1
|
Chang C, Wang Y, Wang R, Bao X. Considering Context-Specific microRNAs in Ischemic Stroke with Three "W": Where, When, and What. Mol Neurobiol 2024; 61:7335-7353. [PMID: 38381296 DOI: 10.1007/s12035-024-04051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs are short non-coding RNA molecules that function as critical regulators of various biological processes through negative regulation of gene expression post-transcriptionally. Recent studies have indicated that microRNAs are potential biomarkers for ischemic stroke. In this review, we first illustrate the pathogenesis of ischemic stroke and demonstrate the biogenesis and transportation of microRNAs from cells. We then discuss several promising microRNA biomarkers in ischemic stroke in a context-specific manner from three dimensions: biofluids selection for microRNA extraction (Where), the timing of sample collection after ischemic stroke onset (When), and the clinical application of the differential-expressed microRNAs during stroke pathophysiology (What). We show that microRNAs have the utilities in ischemic stroke diagnosis, risk stratification, subtype classification, prognosis prediction, and treatment response monitoring. However, there are also obstacles in microRNA biomarker research, and this review will discuss the possible ways to improve microRNA biomarkers. Overall, microRNAs have the potential to assist clinical treatment, and developing microRNA panels for clinical application is worthwhile.
Collapse
Affiliation(s)
- Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- M.D. Program, Peking Union Medical College, Beijing, 100730, China
| | - Youyang Wang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Deng X, Zeng Y, Ding D. MiR-30c-5p-Targeted Regulation of GNAI2 Improves Neural Function Injury and Inflammation in Cerebral Ischemia-Reperfusion Injury. Appl Biochem Biotechnol 2024; 196:5235-5248. [PMID: 38153649 DOI: 10.1007/s12010-023-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
MiRNAs are related to neuronal proliferation and apoptosis following cerebral ischemia-reperfusion injury (CIRI). This study focused on miR-30c-5p in the disease. An oxygen-glucose deprivation/re-oxygenation (OGD/R) model was prepared in HT22 cells and transfected to overexpress miR-30c-5p and G Protein Subunit Alpha I2 (GNAI2) respectively or co-transfected to silence miR-30c-5p and GNAI2. Meanwhile, a middle cerebral artery occlusion (MCAO) model was constructed in mice, and miR-30c-5p and GNAI2 were silenced in vivo simultaneously. The mice were evaluated for neurological damage, apoptosis, and inflammation. HT22 cells were tested for cytotoxicity, proliferation, apoptosis, and inflammatory factors. The interaction between miR-30c-5p and GNAI2 was predicted, analyzed, and confirmed. MiR-30c-5p was found to be downregulated in both experimental models. miR-30c-5p reduced lactate dehydrogenase production, inflammatory response, inhibit apoptosis, and enhanced neuronal proliferation, while GNAI2 overexpression showed the opposite results. Downregulated miR-30c-5p worsened neurological function, apoptosis, and inflammation of MCAO mice while silencing GNAI2 attenuated the influence of downregulated miR-30c-5p. MiR-30c-5p can improve neuronal apoptosis and inflammatory response caused by CIRI and is neuroprotective by targeting GNAI2, providing a new target for treating CIRI.
Collapse
Affiliation(s)
- Xinbo Deng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Ying Zeng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Dan Ding
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China.
| |
Collapse
|
3
|
Lui A, Do T, Alzayat O, Yu N, Phyu S, Santuya HJ, Liang B, Kailash V, Liu D, Inslicht SS, Shahlaie K, Liu D. Tumor Suppressor MicroRNAs in Clinical and Preclinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:426. [PMID: 38675388 PMCID: PMC11054060 DOI: 10.3390/ph17040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers and neurological disorders are two major types of diseases in humans. We developed the concept called the "Aberrant Cell Cycle Disease (ACCD)" due to the accumulating evidence that shows that two different diseases share the common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncoprotein activation and tumor suppressor (TS) inactivation, which are associated with both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase/oncogene inhibition and TS elevation) can be leveraged for neurological treatments. MicroRNA (miR/miRNA) provides a new style of drug-target binding. For example, a single tumor suppressor miRNA (TS-miR/miRNA) can bind to and decrease tens of target kinases/oncogenes, producing much more robust efficacy to block cell cycle re-entry than inhibiting a single kinase/oncogene. In this review, we summarize the miRNAs that are altered in both cancers and neurological disorders, with an emphasis on miRNA drugs that have entered into clinical trials for neurological treatment.
