1
|
García-Patiño MG, Marcial-Medina MC, Ruiz-Medina BE, Licona-Limón P. IL-17 in skin infections and homeostasis. Clin Immunol 2024; 267:110352. [PMID: 39218195 DOI: 10.1016/j.clim.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Interleukin (IL) 17 is a proinflammatory cytokine belonging to a structurally related group of cytokines known as the IL-17 family. It has been profoundly studied for its contribution to the pathology of autoimmune diseases. However, it also plays an important role in homeostasis and the defense against extracellular bacteria and fungi. IL-17 is important for epithelial barriers, including the skin, where some of its cellular targets reside. Most of the research work on IL-17 has focused on its effects in the skin within the context of autoimmune diseases or sterile inflammation, despite also having impact on other skin conditions. In recent years, studies on the role of IL-17 in the defense against skin pathogens and in the maintenance of skin homeostasis mediated by the microbiota have grown in importance. Here we review and discuss the cumulative evidence regarding the main contribution of IL-17 in the maintenance of skin integrity as well as its protective or pathogenic effects during some skin infections.
Collapse
Affiliation(s)
- M G García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M C Marcial-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Song H, Liang GQ, Yu MS, Shan Y, Shi J, Jiang CB, Ni DL, Sheng MX. Shen-yan-yi-hao oral solution ameliorates IgA nephropathy via intestinal IL-17/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118335. [PMID: 38754644 DOI: 10.1016/j.jep.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, it is one of the most common causes of kidney disease and can lead to end-stage kidney disease, however, its pathogenesis is still complicated. The Shen-yan-yi-hao oral solution (SOLI) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY This study investigates SOLI's effects on IgAN in rats, particularly on the intestinal mucosal barrier, and identifies potential therapeutic targets through network pharmacology and molecular docking, validated experimentally. MATERIALS AND METHODS Target genes for SOLI in IgAN were identified and analysed through molecular docking and KEGG pathway enrichment. An IgAN rat model examined SOLI's effect on renal biomarkers and cytokines involved in specific pathways, ileum mucosal lesions, and the intestinal immune system. The IL-17 pathway's role was studied in IEC-6 cells with SOLI in vitro. RESULT Rats developed increased proteinuria and kidney damage marked by IgA deposition and inflammation. SOLI treatment significantly ameliorated these symptoms, reduced galactose-deficient Ig A1 (Gd-IgA1), and decreased cytokines like IL-17, TNF-α, IL-6 and IL-1β etc. SOLI also normalized intestinal tight junction protein expression, ameliorated intestinal damage, and regulated intestinal immune response (focused on IL-17/NF-κB signal pathway). SOLI moderated the abnormally activated IL-17 pathway, which damages intestinal epithelial cells, suggesting IgAN treatment potential. CONCLUSION SOLI reduces proteinuria and enhances intestinal mucosal function in IgAN rats, kidney protection in the IgAN rat model may initiate from modulating the intestinal IL-17/NF-κB pathway and subsequent Gd-IgA1 accumulation.
