1
|
Juzsakova T, Salman AD, Abdullah TA, Rasheed RT, Zsirka B, Al-Shaikhly RR, Sluser B, Cretescu I. Removal of Methylene Blue from Aqueous Solution by Mixture of Reused Silica Gel Desiccant and Natural Sand or Eggshell Waste. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1618. [PMID: 36837246 PMCID: PMC9965102 DOI: 10.3390/ma16041618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this work was to develop, characterize and test new low-cost materials suitable for removing methylene blue dye from water and wastewater by adsorption. The solid materials consisted of silica gel powder (SG), silica gel mixed with eggshell powder (SG-ES) and a mixture of silica gel with sand from the western Iraqi desert (SG-SI). The samples were milled by using an electrical mixer and a ball mill, followed by a drying step. In addition, desert sand was acid-treated in order to remove impurities. The structure and chemical composition of the samples were investigated by X-ray diffraction (XRD), a scanning electron microscopy technique equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), a low-temperature nitrogen adsorption (BET) technique, thermo-analytical (TG/TGA) measurements and Fourier-transformed infrared spectroscopy (FTIR). The previously mentioned materials were tested to remove methylene blue from an aqueous solution. The adsorption experiments were monitored by ultraviolet-visible (UV-Vis) spectrophotometry and showed that SG and SG-ES gave promising results for the methylene blue removal from water. After 40 min of treatment of the aqueous solution containing 10 mg/L of MB at room temperature, the tested SG, SG-ES and SG-SI materials were found to have 86%, 80% and 57% dye adsorption efficiency, respectively. Taking into consideration not only the adsorption activity of the studied material but their availability, cost and concepts of cleaner production and waste minimization, the developed silica gel with eggshell can be considered as a good, cost-effective alternative to commercially available activated-carbon-based adsorbents. Different kinetic and isotherm models were fitted to the experimental results. A pseudo-second-kinetics-order model revealed high correlation fitting, while the Freundlich model was found to appropriately describe the adsorption isotherm. The thermal stability during the possible regeneration process of the SG-ES adsorbent mixture and its interaction mechanism with cationic dye was discussed.
Collapse
Affiliation(s)
- Tatjana Juzsakova
- Sustainability Solutions Research Lab, Research Centre for Biochemical, Environmental and Chemical Engineering, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary
| | - Ali Dawood Salman
- Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University for Oil and Gas, Basra 61004, Iraq
| | - Thamer Adnan Abdullah
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10070, Iraq
| | - Rashed Taleb Rasheed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10070, Iraq
| | - Balázs Zsirka
- Research Group of Analytical Chemistry/Laboratory for Surfaces and Nanostructures, Center for Natural Sciences, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary
| | - Rasha R. Al-Shaikhly
- Department of Prosthetic Dental Technology, Faculty of Health and Medical Technology, Al-Farahidi University, Al-Jadiriyah Bridge, Baghdad 10070, Iraq
| | - Brindusa Sluser
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
| | - Igor Cretescu
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
| |
Collapse
|
2
|
Jeyavani V, Mukherjee SP. Crystal Phase and Morphology-Controlled Synthesis of Tungsten Oxide Nanostructures for Remarkably Ultrafast Adsorption and Separation of Organic Dyes. Inorg Chem 2022; 61:18119-18134. [DOI: 10.1021/acs.inorgchem.2c02715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Vijayakrishnan Jeyavani
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Shatabdi Porel Mukherjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
3
|
Vonnie JM, Li CS, Erna KH, Yin KW, Felicia WXL, Aqilah MNN, Rovina K. Development of Eggshell-Based Orange Peel Activated Carbon Film for Synergetic Adsorption of Cadmium (II) Ion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162750. [PMID: 36014615 PMCID: PMC9415680 DOI: 10.3390/nano12162750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 06/12/2023]
Abstract
Heavy metal contamination has spread around the world, particularly in emerging countries. This study aimed to assess the effectiveness of starch/eggshell/orange peel-activated carbon-based composite films in removing cadmium (II) ions from water samples. X-ray diffraction and scanning electron microscopy were used to characterize the composite films. The effect of Cd2+ was studied using a UV-Vis spectrophotometer and atomic absorption spectroscopy. The morphology of the composite film reveals a highly porous and rough surface with more open channels and a non-uniform honeycomb, indicating that the film has a high potential to adsorb Cd2+. The diffraction peaks for this film were found to be at 13.74°, 17.45°, 18.4°, and 23.6°, indicating a typical crystalline A-type packing arrangement within the starch granules. The results indicate that crystalline structure was unaffected by the addition of eggshell powder and orange peel-activated carbon. In 0.5 mg L-1 and 1.0 mg L-1 Cd2+ ions, the composite film removed 100% and 99.7% of the Cd2+, respectively, while the maximum removal efficiency for methylene blue was 93.75%. Thus, the current study shows that starch/eggshell/orange peel activated carbon film has a high potential for commercial activated carbon as a low-cost adsorbent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kobun Rovina
- Correspondence: ; Tel.: +60-88320000 (ext. 8713); Fax: +60-88-320993
| |
Collapse
|
4
|
Ahmad A, Jini D, Aravind M, Parvathiraja C, Ali R, Kiyani MZ, Alothman A. A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Tran TV, Nong LX, Nguyen HTT, Nguyen VH, Nguyen DTC, Nguyen TT, Trang PQ, Nguyen DH, Nguyen TD. Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1820523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Thuan Van Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Linh Xuan Nong
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hong-Tham T. Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vinh Huu Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | | - Thuong Thi Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Pham Quynh Trang
