1
|
Nakamura K, Sun Z, Hara-Cleaver C, Bodhinathan K, Avila RL. Natalizumab reduces loss of gray matter and thalamic volume in patients with relapsing-remitting multiple sclerosis: A post hoc analysis from the randomized, placebo-controlled AFFIRM trial. Mult Scler 2024; 30:687-695. [PMID: 38469809 DOI: 10.1177/13524585241235055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Loss of brain gray matter fractional volume predicts multiple sclerosis (MS) progression and is associated with worsening physical and cognitive symptoms. Within deep gray matter, thalamic damage is evident in early stages of MS and correlates with physical and cognitive impairment. Natalizumab is a highly effective treatment that reduces disease progression and the number of inflammatory lesions in patients with relapsing-remitting MS (RRMS). OBJECTIVE To evaluate the effect of natalizumab on gray matter and thalamic atrophy. METHODS A combination of deep learning-based image segmentation and data augmentation was applied to MRI data from the AFFIRM trial. RESULTS This post hoc analysis identified a reduction of 64.3% (p = 0.0044) and 64.3% (p = 0.0030) in mean percentage gray matter volume loss from baseline at treatment years 1 and 2, respectively, in patients treated with natalizumab versus placebo. The reduction in thalamic fraction volume loss from baseline with natalizumab versus placebo was 57.0% at year 2 (p < 0.0001) and 41.2% at year 1 (p = 0.0147). Similar findings resulted from analyses of absolute gray matter and thalamic fraction volume loss. CONCLUSION These analyses represent the first placebo-controlled evidence supporting a role for natalizumab treatment in mitigating gray matter and thalamic fraction atrophy among patients with RRMS. CLINICALTRIALS.GOV IDENTIFIER NCT00027300URL: https://clinicaltrials.gov/ct2/show/NCT00027300.
Collapse
Affiliation(s)
- Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
2
|
AbdelRazek MA, Tummala S, Khalid F, Tauhid S, Jalkh Y, Khalil S, Hurwitz S, Zurawski J, Bakshi R. Exploring the effect of glatiramer acetate on cerebral gray matter atrophy in multiple sclerosis. J Neurol Sci 2023; 444:120501. [PMID: 36481574 DOI: 10.1016/j.jns.2022.120501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral gray matter (GM) atrophy is a proposed measure of neuroprotection in multiple sclerosis (MS). Glatiramer acetate (GA) limits clinical relapses, MRI lesions, and whole brain atrophy in relapsing-remitting MS (RRMS). The effect of GA on GM atrophy remains unclear. We assessed GM atrophy in patients with RRMS starting GA therapy in comparison to a cohort of patients with clinically benign RRMS (BMS). DESIGN/METHODS We studied 14 patients at GA start [age (mean ± SD) 44.2 ± 7.0 years, disease duration (DD) 7.2 ± 6.4 years, Expanded Disability Status Scale score (EDSS) (median,IQR) 1.0,2.0] and 6 patients with BMS [age 43.0 ± 6.1 years, DD 18.1 ± 8.4 years, EDSS 0.5,1.0]. Brain MRI was obtained at baseline and one year later (both groups) and two years later in all patients in the GA group except one who was lost to follow-up. Semi-automated algorithms assessed cerebral T2 hyperintense lesion volume (T2LV), white matter fraction (WMF), GM fraction (GMF), and brain parenchymal fraction (BPF). The exact Wilcoxon-Mann-Whitney test compared the groups. The Wilcoxon signed rank test assessed longitudinal changes within groups. RESULTS During the first year, MRI changes did not differ significantly between groups (p > 0.15). Within the BMS group, WMF and BPF decreased during the first year (p = 0.03). Within the GA group, there was no significant change in MRI measures during each annual period (p > 0.05). Over two years, the GA group had a significant increase in T2LV and decrease in WMF (p < 0.05), while GMF and BPF remained stable (p > 0.05). MRI changes in brain volumes (GMF or WMF) in the first year in the GA group were not significantly different from those in the BMS group (p > 0.5). CONCLUSIONS In this pilot study with a small sample size, patients with RRMS started on GA did not show significant GM or whole brain atrophy over 2 years, resembling MS patients with a clinically benign disease course.