Collapse
Affiliation(s)
- Huan Song
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China; Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Guo-Qiang Liang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China; Suzhou Academy of Wumen Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Man-Shu Yu
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Yun Shan
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Jun Shi
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Chun-Bo Jiang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Dao-Lei Ni
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Mei-Xiao Sheng
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Uriol-Rivera MG, Obrador-Mulet A, Juliá MR, Daza-Cajigal V, Delgado-Sanchez O, Garcia Alvarez A, Gomez-Lobon A, Carrillo-Garcia P, Saus-Sarrias C, Gómez-Cobo C, Ramis-Cabrer D, Gasco Company J, Molina-Infante J. Sequential administration of paricalcitol followed by IL-17 blockade for progressive refractory IgA nephropathy patients. Sci Rep 2024; 14:4866. [PMID: 38418932 PMCID: PMC10902332 DOI: 10.1038/s41598-024-55425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
There is no established treatment for progressive IgA nephropathy refractory to steroids and immunosuppressant drugs (r-IgAN). Interleukin 17 (IL-17) blockade has garnered interest in immune-mediated diseases involving the gut-kidney axis. However, single IL-17A inhibition induced paradoxical effects in patients with Crohn's disease and some cases of de novo glomerulonephritis, possibly due to the complete Th1 cell response, along with the concomitant downregulation of regulatory T cells (Tregs). Seven r-IgAN patients were treated with at least six months of oral paricalcitol, followed by the addition of subcutaneous anti-IL-17A (secukinumab). After a mean follow-up of 28 months, proteinuria decreased by 71% (95% CI: 56-87), P < 0.001. One patient started dialysis, while the annual eGFR decline in the remaining patients [mean (95% CI)] was reduced by 4.9 mL/min/1.73 m2 (95% CI: 0.1-9.7), P = 0.046. Circulating Th1, Th17, and Treg cells remained stable, but Th2 cells decreased, modifying the Th1/Th2 ratio. Intriguingly, accumulation of circulating Th17.1 cells was observed. This novel sequential therapy appears to optimize renal advantages in patients with r-IgAN and elicit alterations in potentially pathogenic T helper cells.
Collapse
Affiliation(s)
- Miguel G Uriol-Rivera
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain.
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
| | - Aina Obrador-Mulet
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Rosa Juliá
- Immunology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Vanessa Daza-Cajigal
- Immunology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Olga Delgado-Sanchez
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Angel Garcia Alvarez
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Ana Gomez-Lobon
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Paula Carrillo-Garcia
- Pathology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Carlos Saus-Sarrias
- Pathology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Cristina Gómez-Cobo
- Laboratory Medicine Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Daniel Ramis-Cabrer
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Joan Gasco Company
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
5
|
Ma S, Yang B, Zhao M, Li P, Fan J, Chang M, Pan Z, Zhang Z, Xue S, Zhang Y. Effects of modified Huangqi Chifeng decoction on the IL-17 signaling pathway in an IgA nephropathy rat model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116220. [PMID: 36750149 DOI: 10.1016/j.jep.2023.116220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunoglobulin A nephropathy (IgAN) is an immune-related primary glomerular disease prevalent worldwide, with complicated clinical manifestations and an unclear pathogenesis. IgAN is the main cause of chronic renal failure and places a significant burden on patients and society. The modified Huangqi Chifeng decoction (MHCD) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY Based on the findings of previous network pharmacology-related method-based studies, this study aimed to further explore the mechanism of action of MHCD for IgAN treatment. MATERIALS AND METHODS IgAN rat model was established by bovine serum protein + carbon tetrachloride + lipopolysaccharide. After successful modeling, the rats in the original model group were divided into 5 group: model group, telmisartan group, and MHCD high-, medium- and low-dose groups by random number table (n = 10 respectively). The corresponding drugs were applied for 8 weeks, and the experiment lasted for 21 weeks. At the end of