1
|
Gupta SM, Mohite PS, Chakrapani H. Mercapto-NSAIDs generate a non-steroidal anti-inflammatory drug (NSAID) and hydrogen sulfide. Chem Sci 2025; 16:4695-4702. [PMID: 39958646 PMCID: PMC11826334 DOI: 10.1039/d4sc08525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the frontline treatments for inflammation and pain. Hydrogen sulfide (H2S) and related persulfide (RS-SH) are important mediators of antioxidant response and protect cells from oxidative stress. Hybrids of these pharmacological agents have shown promise in clinical trials and are superior to the parent NSAID. Here, we report a new class of NSAID-H2S hybrids, where a strategic placement of a sulfhydryl group adjacent to a carbonyl of a NSAID facilitates the enzymatic generation of H2S. We show that α-mercapto-nabumetone, a derivative of the clinical drug nabumetone, is a substrate for 3-mercaptopyruvate sulfurtransferase (3-MST), an enzyme involved in H2S biosynthesis. The key step of 3-MST catalysis is the cleavage of a C-S bond adjacent to a carbonyl group, which generates an enolate and 3-MST persulfide, which in turn is cleaved under reducing conditions to generate H2S. Guided by a molecular docking study with 3-MST, we prepared two mercapto-nabumetone derivatives, protected as their thioacetates. In the presence of 3-MST, both mercapto-nabumetone derivatives generated H2S and the NSAID in a nearly quantitative yield, produced glutathione persulfide (GS-SH), an important mediator of cellular antioxidant response, and permeated cells to generate H2S. Lastly, to gain insights into the scope of this strategy, we prepared mercapto-NSAID derivatives containing a carboxylic acid. We found that the propensity to generate H2S depended on the nature of the enol that is produced during the transformation of the mercapto-NSAID into the parent NSAID. This offers new insights into 3-MST catalysis and how reaction outcomes can be modulated by the keto-enol equilibrium. Taken together, the atom economical transformation of a clinical NSAID with one strategically placed sulfhydryl group to generate H2S presents new opportunities to enhance the properties of NSAIDs through participation in endogenous H2S biosynthesis.
Collapse
Affiliation(s)
- Simran M Gupta
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Pratiksha S Mohite
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| |
Collapse
|
2
|
Singh DK, Ahire D, Davydov DR, Prasad B. Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics. Drug Metab Dispos 2024; 52:1152-1160. [PMID: 38641346 PMCID: PMC11495667 DOI: 10.1124/dmd.124.001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are useful for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics that relies on synthetic stable isotope-labeled surrogate peptides as calibrators is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA does not consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage, which was applied to quantify 54 DMETs for characterization of 1) differential tissue DMET abundance in the human liver, kidney, and intestine, and 2) interindividual variability of DMET proteins in individual intestinal samples (n = 13). Uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7), microsomal glutathione S-transferases (MGST1, MGST2, and MGST3) carboxylesterase 2 (CES2), and multidrug resistance-associated protein 2 (MRP2) were expressed in all three tissues, whereas, as expected, four cytochrome P450s (CYP3A4, CYP3A5, CYP2C9, and CYP4F2), UGT1A1, UGT2B17, CES1, flavin-containing monooxygenase 5, MRP3, and P-glycoprotein were present in the liver and intestine. The top three DMET proteins in individual tissues were: CES1>CYP2E1>UGT2B7 (liver), CES2>UGT2B17>CYP3A4 (intestine), and MGST1>UGT1A6>MGST2 (kidney). CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2 showed high interindividual variability in the intestine. These data are relevant for enhancing in vitro to in vivo extrapolation of drug absorption and disposition and can be used to enhance the accuracy of physiologically based pharmacokinetic prediction of systemic and tissue concentration of drugs. SIGNIFICANCE STATEMENT: This study quantified the abundance and compositions of drug-metabolizing enzymes and transporters in pooled human liver, intestine, and kidney microsomes as well as individual intestinal microsomes using an optimized global proteomics approach. The data revealed large intertissue differences in the abundance of these proteins and high intestinal interindividual variability in the levels of cytochrome P450s (e.g., CYP3A4 and CYP3A5), uridine diphosphate-glucuronosyltransferase 2B17, carboxylesterase 2, and microsomal glutathione S-transferase 2. These data are applicable for the prediction of first-pass metabolism and tissue-specific drug clearance.
