1
|
Therassa M, Aparna NS, Jose M, Dev A, Isukapatla AR. A comprehensive review on application of atomic force microscopy in Forensic science. J Forensic Leg Med 2024; 105:102717. [PMID: 38996743 DOI: 10.1016/j.jflm.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The primary objective of forensic investigation of a case is to recognize, identify, locate, and examine the evidence. Microscopy is a technique that provides crucial information for resolving a case or advancing the investigation process by analyzing the evidence obtained from a crime scene. It is often used in conjunction with suitable analytical techniques. Various microscopes are employed; scanning probe microscopes are available in diverse forensic analyses and studies. Among these, the atomic force microscope (AFM) is the most commonly used scanning probe technology, offering a unique morphological and physico-chemical perspective for analyzing multiple pieces of evidence in forensic investigations. Notably, it is a non-destructive technique capable of operating in liquid or air without complex sample preparation. The article delves into a detailed exploration of the applications of AFM in the realms of nanomechanical forensics and nanoscale characterization of forensically significant samples.
Collapse
Affiliation(s)
- Megha Therassa
- Department of Life Sciences, Christ University, Bengaluru, Karnataka, India
| | - N S Aparna
- Department of Life Sciences, Christ University, Bengaluru, Karnataka, India
| | - Maria Jose
- Department of Life Sciences, Christ University, Bengaluru, Karnataka, India
| | - Ajil Dev
- Department of Life Sciences, Christ University, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Wahl A, Davranche M, Rabiller-Baudry M, Pédrot M, Khatib I, Labonne F, Canté M, Cuisinier C, Gigault J. Condition of composted microplastics after they have been buried for 30 years: Vertical distribution in the soil and degree of degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132686. [PMID: 37866145 DOI: 10.1016/j.jhazmat.2023.132686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Microplastics in soils are a growing concern. Composting household wastes can introduce microplastics to agroecosystems, because when unsorted compost is used as a fertilizer, the plastic debris it contains degrades to microplastics. This paper examines the distribution and degradation of microplastics in agricultural soil samples to investigate their potential mobility. The source of microplastics was a household waste compost added to the soil more than 30 years before the study. The microplastics were sorted from a plot-composite soil and characterised by Attenuated Total Reflectance combined with Fourier transform infrared spectroscopy (ATR-FTIR). The microplastics are present in the cultivated depth but have not been transferred deeper (2.9 g kg-1 in the 0-5 cm soil depth against 0.9 g kg-1 in the 30-35 cm soil depth). Polyethylene (PE), polypropylene (PP), polystyrene (PS) and Polyvinylchloride (PVC) were identified in the forms of heterogeneous fragments, films, and fibres and accounted for 90% of the total microplastics. Advanced degradation observed was mainly assumed to be due to composting, though the plastic may have degraded further in the soil matrix. Highly degraded plastics are a greater danger for further leaching of contaminants into soil and our food supply.
Collapse
Affiliation(s)
- Aurélie Wahl
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Mélanie Davranche
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Murielle Rabiller-Baudry
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Mathieu Pédrot
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Imane Khatib
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Fabian Labonne
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Marion Canté
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Candice Cuisinier
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Julien Gigault
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France; TAKUVIK CNRS/ULaval, UMI3376, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
Ali N, Liu W, Zeb A, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J. Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: Current progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167785. [PMID: 37852500 DOI: 10.1016/j.scitotenv.2023.167785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MPs) are small plastic debris (<5 mm) that result from the fragmentation of plastic due to physical and physiochemical processes. MPs are emerging pollutants that pose a significant threat to the environment and human health, primarily due to their pervasive presence and potential bioaccumulation within the food web. Despite their importance, there is a lack of comprehensive studies on the fate, toxicity, and aging behavior of MPs. Therefore, this review aims to address this gap by providing a cohesive understanding of several key aspects. Firstly, it summarizes the sources and fate of MPs, highlighting their ubiquitous presence and the potential pathways through which they enter ecosystems. Secondly, it evaluates the aging process of MPs and the factors influencing it, including the morphological and physiological changes observed in crops and the release of pollutants from aged MPs, which can have detrimental effects on the environment and human health. Furthermore, the impacts of aging MPs on various processes are discussed, such as the mobilization of other pollutants in the environment. The influence of aged MPs on the soil environment, particularly their effect on heavy metal adsorption, is examined. Finally, the review explores strategies for the prevention technologies and remediation of MPs, highlighting the importance of developing effective approaches to tackle this issue. Overall, this review aims to contribute to our understanding of MPs, their aging process, and their impacts on the environment and human health. It underscores the urgency of addressing the issue of MPs and promoting research and remediation efforts to mitigate their adverse effects.