the experiment, 24h urine protein quantification, serum biochemistry and IL-6 and IL-17A levels were measured. The pathological changes of kidney were observed by light microscope, immunofluorescence microscope and the changes of glomerular ultrastructure were observed by transmission electron microscope. The expression levels of IL-17 signaling pathway related proteins (HSP90, MMP9, NF-κB P65 and p-NF-κB P65) were detected by Western Blot and immunohistochemistry. RESULT Telmisartan and MHCD treatment can reduce the 24h urinary protein level and improved blood stasis states of IgAN rats, alleviate the renal pathological injury, decrease the serum levels of IL-6, IL-17A and the expression levels of HSP90, MMP9 and p-NF-κB P65 related proteins in IL-17 signaling pathway. CONCLUSION MHCD can down-regulate the expression of IL-17 signaling pathway-related factors in IgAN model rats, improve the state of blood stasis, and alleviate the pathological damage of kidney in rats.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jiao Fan
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Zhiyu Pan
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ziyan Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Shunxuan Xue
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
6
|
Tang R, Meng T, Lin W, Shen C, Ooi JD, Eggenhuizen PJ, Jin P, Ding X, Chen J, Tang Y, Xiao Z, Ao X, Peng W, Zhou Q, Xiao P, Zhong Y, Xiao X. A Partial Picture of the Single-Cell Transcriptomics of Human IgA Nephropathy. Front Immunol 2021; 12:645988. [PMID: 33936064 PMCID: PMC8085501 DOI: 10.3389/fimmu.2021.645988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/19/2021] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms underlying renal damage of IgA nephropathy (IgAN) remain incompletely defined. Here, single-cell RNA sequencing (scRNA-seq) was applied to kidney biopsies from IgAN and control subjects to define the transcriptomic landscape at single-cell resolution. We presented a comprehensive scRNA-seq analysis of human renal biopsies from IgAN. We showed for the first time that IgAN mesangial cells displayed increased expression of several novel genes including MALAT1, GADD45B, SOX4, and EDIL3, which were related to cell proliferation and matrix accumulation. The overexpressed genes in tubule cells of IgAN were mainly enriched in inflammatory pathways including TNF signaling, IL-17 signaling, and NOD-like receptor signaling. Furthermore, we compared the results of 4 IgAN patients with the published scRNA-Seq data of healthy kidney tissues of three human donors in order to further validate the findings in our study. The results also verified that the overexpressed genes in tubule cells from IgAN patients were mainly enriched in inflammatory pathways including TNF signaling, IL-17 signaling, and NOD-like receptor signaling. The receptor-ligand crosstalk analysis revealed potential interactions between mesangial cells and other cells in IgAN. IgAN patients with overt proteinuria displayed elevated genes participating in several signaling pathways compared with microproteinuria group. It needs to be mentioned that based on number of mesangial cells and other kidney cells analyzed in this study, the results of our study are preliminary and needs to be confirmed on larger number of cells from larger number of patients and controls in future studies. Therefore, these results offer new insight into pathogenesis and identify new therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chanjuan Shen
- Department of Hematology, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Joshua D Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbiao Chen
- Department of Medical Records & Information, Xiangya Hospital, Central South University, Changsha, China
| | - Yangshuo Tang
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Weisheng Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J Exp Med 2020; 217:133698. [PMID: 32023342 PMCID: PMC7062523 DOI: 10.1084/jem.20192048] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine with well-characterized biological effects on stromal cell activation, angiogenesis, and osteoclastogenesis. The presence of this cytokine in the inflamed joints of patients with rheumatoid arthritis (RA), together with compelling data from in vitro and experimental arthritis models demonstrating its pro-inflammatory effects, made this cytokine a strong candidate for therapeutic targeting. Clinical trials, however, have shown relatively modest success in RA as compared with other indications. Guided by recent insights in IL-17 biology, this review aims to explore possible reasons for the limited clinical efficacy of IL-17A blockade in RA, and what we can learn from these results going forward.
