. The scientific realm is gravitating towards the use of machine learning models developed on high-dimensional data, often with promising results. However, none of these models has been implemented into clinical care. To facilitate the clinical implementation of high-performing survival prediction models, future efforts should focus on harmonizing data acquisition methods, improving model interpretability, and externally validating these models in multicentered, prospective fashion.
Collapse
Affiliation(s)
- Ishaan Ashwini Tewarie
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan 32, 2512 VA, The Hague, The Netherlands
- Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joeky T Senders
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan 32, 2512 VA, The Hague, The Netherlands
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stijn Kremer
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan 32, 2512 VA, The Hague, The Netherlands
| | - Sharmila Devi
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- King's College, London, UK
| | - William B Gormley
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar Arnaout
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy R Smith
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan 32, 2512 VA, The Hague, The Netherlands.
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
21
|
Deep-Learning-Based Models for Pain Recognition: A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traditional standards employed for pain assessment have many limitations. One such limitation is reliability linked to inter-observer variability. Therefore, there have been many approaches to automate the task of pain recognition. Recently, deep-learning methods have appeared to solve many challenges such as feature selection and cases with a small number of data sets. This study provides a systematic review of pain-recognition systems that are based on deep-learning models for the last two years. Furthermore, it presents the major deep-learning methods used in the review papers. Finally, it provides a discussion of the challenges and open issues.
Collapse
|
22
|
Azimi P, Yazdanian T, Benzel EC, Aghaei HN, Azhari S, Sadeghi S, Montazeri A. A Review on the Use of Artificial Intelligence in Spinal Diseases. Asian Spine J 2020; 14:543-571. [PMID: 32326672 PMCID: PMC7435304 DOI: 10.31616/asj.2020.0147] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial neural networks (ANNs) have been used in a wide variety of real-world applications and it emerges as a promising field across various branches of medicine. This review aims to identify the role of ANNs in spinal diseases. Literature were searched from electronic databases of Scopus and Medline from 1993 to 2020 with English publications reported on the application of ANNs in spinal diseases. The search strategy was set as the combinations of the following keywords: "artificial neural networks," "spine," "back pain," "prognosis," "grading," "classification," "prediction," "segmentation," "biomechanics," "deep learning," and "imaging." The main findings of the included studies were summarized, with an emphasis on the recent advances in spinal diseases and its application in the diagnostic and prognostic procedures. According to the search strategy, a set of 3,653 articles were retrieved from Medline and Scopus databases. After careful evaluation of the abstracts, the full texts of 89 eligible papers were further examined, of which 79 articles satisfied the inclusion criteria of this review. Our review indicates several applications of ANNs in the management of spinal diseases including (1) diagnosis and assessment of spinal disease progression in the patients with low back pain, perioperative complications, and readmission rate following spine surgery; (2) enhancement of the clinically relevant information extracted from radiographic images to predict Pfirrmann grades, Modic changes, and spinal stenosis grades on magnetic resonance images automatically; (3) prediction of outcomes in lumbar spinal stenosis, lumbar disc herniation and patient-reported outcomes in lumbar fusion surgery, and preoperative planning and intraoperative assistance; and (4) its application in the biomechanical assessment of spinal diseases. The evidence suggests that ANNs can be successfully used for optimizing the diagnosis, prognosis and outcome prediction in spinal diseases. Therefore, incorporation of ANNs into spine clinical practice may improve clinical decision making.
