1
|
Nyulas KI, Simon-Szabó Z, Pál S, Fodor MA, Dénes L, Cseh MJ, Barabás-Hajdu E, Csipor B, Szakács J, Preg Z, Germán-Salló M, Nemes-Nagy E. Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs-Comprehensive Review. Int J Mol Sci 2024; 25:6388. [PMID: 38928095 PMCID: PMC11203894 DOI: 10.3390/ijms25126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension is a highly prevalent population-level disease that represents an important risk factor for several cardiovascular complications and occupies a leading position in mortality statistics. Antihypertensive therapy includes a wide variety of drugs. Additionally, the potential antihypertensive and cardioprotective effects of several phytotherapy products have been evaluated, as these could also be a valuable therapeutic option for the prevention, improvement or treatment of hypertension and its complications. The present review includes an evaluation of the cardioprotective and antihypertensive effects of garlic, Aloe vera, green tea, Ginkgo biloba, berberine, ginseng, Nigella sativa, Apium graveolens, thyme, cinnamon and ginger, and their possible interactions with antihypertensive drugs. A literature search was undertaken via the PubMed, Google Scholar, Embase and Cochrane databases. Research articles, systematic reviews and meta-analyses published between 2010 and 2023, in the English, Hungarian, and Romanian languages were selected.
Collapse
Affiliation(s)
- Kinga-Ilona Nyulas
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Sándor Pál
- Department of Laboratory Medicine, Department of Transfusion Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Márta-Andrea Fodor
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Margit Judit Cseh
- Master Program of Nutrition and Dietetics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Barabás-Hajdu
- Department of Cell Biology and Microbiology, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Bernadett Csipor
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Juliánna Szakács
- Department of Biophysics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zoltán Preg
- Department of Family Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Márta Germán-Salló
- Department of Internal Medicine III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Abdelrahman IA, Ahad A, Raish M, Bin Jardan YA, Alam MA, Al-Jenoobi FI. Cinnamon modulates the pharmacodynamic & pharmacokinetic of amlodipine in hypertensive rats. Saudi Pharm J 2023; 31:101737. [PMID: 37638214 PMCID: PMC10458336 DOI: 10.1016/j.jsps.2023.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
The objective of this study was to investigate the effects of cinnamon on the pharmacodynamic (PD) & pharmacokinetic (PK) of amlodipine in hypertensive rats. The hypertensive control group of Wistar rats received L-NAME (40 mg/kg, daily, orally) only. The cinnamon group of rats was treated with cinnamon (200 mg/kg, daily, orally) along with L-NAME. Following 14 days treatment period, blood pressures of rats were monitored at designated intervals over 24 h utilizing a tail-cuff system for measuring blood pressure. To assess the oral PK; amlodipine was administered as a single oral dose of 1 mg/kg to rats and blood samples were collected at specified intervals over 24 h and analysed by UPLC-LC MS/MS. Synergistic decreased in rat's blood pressure was observed in presence of cinnamon + amlodipine. Simultaneous administration of cinnamon ameliorates the Cmax and AUC0-t of amlodipine, the Cmax and AUC0-t was 11.04 ± 1.01 ng/ml and 113.76 ± 5.62 ng h/ml for the cinnamon + amlodipine group as compared to 4.12 ± 0.49 ng/ml and 48.59 ± 4.28 ng h/ml for the amlodipine alone group. The study demonstrates that the use of cinnamon considerably decreases the blood pressure levels and enhances the PK parameters of amlodipine in hypertensive rats.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Valverde-Salazar V, Ruiz-Gabarre D, García-Escudero V. Alzheimer's Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:1460. [PMID: 37507998 PMCID: PMC10376369 DOI: 10.3390/antiox12071460] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterised by a marked decline of both memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (Aβ) accumulation, tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it can result in protein, lipid and nucleic acid damage and exacerbate Aβ and tau pathology. To date, there is a lack of successful pharmacological approaches to cure or even ameliorate the terrible impact of this disease. Due to this, dietary compounds with antioxidative and anti-inflammatory properties acquire special relevance as potential therapeutic agents. In this context, green tea, and its main bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the non-amyloidogenic route of APP processing, thus preventing the formation of Aβ and its subsequent accumulation. Taken together, these results suggest that EGCG may be a suitable candidate in the search for potential therapeutic compounds for neurodegenerative disorders involving inflammation and oxidative stress, including Alzheimer's disease.