Collapse
Affiliation(s)
- Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Zhai S, Sun B, Zhang Y, Zhao L, Zhang L. IL-17 aggravates renal injury by promoting podocyte injury in children with primary nephrotic syndrome. Exp Ther Med 2020; 20:409-417. [PMID: 32537005 PMCID: PMC7282090 DOI: 10.3892/etm.2020.8698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Primary nephrotic syndrome (PNS) is the most common chronic kidney disease in childhood, where podocyte injury is a key factor in the occurrence of kidney disease. In the present study, the expression of IL-17 in renal tissues of patients with PNS and its relationship with podocyte injury were examined. Reverse transcription-quantitative PCR (RT-qPCR), western blot analysis and immunochemistry were used to measure the expression of IL-17 in renal biopsies of patients with ONS, including 9 patients with minimal change nephrotic syndrome (MCNS), 15 patients with mesangial proliferative glomerulonephritis (MsPGN) and 9 patients with focal segmental glomerulosclerosis (FSGS), in addition to 15 normal kidney tissues. IL-17 was found to be highly expressed in the renal tissues from patients with PNS, with the highest expression levels found in tissues from patients with FSGS and the lowest in those from MCNS. A negative correlation was observed between the levels of IL-17 mRNA and PCX mRNA in renal tissues, whereas a positive correlation between IL-17 mRNA levels and the number of urinary podocytes in patients with PNS was found. In vitro, IL-17 induced podocyte apoptosis and reduced the expression of markers associated with podocytes, including Wilm's tumor 1, nephrin, synaptopodin and podocalyxin, whilst increasing the levels of Fas, Fas ligand (FasL), active-caspase-8, active-caspase-3 and phosphorylated-p65. However, treatment with helenalin, a NF-κB inhibitor, decreased p65 phosphorylation, attenuated IL-17-induced podocyte apoptosis and suppressed the IL-17-activated Fas/FasL/caspase-8/caspase-3 apoptotic pathway. Taken together, these observations suggest that IL-17 was highly expressed in renal tissues from patients with PNS, where it induced podocyte apoptosis by activating the Fas/FasL/caspase-8/caspase-3 apoptotic pathway in a NF-κB-dependent manner.
Collapse
Affiliation(s)
- Shubo Zhai
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baichao Sun
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Zhang
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lengyue Zhao
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Zhang
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Biswas PS. IL-17 in Renal Immunity and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:3153-3159. [PMID: 30455371 DOI: 10.4049/jimmunol.1801042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
The kidney is an organ particularly susceptible to damage caused by infections and autoimmune conditions. Renal inflammation confers protection against microbial infections. However, if unchecked, unresolved inflammation may lead to kidney damage. Although proinflammatory cytokine IL-17 is required for immunity against extracellular pathogens, dysregulated IL-17 response is also linked to autoimmunity. In this review, we will discuss the current knowledge of IL-17 activity in the kidney in context to renal immunity and autoimmunity and raise the intriguing question to what extent neutralization of IL-17 is beneficial or harmful to renal inflammation.
Collapse
Affiliation(s)
- Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
10
|
Lin JR, Wen J, Zhang H, Wang L, Gou FF, Yang M, Fan JM. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. Ren Fail 2018; 40:60-67. [PMID: 29299950 PMCID: PMC6014503 DOI: 10.1080/0886022x.2017.1419972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Interleukin 17 (IL-17) plays an important role in the pathogenesis of autoimmune diseases and might be associated with IgA nephropathy (IgAN). This study aimed to investigate the effect of IL-17 on autoimmune pathogenesis in IgA nephropathy. Methods: DAKIKI cells were cultured and stimulated with IL-17 to perform dose-dependent and time-dependent experiments. Cell proliferation was examined by cell counting and the Cell Counting Kit-8 (CCK-8) assay. The IgA concentration and the degree of galactosylation in the supernatant were tested using ELISA and a helix aspersa (HAA) lectin binding assay, respectively. To study the mechanism of O-glycosylation, cells were stimulated with IL-17, lipopolysaccharide (LPS) or 5-azacytidine (5-AZA) + IL-17 for 48 h, and the levels of C1GALT1 and its molecular chaperone Cosmc were measured by western blot and real-time PCR. Results: The cell counting and CCK-8 results suggested that B lymphocyte proliferation increased significantly with increased IL-17 concentration. IL-17 affected the quantity of IgA1 and its glycosylation status. HAA revealed that IL-17 promoted IgA1 underglycosylation. Mechanistically, the expression of C1GALT1 and Cosmc was significantly lower in cells stimulated by IL-17 or LPS than in the 5-AZA + IL-17 or the control group. Conclusions: Our results suggested that IL-17 stimulates B lymphocyte to promote B-cell proliferation, which leads to increased IgA1 production in vitro accompanied by underglycosylation of IgA1. The molecular mechanism for the IgA1 underglycosylation induced by IL-17 was similar to that of LPS; however, 5-AZA inhibited IgA1 underglycosylation. IL-17 might participate in IgAN pathogenesis by influencing the production and glycosylation of IgA1 in B-cells.