- Laboratory of Material and Environment Technology, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh city, Vietnam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Akpomie KG, Conradie J. Biosorption and regeneration potentials of magnetite nanoparticle loaded Solanum tuberosum peel for celestine blue dye. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:347-361. [PMID: 32898434 DOI: 10.1080/15226514.2020.1814198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This research evaluated the adsorption of celestine blue (CB) onto a novel Solanum tuberosum waste-magnetite nanocomposite (Mt@STB), prepared by an ecofriendly impregnation of magnetite (Mt) nanoparticles onto Solanum tuberosum waste (STB). The adsorbents characterization revealed that Mt@STB had a surface area (18.92 m2/g), pHpzc (7.55), porous morphology as well as suitable functional groups for efficient sequestration of CB onto the composite. The SEM, XRD, and EDX showed successful incorporation of 31.21 nm average size Mt nanoparticles on Mt@STB. Faster kinetics of CB sequestration from the wastewater was obtained for Mt@STB (100 min) compared to STB (140 min). Among four isotherm models, the Langmuir exhibited the best fit with R2 > 0.9971 and sum square errors (SSE) < 0.0151. The pristine STB and Mt@STB composite showed maximum monolayer CEB uptake of 7.61 and 9.02 mg/g, as well as optimum removal of 73.8 and 84.7%, respectively. The pseudo-second-order model was more suitable in the kinetic description, while thermodynamics revealed a physical, spontaneous, and endothermic CB uptake. Besides, the efficacy of the composite for CB was confirmed from efficient regeneration over three adsorption/desorption cycles, which specified the viability of Mt@STB as a sustainable material for the decontamination of CB polluted water. NOVELTY STATEMENT The adsorption of dyes from wastewaters has been widely studied due to the harmful effects on the ecosystem. However, research on the removal of celestine blue (CB) dye is rare despite its wide use in the nuclear and textile industries. Until date, there is no report on the adsorption of CB on biomaterial via biosorption. Therefore, the biosorption behavior of CB is presently unknown. Hence, this study reports the biosorption of CB onto a biosorbent (Solanum tuberosum peel [STB]) in an attempt to understand its biosorption behavior. Besides, the impregnation of magnetite (Mt) nanoparticles has been reported to enhance the uptake of most adsorbents for dye. To the best of our knowledge, such magnetic nanoparticle impregnation of STB has not been reported. We, therefore, synthesized a novel biowaste-magnetite composite (Mt@STB) and evaluated its potentials for the uptake as well as its reuse for CB biosorption.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
7
|
Meng X, Scheidemantle B, Li M, Wang YY, Zhao X, Toro-González M, Singh P, Pu Y, Wyman CE, Ozcan S, Cai CM, Ragauskas AJ. Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution. ACS OMEGA 2020; 5:2865-2877. [PMID: 32095708 PMCID: PMC7033985 DOI: 10.1021/acsomega.9b03717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/23/2020] [Indexed: 05/06/2023]
Abstract
How to effectively remove toxic dyes from the industrial wastewater using a green low-cost lignocellulose-based adsorbent, such as lignin, has become a topic of great interest but remains quite challenging. In this study, cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment and Mannich reaction were combined to generate an aminated CELF lignin which is subsequently applied for removal of methylene blue and direct blue (DB) 1 dye from aqueous solution. 31P NMR was used to track the degree of amination, and an orthogonal design was applied to determine the relationship between the extent of amination and reaction parameters. The physicochemical, morphological, and thermal properties of the aminated CELF lignin were characterized to confirm the successful grafting of diethylenetriamine onto the lignin. The aminated CELF lignin proved to be an effective azo dye-adsorbent, demonstrating considerably enhanced dye decolorization, especially toward DB 1 dye (>90%). It had a maximum adsorption capacity of DB 1 dye of 502.7 mg/g, and the kinetic study suggested the adsorption process conformed to a pseudo-second-order kinetic model. The isotherm results also showed that the modified lignin-based adsorbent exhibited monolayer adsorption. The adsorbent properties were mainly attributed to the incorporated amine functionalities as well as the increased specific surface area of the aminated CELF lignin.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department
of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- E-mail: (X.M.)
| | - Brent Scheidemantle
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Mi Li
- Department
of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Yun-yan Wang
- Department
of Forestry, Wildlife, and Fisheries; Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of
Agriculture, Knoxville, Tennessee 37996, United States
| | - Xianhui Zhao
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miguel Toro-González
- Isotope
and Fuel Cycle Technology Division, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Priyanka Singh
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Yunqiao Pu
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles E. Wyman
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Soydan Ozcan
- Department
of Mechanical, Aerospace, Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Manufacturing
Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, Knoxville, Tennessee 37932, United States
| | - Charles M. Cai
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Arthur J. Ragauskas
- Department
of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Forestry, Wildlife, and Fisheries; Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of
Agriculture, Knoxville, Tennessee 37996, United States
- E-mail: (A.J.R.)
| |
Collapse
|
8
|
Mijinyawa AH, Durga G, Mishra A. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1122-1129. [PMID: 31056928 DOI: 10.1080/15226514.2019.1606785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20 mg/L initial concentration of dye, 120 mg of adsorbent dose, solution pH 8.5, 311.2 K temperature and 80 min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.
Collapse
Affiliation(s)
| | - Geeta Durga
- Department of Chemistry, Sharda University , Greater Noida , Utter Pradesh , India
| | - Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences, Gautam Buddha University , Greater Noida , Utter Pradesh , India
| |
Collapse
|