Collapse
Affiliation(s)
- Austin Lui
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Timothy Do
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Omar Alzayat
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Nina Yu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Su Phyu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Hillary Joy Santuya
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Benjamin Liang
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Vidur Kailash
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Dewey Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Sabra S. Inslicht
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
- San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
- Mirnova Therapeutics Inc., Davis, CA 95618, USA
| |
Collapse
|
4
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
5
|
Moustafa EM, Moawed FSM, Elmaghraby DF. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA-124 by targeting C/EBPA. ENVIRONMENTAL TOXICOLOGY 2023; 38:2691-2704. [PMID: 37483155 DOI: 10.1002/tox.23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The most prevalent brain-specific microRNA, MicroRNA-124, exhibits anti-inflammatory properties. Luteolin nano-formulation with Zn oxide in the form of L/ZnO NPs may boost anti-diabetic properties; however, its beneficial effect on miRNAs is yet unknown in diabetes. The effectiveness of L/ZnONPs supplements in preventing diabetic neurodegeneration by modulating inflammatory responses in a diabetic model was investigated. METHODS A diabetic rat model was induced by a high-fat diet and streptozotocin (30 mg/kg I.P.). Plasma glucose, insulin, and HOMR-IR levels, as well as cytokines, lipid peroxidation, GSH/GSSG, and glucose transporter 1, were determined along with the tight junction proteins occludin (OCLN) and zona occludens 1 (ZO-1). Moreover, the expressions of brain CCAAT/enhancer-binding protein (C/EBPA mRNA), miR-124, glial fibrillary acidic protein (GFAP), and NF-kBp65 were measured alongside the histological investigation. RESULTS The results revealed that L/ZnO NPs were able to diminish lipid peroxidation, increase the activity of antioxidant enzymes, and reduce inflammation under oxidative stress. Consequently, it was able to reduce hyperglycemia, elevate insulin levels, and improve insulin resistance. Besides, L/ZnO NPs upregulate miR-124, reduce C/EBPA mRNA, increase BCl-2, and inhibit apoptosis. The results indicate that diabetes raises BBB permeability via tight junction protein decline, which is restored following L/ZnO NPs treatment. Luteolin/ZnO NPs regulate miR-124 and microglia polarization by targeting C/EBPA and are expected to alleviate inflammatory injury via modulation of the redox-sensitive signal transduction pathways. Luteolin/ZnO NPs have a novel target for the protection of the BBB and the prevention of neurological complications in diabetes.