Collapse
Affiliation(s)
| | - Subhash Tummala
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fariha Khalid
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Youmna Jalkh
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samar Khalil
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shelley Hurwitz
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Zurawski
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Departments of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Preziosa P, Rocca MA, Pagani E, Storelli L, Rodegher M, Moiola L, Filippi M. Two-year regional grey and white matter volume changes with natalizumab and fingolimod. J Neurol Neurosurg Psychiatry 2020; 91:493-502. [PMID: 32111638 DOI: 10.1136/jnnp-2019-322439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To compare the efficacy of fingolimod and natalizumab in preventing regional grey matter (GM) and white matter (WM) atrophy in relapsing-remitting multiple sclerosis (RRMS) over 2 years. METHODS Patients with RRMS starting fingolimod (n=25) or natalizumab (n=30) underwent clinical examination and 3T MRI scans at baseline (month (M) 0), M6, M12 and M24. Seventeen healthy controls were also scanned at M0 and M24. Tensor-based morphometry and SPM12 were used to assess the longitudinal regional GM/WM volume changes. RESULTS At M0, no clinical or GM/WM volume differences were found between treatment groups. At M24, both drugs reduced relapse rate (p<0.001 for both) and stabilised disability. At M6 vs M0, both groups experienced significant atrophy of several areas in the cortex, deep GM nuclei and supratentorial WM. Significant bilateral cerebellar GM and WM atrophy occurred in fingolimod patients only. At M12 vs M6 and M24 vs M12, further supratentorial GM and WM atrophy occurred in both groups. Bilateral GM/WM cerebellar atrophy continued to progress in fingolimod patients only. Compared with natalizumab, fingolimod-treated patients showed a significant cerebellar GM/WM atrophy, mainly at M6 vs M0, but still occurring up to M24. Compared with fingolimod, natalizumab-treated patients had a small number of areas of GM atrophy in temporo-occipital regions at the different time-points. CONCLUSIONS Natalizumab and fingolimod are associated with heterogeneous temporal and regional patterns of GM and WM atrophy progression. Compared with natalizumab, fingolimod-treated patients experience accelerated GM and WM atrophy in the cerebellum, while both drugs show minimal regional volumetric differences in supratentorial regions.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Preziosa P, Rocca MA, Riccitelli GC, Moiola L, Storelli L, Rodegher M, Comi G, Signori A, Falini A, Filippi M. Effects of Natalizumab and Fingolimod on Clinical, Cognitive, and Magnetic Resonance Imaging Measures in Multiple Sclerosis. Neurotherapeutics 2020; 17:208-217. [PMID: 31452082 PMCID: PMC7007466 DOI: 10.1007/s13311-019-00781-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Studies comparing the effects of natalizumab and fingolimod in relapsing-remitting multiple sclerosis (RRMS) are limited. We aimed to compare natalizumab and fingolimod effects on clinical, neuropsychological, and MRI measures in RRMS patients after 2 years of treatment. RRMS patients starting natalizumab (n = 30) or fingolimod (n = 25) underwent neurologic, neuropsychological, and brain MRI assessments at baseline, month (M) 6, M12, and M24. Volumes of lesions, brain, gray matter (GM), white matter (WM), and deep GM were measured. Fifteen healthy controls (HC) were also scanned at baseline and M24. Treatment groups were matched for baseline variables. At M24 versus baseline, both drugs reduced the relapse rate (p value < 0.001), stabilized disability, and improved cognitive function (fingolimod: p value = 0.03; natalizumab: p value = 0.01), without between-group differences. The natalizumab group had a higher proportion of freedom from MRI activity (67% vs 36%, p value = 0.02) and no evidence of disease activity-3 (NEDA-3) (57% vs 28%, p value = 0.04). At M24 vs M6, brain (- 0.35%, p value = 0.002 [fingolimod]; - 0.42%, p value < 0.001 [natalizumab]), GM (- 0.62%, p value < 0.001 [fingolimod]; - 0.64%, p value < 0.001 [natalizumab]), and WM (- 0.98%, p