Collapse
Affiliation(s)
- Víctor Valverde-Salazar
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Vega García-Escudero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, 28031 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
4
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
5
|
Alam MA, Bin Jardan YA, Raish M, Al-Mohizea AM, Ahad A, Al-Jenoobi FI. Herb-drug interaction: Pharmacokinetics and pharmacodynamics of anti-hypertensive drug amlodipine besylate in presence of lepidium sativum and curcuma longa. Xenobiotica 2021; 52:177-185. [PMID: 34958609 DOI: 10.1080/00498254.2021.2023787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Effects of Lepidium sativum and Curcuma longa were investigated on pharmacokinetics and pharmacodynamics of antihypertensive drug (amlodipine).2. Hypertensive rats were treated with amlodipine, Lepidium sativum, Lepidium sativum + amlodipine, Curcuma longa, and Curcuma longa + amlodipine; and their blood pressures were measured. Amlodipine in plasma samples was analysed using UPLC-TQD. Product ions of amlodipine were monitored at m/z 409.18 > 238 and 409.18 > 294; and of nitrendipine at m/z 361.16 > 315.1 and 361.16 > 329.10.3. Lepidium sativum + amlodipine treatment showed highest reduction in systolic blood pressure (SBP). Mean anti-hypertensive effect of Lepidium sativum and Curcuma longa was similar to amlodipine. Mean SBPs (1-24 h) of amlodipine, Lepidium sativum, Lepidium sativum + amlodipine, Curcuma longa, and Curcuma longa + amlodipine treated animals were found as 149.5 ± 2.4 mmHg, 151.6 ± 1.09 mmHg, and 141.8 ± 2.5 mmHg, 154.9 ± 2.2 mmHg and 144.4 ± 2.6 mmHg (p-values ≪0.05); respectively. Lepidium sativum and Curcuma longa significantly increased amlodipine Cmax by 83% (p-value 0.018) and 53% (p-value 0.035); and AUC0-t by 48% (p-value >0.05) and 56% (p-value 0.033); respectively.4. Results of pharmacokinetic and pharmacodynamic studies are in agreement. Lepidium sativum and Curcuma longa augment antihypertensive effect of amlodipine, which is also supported by pharmacokinetic observations.
Collapse
Affiliation(s)
- Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Alam MA, Bin Jardan YA, Alzenaidy B, Raish M, Al-Mohizea AM, Ahad A, Al-Jenoobi FI. Effect of Hibiscus sabdariffa and Zingiber officinale on pharmacokinetics and pharmacodynamics of amlodipine. J Pharm Pharmacol 2021; 73:1151-1160. [PMID: 34383955 DOI: 10.1093/jpp/rgaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To study the effect of Zingiber officinale and Hibiscus sabdariffa on pharmacokinetics and pharmacodynamics of amlodipine. METHODS Hypertension was induced in rats (SBP 173.2 ± 1.7 mmHg, mean, 1-24 h). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and heart rate (HR) of group-I (amlodipine treated), group-II (Z. officinale, and Z. officinale + amlodipine) and group-III (H. sabdariffa, and H. sabdariffa + amlodipine) animals were measured by "tail-cuff system". Pharmacokinetics of amlodipine with and without herbs (Z. officinale or H. sabdariffa) was also investigated. RESULTS Z. officinale as well as H. sabdariffa decreased the SBP, DBP and MBP. Concurrent treatment with Z. officinale + amlodipine (SBP 129.4 ± 4.5) or H. sabdariffa + amlodipine (SBP 130.4 ± 3.9) showed higher decrease in BP (mean, 1-24h), than individually administered amlodipine (SBP 149.5 ± 2.4) or Z. officinale (SBP 150.2 ± 3.1) or H. sabdariffa (SBP 139.1 ± 1.2). These herbs also influenced the Cmax, AUC0-t, and Tmax of amlodipine. H. sabdariffa increased AUC0-t of amlodipine from 81.8 ± 14.7 to 125.0 ± 10.6 (ng h/mL). CONCLUSION Simultaneous administration of Z. officinale or H. sabdariffa with amlodipine, improves its pharmacodynamic response.