Collapse
Affiliation(s)
- Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., D.A., B.P.); and Department of Chemistry, Washington State University, Pullman, Washington (D.R.D.)
| | - Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., D.A., B.P.); and Department of Chemistry, Washington State University, Pullman, Washington (D.R.D.)
| | - Dmitri R Davydov
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., D.A., B.P.); and Department of Chemistry, Washington State University, Pullman, Washington (D.R.D.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., D.A., B.P.); and Department of Chemistry, Washington State University, Pullman, Washington (D.R.D.)
| |
Collapse
|
3
|
Zhou J, Qin X, Zhou S, MacKenzie KR, Li F. CYP3A-Mediated Carbon-Carbon Bond Cleavages in Drug Metabolism. Biomolecules 2024; 14:1125. [PMID: 39334891 PMCID: PMC11430781 DOI: 10.3390/biom14091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Cytochrome P450 enzymes (P450s) play a critical role in drug metabolism, with the CYP3A subfamily being responsible for the biotransformation of over 50% of marked drugs. While CYP3A enzymes are known for their extensive catalytic versatility, one intriguing and less understood function is the ability to mediate carbon-carbon (C-C) bond cleavage. These uncommon reactions can lead to unusual metabolites and potentially influence drug safety and efficacy. This review focuses on examining examples of C-C bond cleavage catalyzed by CYP3A, exploring the mechanisms, physiological significance, and implications for drug metabolism. Additionally, examples of CYP3A-mediated ring expansion via C-C bond cleavages are included in this review. This work will enhance our understanding of CYP3A-catalyzed C-C bond cleavages and their mechanisms by carefully examining and analyzing these case studies. It may also guide future research in drug metabolism and drug design, improving drug safety and efficacy in clinical practice.
Collapse
Affiliation(s)
- Junhui Zhou
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenzhi Zhou
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (J.Z.); (X.Q.); (S.Z.); (K.R.M.)
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Nagar S, Hawi A, Sciascia T, Korzekwa K. Disposition of Oral Nalbuphine and Its Metabolites in Healthy Subjects and Subjects with Hepatic Impairment: Preliminary Modeling Results Using a Continuous Intestinal Absorption Model with Enterohepatic Recirculation. Metabolites 2024; 14:471. [PMID: 39330478 PMCID: PMC11433732 DOI: 10.3390/metabo14090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Nalbuphine (NAL) is a mixed κ-agonist/μ-antagonist opioid with extensive first-pass metabolism. A phase 1 open-label study was conducted to characterize the pharmacokinetics (PKs) of NAL and select metabolites following single oral doses of NAL extended-release tablets in subjects with mild, moderate, and severe hepatic impairment (Child-Pugh A, B, and C, respectively) compared to healthy matched subjects. NAL exposures were similar for subjects with mild hepatic impairment as compared to healthy subjects and nearly three-fold and eight-fold higher in subjects with moderate and severe hepatic impairment, respectively. Datasets obtained for healthy, moderate, and severe hepatic impaired groups were modeled with a mechanistic model that incorporated NAL hepatic metabolism and enterohepatic recycling of NAL and its glucuronidated metabolites. The mechanistic model includes a continuous intestinal absorption model linked to semi-physiological liver-gallbladder-compartmental PK models based on partial differential equations (termed the PDE-EHR model). In vitro studies indicated that cytochromes P450 CYP2C9 and CYP2C19 are the major CYPs involved in NAL oxidation, with glucuronidation mainly catalyzed by UGT1A8 and UGT2B7 isozymes. Complex formation and elimination kinetics of NAL and four main metabolites was well predicted by PDE-EHR. The model is expected to improve predictions of drug interactions and complex drug disposition.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19130, USA
| | - Amale Hawi
- A. Hawi Consulting, Ridgefield, CT 06877, USA
| | | | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19130, USA
| |
Collapse
|
5
|
Ichida H, Fukami T, Kudo T, Mishiro K, Takano S, Nakano M, Morinaga G, Matsui A, Ishiguro N, Nakajima M. Identification of HSD17B12 as an enzyme catalyzing drug reduction reactions through investigation of nabumetone metabolism. Arch Biochem Biophys 2023; 736:109536. [PMID: 36724833 DOI: 10.1016/j.abb.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17β-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Kenji Mishiro
- Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shiori Takano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Gaku Morinaga
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Akiko Matsui
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Khojasteh SC, Argikar UA, Cho S, Crouch R, Heck CJS, Johnson KM, Kalgutkar AS, King L, Maw HH, Seneviratne HK, Wang S, Wei C, Zhang D, Jackson KD. Biotransformation Novel Advances - 2021 year in review. Drug Metab Rev 2022; 54:207-245. [PMID: 35815654 DOI: 10.1080/03602532.2022.2097253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biotransformation field is constantly evolving with new molecular structures and discoveries of metabolic pathways that impact efficacy and safety. Recent review by Kramlinger et al (2022) nicely captures the future (and the past) of highly impactful science of biotransformation (see the first article). Based on the selected articles, this review was categorized into three sections: (1) new modalities biotransformation, (2) drug discovery biotransformation, and (3) drug development biotransformation (Table 1).