Collapse
Affiliation(s)
- Parisa Azimi
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Edward C. Benzel
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hossein Nayeb Aghaei
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirzad Azhari
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sohrab Sadeghi
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Montazeri
- Mental Health Research Group, Health Metrics Research Centre, Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Tagliaferri SD, Angelova M, Zhao X, Owen PJ, Miller CT, Wilkin T, Belavy DL. Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews. NPJ Digit Med 2020; 3:93. [PMID: 32665978 PMCID: PMC7347608 DOI: 10.1038/s41746-020-0303-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Artificial intelligence and machine learning (AI/ML) could enhance the ability to detect patterns of clinical characteristics in low-back pain (LBP) and guide treatment. We conducted three systematic reviews to address the following aims: (a) review the status of AI/ML research in LBP, (b) compare its status to that of two established LBP classification systems (STarT Back, McKenzie). AI/ML in LBP is in its infancy: 45 of 48 studies assessed sample sizes <1000 people, 19 of 48 studies used ≤5 parameters in models, 13 of 48 studies applied multiple models and attained high accuracy, 25 of 48 studies assessed the binary classification of LBP versus no-LBP only. Beyond the 48 studies using AI/ML for LBP classification, no studies examined use of AI/ML in prognosis prediction of specific sub-groups, and AI/ML techniques are yet to be implemented in guiding LBP treatment. In contrast, the STarT Back tool has been assessed for internal consistency, test-retest reliability, validity, pain and disability prognosis, and influence on pain and disability treatment outcomes. McKenzie has been assessed for inter- and intra-tester reliability, prognosis, and impact on pain and disability outcomes relative to other treatments. For AI/ML methods to contribute to the refinement of LBP (sub-)classification and guide treatment allocation, large data sets containing known and exploratory clinical features should be examined. There is also a need to establish reliability, validity, and prognostic capacity of AI/ML techniques in LBP as well as its ability to inform treatment allocation for improved patient outcomes and/or reduced healthcare costs.
Collapse
Affiliation(s)
- Scott D. Tagliaferri
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC Australia
| | - Maia Angelova
- School of Information Technology, Deakin University, Geelong, VIC Australia
| | - Xiaohui Zhao
- Xi’an University of Architecture & Technology, Beilin, Xi’an China
| | - Patrick J. Owen
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC Australia
| | - Clint T. Miller
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC Australia
| | - Tim Wilkin
- School of Information Technology, Deakin University, Geelong, VIC Australia
| | - Daniel L. Belavy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC Australia
| |
Collapse
|
24
|
Tsao L, Nussbaum MA, Kim S, Ma L. Modelling performance during repetitive precision tasks using wearable sensors: a data-driven approach. ERGONOMICS 2020; 63:831-849. [PMID: 32321375 DOI: 10.1080/00140139.2020.1759700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In modern manufacturing systems, especially assembly lines, human input is a critical resource to provide dexterity and flexibility. However, the repetitive precision tasks common in assembly lines can have adverse effects on workers and overall system performance. We present a data-driven approach to evaluating task performance using wearable sensor data (kinematics, electromyography and heart rate). Eighteen participants (gender-balanced) completed repeated cycles of maze tracking and assembly/disassembly. Various combinations of input data types and classification algorithms were used to model task performance. The use of the linear discriminant analysis (LDA) algorithm and kinematic data provided the most promising classification performance. The highest model accuracy was found using the LDA algorithm and all data types, with respective levels of 62.4, 88.6, 85.8 and 94.1% for predicting maze errors, maze speed, assembly/disassembly errors and assembly/disassembly speed. The presented approach provides the possibility for real-time, on-line and comprehensive monitoring of system performance in assembly-lines or similar industries. Practitioner summary: This paper proposed models the repetitive precision task performance using data collected from wearable sensors. The use of the LDA algorithm and kinematic data provided the most promising classification performance. The presented approach provides the possibility for real-time, on-line and comprehensive monitoring of system performance in assembly lines or similar industries. Abbreviations: AD: anterior deltoid; BB: biceps brachii; ECR: extensor carpi radialis; ECU: extensor carpi ulnaris; FCR: flexor carpi radialis; FCU: flexor carpi ulnaris; FN: false negatives; FP: false positives; HR: heart rate; HRR: heart rate reserve; IMUs: inertial measurement units; kNN: k-nearest neighbors; LDA: linear discriminant analysis; MD: medial deltoid; MF: median power frequency; MNF: mean power frequency; MVIC: maximum voluntary isometric contraction; nRMS: normalized root-mean-square amplitudes; PD: posterior deltoid; RandFor: random forests; RHR: resting heart rate; RMS: root-mean-square amplitudes; sEMG: surface electromyographic; SVM: support vector machines; TB: triceps brachii medial; TN: true negatives; TP: true positives; t-SNE: t-distributed Stochastic Neighbor Embedding; UT: upper trapezius.