Collapse
Affiliation(s)
- Jia-Ru Lin
- a Department of Nephrology , The Affiliated Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China.,b Department of Nephrology , The Affiliated Chinese Medicine Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China
| | - Ji Wen
- c Department of Nephrology , West China Hospital of Sichuan University , Chengdu City , Sichuan Province , China
| | - Hui Zhang
- a Department of Nephrology , The Affiliated Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China
| | - Li Wang
- d State Key Laboratory of Biotherapy of Human Disease , West China Hospital, Sichuan University , Chengdu City , Sichuan Province , China
| | - Fang-Fang Gou
- a Department of Nephrology , The Affiliated Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China
| | - Man Yang
- a Department of Nephrology , The Affiliated Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China
| | - Jun-Ming Fan
- a Department of Nephrology , The Affiliated Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China.,b Department of Nephrology , The Affiliated Chinese Medicine Hospital of Southwest Medical University , Luzhou City , Sichuan Province , China.,c Department of Nephrology , West China Hospital of Sichuan University , Chengdu City , Sichuan Province , China.,e Department of Central Service , West China Hospital of Sichuan University , Chengdu City , Sichuan Province , China
| |
Collapse
|
11
|
Zhai S, Hu L, Zhong L, Guo Y, Dong L, Jia R, Wang Z. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury. Front Cell Infect Microbiol 2016; 6:112. [PMID: 27747195 PMCID: PMC5043133 DOI: 10.3389/fcimb.2016.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV) and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs), serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC) activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6 × 106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+ T lymphocytes, due to an increase in the percentage of CD8+ T lymphocytes and a decrease in the percentage of CD4+ T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV.
Collapse
Affiliation(s)
- Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuan, China
| | - Lijuan Hu
- Department of Immunology, College of Preclinical and Forensic Medicine, Sichuan University Chengdu, China
| | - Lin Zhong
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu, China
| | - Yannan Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu, China
| | - Liqun Dong
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu, China
| | - Ruizhen Jia
- West China Institutes of Women and Children's Health, West China Second University Hospital, Sichuan University Chengdu, China
| | - Zheng Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuan, China
| |
Collapse
|
12
|
Ramani K, Biswas PS. Emerging roles of the Th17/IL-17-axis in glomerulonephritis. Cytokine 2016; 77:238-44. [DOI: 10.1016/j.cyto.2015.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
|
13
|
Topaloglu R, Orhan D, Bilginer Y, Karabulut E, Ozaltin F, Duzova A, Kale G, Besbas N. Clinicopathological and immunohistological features in childhood IgA nephropathy: a single-centre experience. Clin Kidney J 2013; 6:169-175. [PMID: 24175085 PMCID: PMC3811980 DOI: 10.1093/ckj/sft004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/07/2013] [Indexed: 01/14/2023] Open
Abstract
Background IgA nephropathy is a glomerular disease diagnosed by renal biopsy and is characterized by a highly variable course ranging from a completely benign condition to rapidly progressive renal failure. We aimed to evaluate the clinical, histopathological and inflammatory characteristics of children with IgA nephropathy. Methods Data of 37 patients with IgA nephropathy diagnosed between the years 1980 and 2008 were retrospectively reviewed. Immunohistochemistry was performed in 24 patients. Expression of CD3, CD4, CD8, CD20, CD68, IL-1β, IL-10, IL-17, TGF-β, TNF-α and the newly proposed tubulointerstitial fibrosis marker nestin were evaluated. Results The median age at diagnosis was 10 years. Recurrent macroscopic haematuria (66%) was the most common clinical manifestation, and 35% of the patients had synpharyngitic presentation. A significant correlation was found between proteinuria and increase in mesangial matrix (r = 0.406, P = 0.013). The presence of CD4+ T lymphocytes and CD68+ macrophages were also significantly associated with proteinuria >1 g/day. While cytokines IL-1β, IL-10 and TNF-α were mainly expressed in tubular epithelial cells, TGF-β was evident in glomeruli but they had no correlation to clinical features and severity of the disease. Nestin was detected at the tubules in almost half of the patients with no correlation to proteinuria and tubulointersititial fibrosis. Conclusions We found a correlation between proteinuria and mesangial matrix expansion. The presence of CD4+ T-lymphocytes and CD68+ macrophages were also significantly associated with proteinuria >1 g/day. Although there are many evidences, for immunological basis of IgA nephropathy, the immunological markers were not fully expressed in children to evaluate glomerular and tubulointerstitial inflammation, and progression of the disease. Further studies with the extended number of children are needed to shed light on the immunological basis of the disease.