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| | - Rachel Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, 37203, USA
| | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut, USA
| | - Kevin M Johnson
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02139, USA
| | - Lloyd King
- Quantitative Drug Discovery, UCB Biopharma UK, 216 Bath Road, Slough, SL1 3WE, UK
| | - Hlaing Holly Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, 02142, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, MS412a, South San Francisco, CA, 94080, USA
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Lam BQ, Srivastava R, Morvant J, Shankar S, Srivastava RK. Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells 2021; 10:cells10113077. [PMID: 34831299 PMCID: PMC8620339 DOI: 10.3390/cells10113077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM), one of the metabolic diseases which is characterized by sustained hyperglycemia, is a life-threatening disease. The global prevalence of DM is on the rise, mainly in low- and middle-income countries. Diabetes is a major cause of blindness, heart attacks, kidney failure, stroke, and lower limb amputation. Type 2 diabetes mellitus (T2DM) is a form of diabetes that is characterized by high blood sugar and insulin resistance. T2DM can be prevented or delayed by a healthy diet, regular physical activity, maintaining normal body weight, and avoiding alcohol and tobacco use. Ethanol and its metabolites can cause differentiation defects in stem cells and promote inflammatory injury and carcinogenesis in several tissues. Recent studies have suggested that diabetes can be treated, and its consequences can be avoided or delayed with proper management. DM has a greater risk for several cancers, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer. The incidence of cancer is significantly higher in patients with DM than in those without DM. In addition to DM, alcohol abuse is also a risk factor for many cancers. We present a review of the recent studies investigating the association of both DM and alcohol abuse with cancer incidence.
Collapse
Affiliation(s)
- Bao Q. Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jason Morvant
- Department of Surgery, Ochsner Health System, 120 Ochsner Boulevard, Gretna, LA 70056, USA;
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
8
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
9
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Matsumoto K, Hasegawa T, Ohara K, Kamei T, Koyanagi J, Akimoto M. Role of human flavin-containing monooxygenase (FMO) 5 in the metabolism of nabumetone: Baeyer-Villiger oxidation in the activation of the intermediate metabolite, 3-hydroxy nabumetone, to the active metabolite, 6-methoxy-2-naphthylacetic acid in vitro. Xenobiotica 2020; 51:155-166. [PMID: 33146575 DOI: 10.1080/00498254.2020.1843089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nabumetone (NAB) is a non-steroidal anti-inflammatory drug used clinically, and its biotransformation includes the major active metabolite 6-methoxy-2-naphthylacetic acid (6-MNA). One of the key intermediates between NAB and 6-MNA may be 3-hydroxy nabumetone (3-OH-NAB). The aim of the present study was to investigate the role of flavin-containing monooxygenase (FMO) isoform 5 in the formation of 6-MNA from 3-OH-NAB. To elucidate the biotransformation of 3-OH-NAB to 6-MNA, an authentic standard of 3-OH-NAB was synthesised and used as a substrate in an incubation with human liver samples or recombinant enzymes. The formation of 3-OH-NAB was observed after the incubation of NAB with various cytochrome P450 (CYP) isoforms. However, 6-MNA itself was rarely detected from NAB and 3-OH-NAB. Further experiments revealed a 6-MNA peak derived from 3-OH-NAB in human hepatocytes. 6-MNA was also detected in the extract obtained from 3-OH-NAB by a combined incubation of recombinant human FMO5 and human liver S9. We herein demonstrated that the reaction involves carbon-carbon cleavage catalyzed by the Baeyer-Villiger oxidation (BVO) of a carbonyl compound, the BVO substrate, such as a ketol, by FMO5. Further in vitro inhibition experiments showed that multiple non-CYP enzymes are involved in the formation of 6-MNA from 3-OH-NAB.
Collapse
Affiliation(s)
- Kaori Matsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tetsuya Hasegawa
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Kosuke Ohara
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tomoyo Kamei
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Junichi Koyanagi
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Masayuki Akimoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| |
Collapse
|