Collapse
Affiliation(s)
- Enas M Moustafa
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Dina F Elmaghraby
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Vasilieva AA, Timechko EE, Lysova KD, Paramonova AI, Yakimov AM, Kantimirova EA, Dmitrenko DV. MicroRNAs as Potential Biomarkers of Post-Traumatic Epileptogenesis: A Systematic Review. Int J Mol Sci 2023; 24:15366. [PMID: 37895044 PMCID: PMC10607802 DOI: 10.3390/ijms242015366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Structural or post-traumatic epilepsy often develops after brain tissue damage caused by traumatic brain injury, stroke, infectious diseases of the brain, etc. Most often, between the initiating event and epilepsy, there is a period without seizures-a latent period. At this time, the process of restructuring of neural networks begins, leading to the formation of epileptiform activity, called epileptogenesis. The prediction of the development of the epileptogenic process is currently an urgent and difficult task. MicroRNAs are inexpensive and minimally invasive biomarkers of biological and pathological processes. The aim of this study is to evaluate the predictive ability of microRNAs to detect the risk of epileptogenesis. In this study, we conducted a systematic search on the MDPI, PubMed, ScienceDirect, and Web of Science platforms. We analyzed publications that studied the aberrant expression of circulating microRNAs in epilepsy, traumatic brain injury, and ischemic stroke in order to search for microRNAs-potential biomarkers for predicting epileptogenesis. Thus, 31 manuscripts examining biomarkers of epilepsy, 19 manuscripts examining biomarkers of traumatic brain injury, and 48 manuscripts examining biomarkers of ischemic stroke based on circulating miRNAs were analyzed. Three miRNAs were studied: miR-21, miR-181a, and miR-155. The findings showed that miR-21 and miR-155 are associated with cell proliferation and apoptosis, and miR-181a is associated with protein modifications. These miRNAs are not strictly specific, but they are involved in processes that may be indirectly associated with epileptogenesis. Also, these microRNAs may be of interest when they are studied in a cohort with each other and with other microRNAs. To further study the microRNA-based biomarkers of epileptogenesis, many factors must be taken into account: the time of sampling, the type of biological fluid, and other nuances. Currently, there is a need for more in-depth and prolonged studies of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (A.A.V.); (E.E.T.); (K.D.L.); (A.I.P.)
| |
Collapse
|
7
|
Gourishetti K, Balaji Easwaran V, Mostakim Y, Ranganath Pai KS, Bhere D. MicroRNA (miR)-124: A Promising Therapeutic Gateway for Oncology. BIOLOGY 2023; 12:922. [PMID: 37508353 PMCID: PMC10376116 DOI: 10.3390/biology12070922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
MicroRNA (miR) are a class of small non-coding RNA that are involved in post-transcriptional gene regulation. Altered expression of miR has been associated with several pathological conditions. MicroRNA-124 (miR-124) is an abundantly expressed miR in the brain as well as the thymus, lymph nodes, bone marrow, and peripheral blood mono-nuclear cells. It plays a key role in the regulation of the host immune system. Emerging studies show that dysregulated expression of miR-124 is a hallmark in several cancer types and it has been attributed to the progression of these malignancies. In this review, we present a comprehensive summary of the role of miR-124 as a promising therapeutic gateway in oncology.
Collapse
Affiliation(s)
- Karthik Gourishetti
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| | - Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Youssef Mostakim
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Deepak Bhere
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
8
|
Zhou H, Yang X, Yu J, Xu J, Zhang R, Zhang T, Wang X, Ma J. Reference gene identification for normalisation of RT-qPCR analysis in plasma samples of the rat middle cerebral artery occlusion model. Vet Med Sci 2022; 8:2076-2085. [PMID: 35894780 PMCID: PMC9514484 DOI: 10.1002/vms3.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE In quantitative reverse transcription-polymerase chain reaction (RT-qPCR) studies, the selection and validation of reference genes are crucial for the accurate analysis of MicroRNAs (miRNAs) expression. In this work, the optimal reference genes for RT-qPCR normalisation in plasma samples of rat middle cerebral artery occlusion (MCAO) models were identified. METHODS Six rat MCAO models were established. Blood samples were collected before modelling and approximately 16-24 h after modelling. Two commonly used reference genes (U6 and 5S) and three miRNAs (miR-24, miR-122 and miR-9a) were selected as candidate reference genes, and the expression of these genes was detected with RT-qPCR. The acquired data were analysed using geNorm, Normfinder, BestKeeper, RefFinder and comparative delta threshold cycle statistical models. RESULTS The analysed results consistently showed that miR-24 was the most stably expressed reference gene. The 'optimal combination' calculated by geNorm was miR-24, U6 and5S. The expression level of the target gene miR124 was similar when the most stable reference gene miR-24 or the 'optimal combination' was used as a reference gene. However, compared with miR24 or the 'optimal combination', the less stable reference genes influenced the fold change and the data accuracy with a large standard deviation. CONCLUSION These results confirmed the importance of selecting suitable reference genes for normalisation to obtain reliable results in RT-qPCR studies and demonstrated that the identified reference gene miR-24 or the 'optimal combination' could be used as an internal control for gene expression analysis in the rat MCAO model.