Collapse
Affiliation(s)
- Rezan Topaloglu
- Department of Pediatric Nephrology and Rheumatology , Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J, Wu XR. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:221-9. [PMID: 22276947 DOI: 10.3109/00365513.2011.652158] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Dysregulation of CD4 (+) T cell subsets participates in the pathogenesis of IgA nephropathy (IgAN). FoxP3 (+) regulatory T cells (Treg) and Th17 cells are two novel subsets of CD4 (+) T cells. This study aims to investigate Treg/Th17 balance in IgAN patients. METHODS Peripheral frequencies of Th17 and Treg functional subsets - CD45RA (+) FoxP3(low) resting Treg (rTreg) and CD45RA(-)FoxP3(high) activated Treg (aTreg) were assessed in 63 adult IgAN patients. Expression of transcription factors (FoxP3 and RORγt) and related cytokines of Treg and Th17 were analysed. Renal expression of FoxP3 and IL-17A were detected by immunohistochemistry. RESULTS Compared with normal controls, IgAN patients had decreased frequency of CD45RA(-)FoxP3(high) aTreg subset (p < 0.05), increased frequency of Th17 (p < 0.05) and decreased ratio of Treg/Th17 (p < 0.05). Frequency of aTreg subset correlated with SBP(r = - 0.57, p < 0.05), DBP (r = - 0.50, p < 0.05), eGFR (r = 0.68, p < 0.05) and 24 h proteinuria (r = - 0.58, p < 0.05). RORγtmRNA/FoxP3mRNA ratio increased in IgAN (p < 0.05). Serum IL-17A, IL-21, IL-23, IL-1β and IL-6 elevated while IL-10 decreased in IgAN (p < 0.05), and serum IL-17A correlated with 24 h proteinuria (r = 0.35, p < 0.05). Serum TGF-β1 wasn't different between the two groups. Renal interstitial infiltration of FoxP3 (+) mononuclear cells were observed in IgAN patients, particularly prominent in those with > 25% tubular atrophy/interstitial fibrosis. Tubular IL-17A expression was found in 34 out of 63 IgAN patients. Compared with 29 patients without IL-17A expression, these patients had lower renal function, greater proteinuria, and more severe tubulointerstitial damage. CONCLUSIONS Imbalance of Treg/Th17 found in IgAN may play a role in disease pathogenesis and progression.