Collapse
Affiliation(s)
- Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bader Alzenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
7
|
Jiang N, Zhang M, Meng X, Sun B. Effects of curcumin on the pharmacokinetics of amlodipine in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:465-468. [PMID: 32432949 PMCID: PMC7301706 DOI: 10.1080/13880209.2020.1764060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 06/04/2023]
Abstract
Context: Hyperlipidaemia and hypertension are often treated together with curcumin and amlodipine. It is necessary to investigate the drug-drug interaction between curcumin and amlodipine.Objective: The interaction between curcumin and amlodipine was investigated in rats and with rat liver microsomes.Methods: The pharmacokinetics of amlodipine (1 mg/kg) was investigated in rats with or without curcumin pre-treatment (2 mg/kg), six rats in each group. The metabolic stability of amlodipine was investigated with rat liver microsomes.Results: Curcumin significantly increased the Cmax (26.19 ± 2.21 versus 17.80 ± 1.56 μg/L), AUC(0-t) (507.27 ± 60.23 versus 238.68 ± 45.59 μg·h/L), and t1/2 (14.69 ± 1.64 versus 11.43 ± 1.20 h) of amlodipine (p < 0.05). The metabolic stability of amlodipine was significantly increased with the half-life time in rat liver microsomes increased from 34.23 ± 3.33 to 44.15 ± 4.12 min, and the intrinsic rate decreased from 40.49 ± 3.26 to 31.39 ± 2.78 μL/min/mg protein.Discussion and conclusions: These results indicated that drug-drug interaction might appear during the co-administration of curcumin and amlodipine. The potential mechanism may be due to the inhibition of CYP3A4 by curcumin. Thus, this interaction should be given special attention in the clinic and needs further experiments to characterize the effect in humans.
Collapse
Affiliation(s)
- Na Jiang
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Meicheng Zhang
- Department of Cardiovascular Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xiangzhi Meng
- Department of Cardiovascular Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
8
|
Alam MA, Bin Jardan YA, Raish M, Al-Mohizea AM, Ahad A, Al-Jenoobi FI. Effect of Nigella sativa and Fenugreek on the Pharmacokinetics and Pharmacodynamics of Amlodipine in Hypertensive Rats. Curr Drug Metab 2020; 21:318-325. [PMID: 32407268 DOI: 10.2174/1389200221666200514121501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The present article is related to in-vitro and in-vivo herb-drug interaction studies. OBJECTIVES This study aimed to investigate the effect of Nigella sativa and fenugreek on the pharmacodynamics and pharmacokinetics of amlodipine. METHOD Hypertensive rats of group-I were treated with amlodipine and rats of group-II and III were treated with N. sativa, and N. sativa + amlodipine and fenugreek, and fenugreek + amlodipine, respectively. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) of group-I, II and III rats were measured by the "tail-cuff system". RESULTS N. sativa, as well as fenugreek, reduced the SBP, DBP and MBP. Simultaneously, administration of fenugreek + amlodipine or N. sativa + amlodipine showed better control of BP. Individually, fenugreek, as well as N. sativa, showed a surprising reduction in the heart rate. There was no remarkable effect of any of these two herbs on Cmax, AUC0-t, Kel, and terminal elimination half-life of amlodipine, but fenugreek altered the Tmax of amlodipine significantly, from 2 ± 1.2h in control to 7.2 ± 1.7h in fenugreek treated group, probably by delaying the absorption. CONCLUSION Results of pharmacodynamics and pharmacokinetics studies suggested that simultaneous administration of fenugreek or N. sativa with amlodipine improved the pharmacological response of amlodipine in hypertensive rats, though there was no remarkable change in pharmacokinetic parameters (Cmax, Kel, elimination t1/2, and AUC0-t).
Collapse
Affiliation(s)
- Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yousef Abdullah Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammad Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahad Ibrahim Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Yang J, Li Y, Li Y, Rui X, Du M, Wang Z. Effects of atorvastatin on pharmacokinetics of amlodipine in rats and its potential mechanism. Xenobiotica 2019; 50:685-688. [PMID: 31556335 DOI: 10.1080/00498254.2019.1673918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Yuanyuan Li
- Department of Imaging, Yidu Central Hospital of Weifang, Weifang, PR China
| | - Yang Li
- Department of Neurosurgery, Zibo No. 4 People’s Hospital, Zibo, PR China
| | - Xueqi Rui
- Department of Cardiovasology, Liyang People’s Hospital, Liyang, PR China
| | - Meiqing Du
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying, PR China
| | - Zengfu Wang
- Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying, PR China
| |
Collapse
|