Collapse
Affiliation(s)
- Hui Zhou
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Xin Yang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Jiayi Yu
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Jingyi Xu
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Ruiwen Zhang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Ting Zhang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Xijie Wang
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| | - Jing Ma
- Shanghai Innostar Bio‐tech Co. Ltd.China State Institute of Pharmaceutical IndustryShanghaiPeople's Republic of China
| |
Collapse
|
9
|
Kang EM, Jia YB, Wang JY, Wang GY, Chen HJ, Chen XY, Ye YQ, Zhang X, Su XH, Wang JY, He XS. Downregulation of microRNA-124-3p promotes subventricular zone neural stem cell activation by enhancing the function of BDNF downstream pathways after traumatic brain injury in adult rats. CNS Neurosci Ther 2022; 28:1081-1092. [PMID: 35481944 PMCID: PMC9160452 DOI: 10.1111/cns.13845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aims In this study, the effect of intracerebral ventricle injection with a miR‐124‐3p agomir or antagomir on prognosis and on subventricular zone (SVZ) neural stem cells (NSCs) in adult rats with moderate traumatic brain injury (TBI) was investigated. Methods Model rats with moderate controlled cortical impact (CCI) were established and verified as described previously. The dynamic changes in miR‐124‐3p and the status of NSCs in the SVZ were analyzed. To evaluate the effect of lateral ventricle injection with miR‐124‐3p analogs and inhibitors after TBI, modified neurological severity scores (mNSSs) and rotarod tests were used to assess motor function prognosis. The variation in SVZ NSC marker expression was also explored. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miR‐124‐3p targets was performed to infer miR‐124‐3p functions, and miR‐124‐3p effects on pivotal predicted targets were further explored. Results Administration of miR‐124 inhibitors enhanced SVZ NSC proliferation and improved the motor function of TBI rats. Functional analysis of miR‐124 targets revealed high correlations between miR‐124 and neurotrophin signaling pathways, especially the TrkB downstream pathway. PI3K, Akt3, and Ras were found to be crucial miR‐124 targets and to be involved in most predicted functional pathways. Interference with miR‐124 expression in the lateral ventricle affected the PI3K/Akt3 and Ras pathways in the SVZ, and miR‐124 inhibitors intensified the potency of brain‐derived neurotrophic factor (BDNF) in SVZ NSC proliferation after TBI. Conclusion Disrupting miR‐124 expression through lateral ventricle injection has beneficial effects on neuroregeneration and TBI prognosis. Moreover, the combined use of BDNF and miR‐124 inhibitors might lead to better outcomes in TBI than BDNF treatment alone.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi-Bin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jia-You Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Guan-Yi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Hui-Jun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiao-Yan Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yu-Qin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin-Hong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jing-Yu Wang
- Teaching and Research Support Center, Engineering University of Chinese Armed Police Force, Xi'an, Shaanxi, China
| | - Xiao-Sheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
10
|
Zhao R, Wen X. High expression of serum GST-π/CypA aids the diagnosis of acute cerebral infarction and predicts short-term poor prognosis. Clin Neurol Neurosurg 2022; 220:107352. [DOI: 10.1016/j.clineuro.2022.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
|
11
|
Zhao J, He Z, Wang J. MicroRNA-124: A Key Player in Microglia-Mediated Inflammation in Neurological Diseases. Front Cell Neurosci 2021; 15:771898. [PMID: 34795564 PMCID: PMC8593194 DOI: 10.3389/fncel.2021.771898] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Neurological disorders are mainly characterized by progressive neuron loss and neurological deterioration, which cause human disability and death. However, many types of neurological disorders have similar pathological mechanisms, including the neuroinflammatory response. Various microRNAs (miRs), such as miR-21, miR-124, miR-146a, and miR-132 were recently shown to affect a broad spectrum of biological functions in the central nervous system (CNS). Microglia are innate immune cells with important roles in the physiological and pathological activities of the CNS. Recently, abnormal expression of miR-124 was shown to be associated with the occurrence and development of various diseases in CNS via regulating microglia function. In addition, miR-124 is a promising biomarker and therapeutic target. Studies on the role of miR-124 in regulating microglia function involved in pathogenesis of neurological disorders at different stages will provide new ideas for the use of miR-124 as a therapeutic target for different CNS diseases.