Collapse
Affiliation(s)
- Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
4
|
Ge J, Wang M, Liu P, Zhang Z, Peng J, Guo X. A systematic review on the aging of microplastics and the effects of typical factors in various environmental media. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Kadac-Czapska K, Knez E, Gierszewska M, Olewnik-Kruszkowska E, Grembecka M. Microplastics Derived from Food Packaging Waste-Their Origin and Health Risks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:674. [PMID: 36676406 PMCID: PMC9866676 DOI: 10.3390/ma16020674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics' processing stage can also be released. Both microplastics and additives can negatively affect human and animal health. Determination of the negative consequences of microplastics on the environment and health is not possible without knowing the course of degradation processes of packaging waste and their products. In this article, we present the sources of microplastics, the causes and places of their formation, the transport of such particles, the degradation of plastics most often used in the production of packaging for food storage, the factors affecting the said process, and its effects.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|
6
|
Lin Y, Xie J, Xiang Q, Liu Y, Wang P, Wu Y, Zhou Y. Effect of propiconazole on plastic film microplastic degradation: Focusing on the change in microplastic morphology and heavy metal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153609. [PMID: 35121034 DOI: 10.1016/j.scitotenv.2022.153609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
With the rapid increase in the use of plastic films, microplastic (MP) pollution in agricultural soils has become a global environmental problem. Propiconazole is widely used in agriculture and horticulture; however, its role in plastic film degradation remains elusive. Butylene adipate-co-terephthalate (PBAT) and polyethylene (PE) films were used to analyze the effects of propiconazole on plastic film and MP degradation. We identified the surface morphologies of PBAT and PE at different propiconazole concentrations and soil pH values, as well as the adsorption and release characteristics of heavy metals during the degradation process via scanning electron microscopy, Fourier transform infrared spectroscopy and inductively coupled plasma mass spectrometry. Propiconazole accelerated the degradation of MPs, adsorption of heavy metals (Ni and Zn), and release of Sn at low concentrations (≤40 mg/kg); however, these effects were evidently absent at a high concentration (120 mg/kg). Furthermore, MPs were more prone to degradation in acidic or alkaline soils than in neutral soil when they coexisted with propiconazole. Hence, we suggest that PBAT and PE plastic films may not be suitable for application in acidic and alkaline soils with propiconazole, because of shorter rupture time and more heavy metal adsorption. PBAT degraded faster, absorbed and released more heavy metals than PE. Under all tested conditions, the heavy metal contents in MPs gradually approached those in soil, which proves that MPs are carriers of heavy metal pollutants. These results may help in assessing the impact of MPs on soil environments and provide a theoretical basis for the standardized propiconazole and plastic film usage.
Collapse
Affiliation(s)
- Yimiao Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiafei Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingqing Xiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Environmental Microplastic Pollution Research Center, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
CF SF, Rebello S, Mathachan Aneesh E, Sindhu R, Binod P, Singh S, Pandey A. Bioprospecting of gut microflora for plastic biodegradation. Bioengineered 2021; 12:1040-1053. [PMID: 33769197 PMCID: PMC8806249 DOI: 10.1080/21655979.2021.1902173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 10/24/2022] Open
Abstract
The problem of plastic prevalence and associated pollution has grasped the entire planet drastically, putting all fields of science on the stake seeking remedies to this global havoc. To address this crisis, with a single remediation strategy is often found to be baseless, thereby much interest has been evoked in the development of multidisciplinary approaches - involving physico-chemical and biological strategies to nullify the aftermath of plastic pollution in all possible means. Even amidst, the availability of different approaches, the use of biological methods to combat plastic degradation has gained momentum. The most frequently used plastics appear in wide forms such as polyethylene plastic bags, polypropylene-based bottles, polyvinyl chloride pipes and polystyrene styrene cups. Plastic nicknamed as one of the toughest polymers viz. polycarbonate, acrylonitrile butadiene styrene (ABS) and Polydicyclopentadiene; quite often are called so as they resist degradation in normal environmental strategies. They are often degraded in non-hostile and harsh environments of pH, temperature, radiation etc. However, not always it is possible to create such harsh environments for plastic degradation. In such a scenario, the use of gut microbes that can withstand the harsh atmosphere of gut environment could serve as promising candidates for plastic biodegradation. The current article envisages the various gut microbes of various biological agents and their role in plastic remediation. The current review compiles the techniques available for plastic remediation, the microbial prospects of plastic remediation, its challenges, and possible breakthroughs to effective plastic remediation.
Collapse
Affiliation(s)
| | | | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, TrivandrumIndia
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, TrivandrumIndia
| | - Suren Singh
- Centre for Innovation and Translational Research, CSIR – Indian Institute for Toxicology Research, LucknowIndia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR – Indian Institute for Toxicology Research, LucknowIndia
- Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
- Centre for Energy and Environmental Sustainability, LucknowIndia
| |
Collapse
|
8
|
Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH, Wu C, Lam PKS. Understanding plastic degradation and microplastic formation in the environment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116554. [PMID: 33529891 DOI: 10.1016/j.envpol.2021.116554] [Citation(s) in RCA: 502] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Plastic waste are introduced into the environment inevitably and their exposure in the environment causes deterioration in mechanical and physicochemical properties and leads to the formation of plastic fragments, which are considered as microplastics when their size is < 5 mm. In recent years, microplastic pollution has been reported in all kinds of environments worldwide and is considered a potential threat to the health of ecosystems and humans. However, knowledge on the environmental degradation of plastics and the formation of microplastics is still limited. In this review, potential hotspots for the accumulation of plastic waste were identified, major mechanisms and characterization methods of plastic degradation were summarized, and studies on the environmental degradation of plastics were evaluated. Future research works should further identify the key environmental parameters and properties of plastics affecting the degradation in order to predict the fate of plastics in different environments and facilitate the development of technologies for reducing plastic pollution. Formation and degradation of microplastics, including nanoplastics, should receive more research attention to assess their fate and ecological risks in the environment more comprehensively.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, University of Tehran, Karaj, 31587-77878, Iran; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aleksandra Tubić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - James K H Fang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|