Collapse
Affiliation(s)
- Fu-Jun Lin
- Department of Nephrology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Interleukin (IL)-17 (also known as IL-17A) is produced by activated T cells. It is a marker cytokine of the T(H₁₇) lineage. IL-17 production is induced in infections, autoimmune diseases and other inflammatory events. IL-17 is involved in host defense, but also inflammatory tissue destruction. Vascular disease, mostly in the chronic form of atherosclerosis, is a leading cause of death. While normal vessels harbor only few leukocytes, large numbers of both innate and adaptive immune cells accumulate during vascular inflammation, both in chronic forms such as atherosclerosis and in acute vasculitis. IL-17 has a role in chronic vascular inflammation of atherosclerosis and possibly hypertensive vascular changes. In acute inflammation, IL-17 is elevated and may be causally involved in the autoimmune vasculitides including vasculitis in systemic lupus erythematodes. Blood vessels are important targets in alloimmune graft rejection and a number of studies provide data on a role of IL-17 in this context. This brief review summarizes the currently available evidence for and putative mechanisms of action of IL-17 in mouse models of and human vascular disease.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
16
|
Ooi JD, Kitching AR, Holdsworth SR. Review: T helper 17 cells: their role in glomerulonephritis. Nephrology (Carlton) 2010; 15:513-21. [PMID: 20649870 DOI: 10.1111/j.1440-1797.2010.01343.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T helper (Th) cells are an integral part of the host's immune response to eliminate invading pathogens. However, autoimmune or 'autoinflammatory' diseases can develop if Th cell responses are not effectively regulated. Several subsets of Th cells exist, including the Th17 subset that produces interleukin-17A, important in experimental models of organ-specific autoimmune inflammation. Its discovery has explained paradoxical observations in model systems thought to be Th1 mediated but were exacerbated in the absence of interferon-gamma, the prototypic Th1 effector cytokine. Th17 cells express unique transcription factors and secrete a unique pattern of cytokines. Interleukin-17A induces pro-inflammatory cytokines and chemokines and mediates neutrophil recruitment. Th17 cells have a reciprocal relationship with T regulatory cells and can also mediate suppression of Th1 responses. Recent studies also suggest that Th17 cells are not terminally differentiated but can switch into Th1 cells. Th17 cells have themselves been recently shown to induce antigen-specific cell-mediated proliferative glomerulonephritis. There is increasing evidence implicating Th17 cells in anti-glomerular basement membrane disease, lupus nephritis and pauci-immune glomerulonephritis. This review will review the discovery of the Th17 subset, its properties, its relationship with other Th subsets and assess the current evidence implicating Th17 cells in glomerulonephritis.
Collapse
Affiliation(s)
- Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Vic 3168, Australia
| | | | | |
Collapse
|
17
|
Baek SA, Hahn WH, Cho BS, Kim SD. Association between polymorphisms in Interleukin-17 receptor A gene and childhood IgA nephropathy. KOREAN JOURNAL OF PEDIATRICS 2010. [DOI: 10.3345/kjp.2010.53.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Seung-Ah Baek
- Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Won-Ho Hahn
- Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Byoung-Soo Cho
- Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea
- East West Kidney Diseases Research Institute, Kyung Hee University, Seoul, Korea
| | - Sung-Do Kim
- Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea
- East West Kidney Diseases Research Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
18
|
Matsumoto K, Fukuda N, Abe M, Fujita T. Dendritic cells and macrophages in kidney disease. Clin Exp Nephrol 2009; 14:1-11. [PMID: 19688180 DOI: 10.1007/s10157-009-0218-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 07/09/2009] [Indexed: 01/25/2023]
Affiliation(s)
- Koichi Matsumoto
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kami-Machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | | | | | | |
Collapse
|
19
|
Mesquita Jr. D, Cruvinel W, Câmara N, Kállas E, Andrade L. Autoimmune diseases in the TH17 era. Braz J Med Biol Res 2009; 42:476-86. [DOI: 10.1590/s0100-879x2009000600002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/30/2009] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - W.M. Cruvinel
- Universidade Federal de São Paulo, Brasil; Universidade Católica de Goiás, Brasil
| | | | | | | |
Collapse
|
20
|
Kelchtermans H, Billiau A, Matthys P. How interferon-γ keeps autoimmune diseases in check. Trends Immunol 2008; 29:479-86. [DOI: 10.1016/j.it.2008.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 11/15/2022]
|