Collapse
Affiliation(s)
- Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhou X, Qi L. miR-124 Is Downregulated in Serum of Acute Cerebral Infarct Patients and Shows Diagnostic and Prognostic Value. Clin Appl Thromb Hemost 2021; 27:10760296211035446. [PMID: 34702084 PMCID: PMC8554555 DOI: 10.1177/10760296211035446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute cerebral infarct (ACI) is a severe subtype of ischemic stroke. microRNAs (miRNAs) are implicated in the pathogenesis of ACI. This study investigated the expression pattern and clinical implication of miR-124 in ACI patients. Serum samples were collected from 108 healthy people and 108 ACI patients at 24 h, 48 h, and 72 h. Serum miR-124 expression was tested using qRT-PCR. The levels of interleukin (IL)-6, IL-8, and C-reactive protein (CRP) were detected using ELISA kits. The correlations between miR-124 expression and infarct classification, infarct size, risk factors, and inflammatory factors were analyzed. The diagnostic efficacy of miR-124 in ACI was analyzed by the ROC curve. ACI patients were assigned to the miR-124 high/low expression group and the incidence of poor prognosis was compared between the two groups. miR-124 expression was poorly expressed in the serum of ACI patients. The area under the ROC curve of miR-124 in the diagnosis of ACI was 0.9527, the specificity was 91.67%, and the sensitivity was 93.52%. miR-124 expression in ACI patients was not affected by infarct classification, infarct size, low-density lipoprotein level, and homocysteine level. miR-124 expression was negatively correlated with IL-6, IL-8, and CRP in ACI patients. Low expression of miR-124 was positively correlated with the poor prognosis of ACI. miR-124 was poorly expressed in the serum of ACI patients and served as a biomarker for the diagnosis and prognosis. This study shall confer a promising novel target for the diagnosis and treatment of ACI.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Third Department of Encephalopathy, The East District of Weifang Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lizhong Qi
- Department of Laboratory Medicine, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, China
| |
Collapse
|
13
|
Paschou SA, Siasos G, Katsiki N, Tentolouris N, Tousoulis D. The Role of microRNAs in the Development of Type 2 Diabetes Complications. Curr Pharm Des 2021; 26:5969-5979. [PMID: 33138753 DOI: 10.2174/1381612826666201102102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs represent a class of small (19-25 nucleotides) single-strand pieces of RNA that are noncoding ones. They are synthesized by RNA polymerase II from transcripts that fold back on themselves. They mostly act as gene regulatory agents that pair with complementary sequences on mRNA and produce silencing complexes, which, in turn, suppress coding genes at a post-transcriptional level. There is now evidence that microRNAs may affect insulin secretion or insulin action, as they can alter pancreatic beta cells development, insulin production, as well as insulin signaling. Any molecular disorder that affects these pathways can deteriorate insulin resistance and lead to type 2 diabetes mellitus (T2DM) onset. Furthermore, the expression of several microRNAs is up- or down-regulated in the presence of diabetic microvascular complications (i.e., peripheral neuropathy, nephropathy, retinopathy, foot ulcers), as well as in patients with coronary heart disease, stroke, and peripheral artery disease. However, more evidence is needed, specifically regarding T2DM patients, to establish the use of such microRNAs as diagnostical biomarkers or therapeutic targets in daily practice.