value < 0.001 [fingolimod]; - 0.99%, p value < 0.001 [natalizumab]) atrophy progressed at higher rates than in HC, but similarly between treatment groups, whereas only the natalizumab group showed deep GM atrophy (- 0.79%, p value = 0.02) (p value vs fingolimod not significant). In both groups, atrophy progression was correlated with lesion accumulation (r from - 0.49 to - 0.36, p values from 0.013 to 0.05), whereas no correlation was found between clinical and MRI changes. Natalizumab and fingolimod reduce disease activity and improve cognition in RRMS. Natalizumab seems superior to limit lesion accumulation, whereas both drugs similarly modify atrophy progression.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Gianna C Riccitelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Lucia Moiola
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Mariaemma Rodegher
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Giancarlo Comi
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Via Pastore, 1, Genoa, 16132, Italy
| | - Andrea Falini
- Department of Neuroradiology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
- Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Via Olgettina, 48, Milan, 20132, Italy.
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
5
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
6
|
Koskimäki F, Bernard J, Yong J, Arndt N, Carroll T, Lee SK, Reder AT, Javed A. Gray matter atrophy in multiple sclerosis despite clinical and lesion stability during natalizumab treatment. PLoS One 2018; 13:e0209326. [PMID: 30576361 PMCID: PMC6303064 DOI: 10.1371/journal.pone.0209326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Brain volume loss is an important surrogate marker for assessing disability in MS; however, contribution of gray and white matter to the whole brain volume loss needs further examination in the context of specific MS treatment. OBJECTIVES To examine whole and segmented gray, white, thalamic, and corpus callosum volume loss in stable patients receiving natalizumab for 2-5 years. METHODS This was a retrospective study of 20 patients undergoing treatment with natalizumab for 24-68 months. Whole brain volume loss was determined with SIENA. Gray and white matter segmentation was done using FAST. Thalamic and corpus callosum volumes were determined using Freesurfer. T1 relaxation values of chronic hypointense lesions (black holes) were determined using a quantitative, in-house developed method to assess lesion evolution. RESULTS Over a mean of 36.6 months, median percent brain volume change (PBVC) was -2.0% (IQR 0.99-2.99). There was decline in gray (p = 0.001) but not white matter (p = 0.6), and thalamic (p = 0.01) but not corpus callosum volume (p = 0.09). Gray matter loss correlated with PBVC (Spearman's r = 0.64, p = 0.003) but not white matter (Spearman's r = 0.42, p = 0.07). Age significantly influenced whole brain volume loss (p = 0.010, multivariate regression), but disease duration and baseline T2 lesion volume did not. There was no change in T1 relaxation values of lesions or T2 lesion volume over time. All patients remained clinically stable. CONCLUSIONS These results demonstrate that brain volume loss in MS is primarily driven by gray matter changes and may be independent of clinically effective treatment.
Collapse
Affiliation(s)
- Fredrika Koskimäki
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Jacqueline Bernard
- Department of Neurology, Oregon Health Science University, Portland, Oregon, United States of America
| | - Jeong Yong
- Northwestern University, Biomedical Engineering, Chicago, Illinois, United States of America
| | - Nancy Arndt
- Department of Neurology, The University of Chicago, Chicago, Illinois, United States of America
| | - Timothy Carroll
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Seon-Kyu Lee
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Anthony T. Reder
- Department of Neurology, The University of Chicago, Chicago, Illinois, United States of America
| | - Adil Javed
- Department of Neurology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 2018; 48:337-359. [PMID: 30487063 PMCID: PMC6563601 DOI: 10.1016/j.neucli.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.