Collapse
Affiliation(s)
- Liuxing Tsao
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
- Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liang Ma
- Department of Industrial Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Liew BXW, Rugamer D, De Nunzio AM, Falla D. Interpretable machine learning models for classifying low back pain status using functional physiological variables. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:1845-1859. [PMID: 32124044 DOI: 10.1007/s00586-020-06356-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE To evaluate the predictive performance of statistical models which distinguishes different low back pain (LBP) sub-types and healthy controls, using as input predictors the time-varying signals of electromyographic and kinematic variables, collected during low-load lifting. METHODS Motion capture with electromyography (EMG) assessment was performed on 49 participants [healthy control (con) = 16, remission LBP (rmLBP) = 16, current LBP (LBP) = 17], whilst performing a low-load lifting task, to extract a total of 40 predictors (kinematic and electromyographic variables). Three statistical models were developed using functional data boosting (FDboost), for binary classification of LBP statuses (model 1: con vs. LBP; model 2: con vs. rmLBP; model 3: rmLBP vs. LBP). After removing collinear predictors (i.e. a correlation of > 0.7 with other predictors) and inclusion of the covariate sex, 31 predictors were included for fitting model 1, 31 predictors for model 2, and 32 predictors for model 3. RESULTS Seven EMG predictors were selected in model 1 (area under the receiver operator curve [AUC] of 90.4%), nine predictors in model 2 (AUC of 91.2%), and seven predictors in model 3 (AUC of 96.7%). The most influential predictor was the biceps femoris muscle (peak [Formula: see text] = 0.047) in model 1, the deltoid muscle (peak [Formula: see text] = 0.052) in model 2, and the iliocostalis muscle (peak [Formula: see text] = 0.16) in model 3. CONCLUSION The ability to transform time-varying physiological differences into clinical differences could be used in future prospective prognostic research to identify the dominant movement impairments that drive the increased risk. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Bernard X W Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, CO4 3SQ, Essex, UK.
| | - David Rugamer
- Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany
- Chair of Statistics, School of Business and Economics, Humboldt University of Berlin, Berlin, Germany
| | - Alessandro Marco De Nunzio
- LUNEX International University of Health, Exercise and Sports, 50, Avenue du Parc des Sports, 4671, Differdange, Luxembourg
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B152TT, UK
| |
Collapse
|
26
|
Naranjo-Hernández D, Reina-Tosina J, Roa LM. Sensor Technologies to Manage the Physiological Traits of Chronic Pain: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E365. [PMID: 31936420 PMCID: PMC7014460 DOI: 10.3390/s20020365] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Non-oncologic chronic pain is a common high-morbidity impairment worldwide and acknowledged as a condition with significant incidence on quality of life. Pain intensity is largely perceived as a subjective experience, what makes challenging its objective measurement. However, the physiological traces of pain make possible its correlation with vital signs, such as heart rate variability, skin conductance, electromyogram, etc., or health performance metrics derived from daily activity monitoring or facial expressions, which can be acquired with diverse sensor technologies and multisensory approaches. As the assessment and management of pain are essential issues for a wide range of clinical disorders and treatments, this paper reviews different sensor-based approaches applied to the objective evaluation of non-oncological chronic pain. The space of available technologies and resources aimed at pain assessment represent a diversified set of alternatives that can be exploited to address the multidimensional nature of pain.
Collapse
Affiliation(s)
- David Naranjo-Hernández
- Biomedical Engineering Group, University of Seville, 41092 Seville, Spain; (J.R.-T.); (L.M.R.)
| | | | | |
Collapse
|