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Centre, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Song XD, Li SX, Zhu M. Plasma miR-409-3p promotes acute cerebral infarction via suppressing CTRP3. Kaohsiung J Med Sci 2020; 37:324-333. [PMID: 33336518 DOI: 10.1002/kjm2.12327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormal expression of miR-409-3p has been found in several neurodevelopmental disorders, but whether it is dysregulated in the patients with acute cerebral infarction (ACI) has not been evaluated. The current study mainly focused on the clinical significance and the underlying mechanism of plasma miR-409-3p in the progression of ACI. The level of plasma miR-409-3p was determined in ACI patients (n = 80) and healthy controls (n = 30). Pearson correlation assay was performed to evaluate the association and cardiovascular risk factors. A receiver operating characteristic curve (ROC) was used to evaluate the diagnostic value of plasma miR-409-3p levels in patients with ACI. Dual luciferase reporter assay and western blot were performed to determine the possible target gene of miR-409-3p. Our data showed that the expression of plasma miR-409-3p in the ACI group was higher than that in the healthy controls. Furthermore, Pearson correlation analysis indicated a positive correlation between plasma miR-409-3p and the NIHSS score. ROC analysis indicated that plasma miR-409-3p could differentiate plasma miR-409-3p in ACI patients from healthy controls. Then, we explored the possible target genes of miR-409-3p. Interestingly, C1q and TNF-related 3 (CTRP3), a novel adipose tissue-derived secreted factor, was found to be a target gene of miR-409-3p. We found that knockdown of CTRP3 significantly induced PC12 cell apoptosis, even in PC12 cells transfected with miR-409-3p inhibitor. These data suggested that miR-409-3p induced PC12 cell apoptosis by targeting CTRP3. Altogether, elevated plasma miR-409-3p is correlated with disease severity and may be efficient for the early diagnosis of ACI.
Collapse
Affiliation(s)
- Xian-Dong Song
- Department of orthopedics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Shi-Xing Li
- Department of Radiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Min Zhu
- Department of Radiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| |
Collapse
|
15
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
16
|
Shu K, Zhang Y. Protodioscin protects PC12 cells against oxygen and glucose deprivation-induced injury through miR-124/AKT/Nrf2 pathway. Cell Stress Chaperones 2019; 24:1091-1099. [PMID: 31446555 PMCID: PMC6882996 DOI: 10.1007/s12192-019-01031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
The purpose of the current study was to demonstrate the neuroprotective effect of protodioscin (Prot) in an in vitro model of ischemia/reperfusion (I/R) and investigate the underlying molecular mechanism. After PC12 cells were exposed to oxygen and glucose deprivation (OGD) reperfusion, PI staining by flow cytometry was used to quantify the rate of apoptosis. The levels of hypoxia-inducible factor 1-alpha (HIF-1α), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were determined using commercially available kits. Intracellular reactive oxygen species (ROS) level was detected using the 20,70-dichlorodihy-drofluorescein diacetate (DCFH-DA) fluorescence assay. The expression levels of heat-shock proteins (HSP), PI3K, AKT, Nrf2, and miR-124 were tested by western blot or quantitative PCR. Prot significantly attenuated oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptotic death. Prot also reduced the oxidative stress as revealed by increasing the activities of SOD and GSH-Px, decreasing the levels of ROS and MDA. Moreover, mechanism investigations suggested that Prot prevented the decrease of HSP70, HSP32 (hemeoxygenase-1, HO-1), and PI3K protein expression, phosphorylation of AKT, and the accumulation of nuclear Nrf2. The level of miR-124 was decreased in PC12 cells, which was also effectively reversed by Prot treatment. Prot protected PC12 cells against OGD/R-induced injury through inhibiting oxidative stress and apoptosis, which could be associated with increasing HSP proteins expression via activating PI3K/AKT/Nrf2 pathway and miR-124 modulation.
Collapse
Affiliation(s)
- Kun Shu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yuelin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Xi'an Jiaotong University, 277, Yanta Road., Xi'an City, 710061, Shanxi Province, China.
| |
Collapse
|