Collapse
Affiliation(s)
- Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; EA 7369, URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université du Littoral Côte d'Opale, Calais, France
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Delval
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; Unité Inserm 1171, Faculté de Médecine, Université de Lille, Lille, France
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Eisele P, Szabo K, Ebert A, Platten M, Gass A. Brain Atrophy in Natalizumab-treated Patients with Multiple Sclerosis: A 5-year Retrospective Study. J Neuroimaging 2018; 29:190-192. [DOI: 10.1111/jon.12586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/03/2023] Open
Affiliation(s)
- Philipp Eisele
- Department of Neurology; Universitätsmedizin Mannheim; University of Heidelberg; Mannheim Baden-Württemberg Germany
| | - Kristina Szabo
- Department of Neurology; Universitätsmedizin Mannheim; University of Heidelberg; Mannheim Baden-Württemberg Germany
| | - Anne Ebert
- Department of Neurology; Universitätsmedizin Mannheim; University of Heidelberg; Mannheim Baden-Württemberg Germany
| | - Michael Platten
- Department of Neurology; Universitätsmedizin Mannheim; University of Heidelberg; Mannheim Baden-Württemberg Germany
| | - Achim Gass
- Department of Neurology; Universitätsmedizin Mannheim; University of Heidelberg; Mannheim Baden-Württemberg Germany
| |
Collapse
|
9
|
Yousuf F, Dupuy SL, Tauhid S, Chu R, Kim G, Tummala S, Khalid F, Weiner HL, Chitnis T, Healy BC, Bakshi R. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. J Neurol Sci 2017; 383:221-229. [DOI: 10.1016/j.jns.2017.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
|
10
|
Dupuy SL, Tauhid S, Hurwitz S, Chu R, Yousuf F, Bakshi R. The Effect of Dimethyl Fumarate on Cerebral Gray Matter Atrophy in Multiple Sclerosis. Neurol Ther 2016; 5:215-229. [PMID: 27744504 PMCID: PMC5130921 DOI: 10.1007/s40120-016-0054-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The objective of this pilot study was to compare cerebral gray matter (GM) atrophy over 1 year in patients starting dimethyl fumarate (DMF) for multiple sclerosis (MS) to that of patients on no disease-modifying treatment (noDMT). DMF is an established therapy for relapsing-remitting (RR) MS. METHODS We retrospectively analyzed 20 patients with RRMS at the start of DMF [age (mean ± SD) 46.1 ± 10.2 years, Expanded Disability Status Scale (EDSS) score 1.1 ± 1.2, timed 25-foot walk (T25FW) 4.6 ± 0.8 s] and eight patients on noDMT (age 42.5 ± 6.6 years, EDSS 1.7 ± 1.1, T25FW 4.4 ± 0.6 s). Baseline and 1-year 3D T1-weighted 3T MRI was processed with automated pipelines (SIENA, FSL-FIRST) to assess percentage whole brain volume change (PBVC) and deep GM (DGM) atrophy. Group differences were assessed by analysis of covariance, with time between MRI scans as a covariate. RESULTS Over 1 year, the DMF group showed a lower rate of whole brain atrophy than the noDMT group (PBVC: -0.37 ± 0.49% vs. -1.04 ± 0.67%, p = 0.005). The DMF group also had less change in putamen volume (-0.06 ± 0.22 vs. -0.32 ± 0.28 ml, p = 0.02). There were no significant on-study differences between groups in caudate, globus pallidus, thalamus, total DGM volume, T2 lesion volume, EDSS, or T25FW (all p > 0.20). CONCLUSIONS These results suggest a treatment effect of DMF on GM atrophy appearing at 1 year after starting therapy. However, due to the retrospective study design and sample size, these findings should be considered preliminary, and require confirmation in future investigations. FUNDING Biogen.
Collapse
Affiliation(s)
- Sheena L Dupuy
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shelley Hurwitz
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Renxin Chu
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Fawad Yousuf
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Rohit Bakshi
- Departments of Neurology and Radiology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|