1
|
Garcia KJ, Theismann JT, Schneider TD, LeComte RS, Jarmolowicz DP, Johnson MA. Doxorubicin treatment has a biphasic effect over time on dopamine release and impulsive behavior in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03766-5. [PMID: 39820646 DOI: 10.1007/s00210-024-03766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Doxorubicin (Dox) is a chemotherapy agent commonly used to treat multiple types of cancers and is associated with cognitive impairment. The goal of this work was to determine the effect of Dox treatment on dopamine release and uptake and behavior in rats. Rats received one dose per week of Dox (2.5 mg/kg, I.V.) and were sacrificed after two or four weeks. Dopamine release and uptake was measured in brain slices with fast-scan cyclic voltammetry (FSCV). A set of rats that received treatment also underwent behavioral testing with the 5-choice serial reaction timed task (5CSRTT) to measure degree of impulsiveness and attention throughout the course of treatment. Dopamine release and uptake increased substantially after treatment with Dox for two weeks compared to controls. After four weeks of treatment, release levels decreased to less than controls while there were no differences in uptake. Treatment of brain slices with pramipexole revealed that dopamine release was equally sensitive to autoregulation after two weeks of Dox treatment, but less sensitive after four weeks. Measurements from the 5CSRTT indicated that, while Dox did not affect attention, it increased impulsiveness after two and three weeks of treatment, but not after four weeks. Treatment with Dox for a short time may elevate dopamine system activity and increase impulsiveness, while longer administration then leads to an underactive dopamine system. To our knowledge this work demonstrates for the first time that Dox can have a biphasic neurochemical and behavioral effect.
Collapse
Affiliation(s)
- Kiersten J Garcia
- Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS, 66047, USA
- Chemistry Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Jacob T Theismann
- Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS, 66047, USA
- Chemistry Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Tadd D Schneider
- Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Robert S LeComte
- Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, 66045, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - David P Jarmolowicz
- Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Michael A Johnson
- Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS, 66047, USA.
- Chemistry Department, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
2
|
Lu Y, Wang Y, He Y, Pan J, Jin Y, Zheng L, Huang Y, Li Y, Liu W. Aidi injection altered the activity of CYP2D4, CYP1A2, CYP2C19, CYP3A2, CYP2E1 and CYP2C11 in normal and diethylnitrosamine-induced hepatocellular carcinoma in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114930. [PMID: 34952190 DOI: 10.1016/j.jep.2021.114930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aidi injection (ADI), a traditional chinese medicine preparation, is widely used in combination with chemotherapy for the treatment of various malignant tumors, such as hepatocellular carcinoma (HCC). Studies have shown that changes in cytochrome P450 (CYP450) activity in disease states would affect the metabolism of drugs in vivo, especially liver diseases. However, the changes of Aidi injection on the activities of CYP2D4, CYP1A2, CYP2C19, CYP3A2, CYP2E1 and CYP2C11 in normal and HCC states are still unknown. AIM OF THE STUDY The cocktail probe drugs method was used to investigate the effects of ADI on the activity of CYP2D4, CYP1A2, CYP2C19, CYP3A2, CYP2E1 and CYP2C11 in normal and HCC rats. MATERIALS AND METHODS The HCC rats was induced by diethylnitrosamine (DEN). Then, both normal and HCC rats were randomly divided into 2 groups (n = 6). They were given saline or ADI (10 mL/kg/d, i.p) for 2 weeks, respectively. On the fifteenth day, cocktail probe mixing solution, including metoprolol (10 mg/kg), caffeine (1.0 mg/kg), omeprazole (2.0 mg/kg), midazolam (2.0 mg/kg), chlorzoxazone (4.0 mg/kg) and tolbutamide (0.5 mg/kg), was injected into tail vein of all rats in each group. The blood sample was obtained at specified time. After the protein is precipitated, six probe drugs are analyzed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS Compared with control group, the activity of CYP3A2 and CYP2E1 was significantly lower in the ADI group. Compared with the model group, the activities of CYP1A2, CYP3A2, CYP2E1, and CYP2C11 enzymes in the ADI model group were significantly reduced. Additionally, the activity of CYP2D4, CYP1A2, CYP2C19, CYP3A2, CYP2E1 and CYP2C11 enzymes in model group was significantly lower than control group. CONCLUSIONS ADI can inhibit a lot of CYP450 enzyme, so it may reduce the dosage of chemotherapeutic drugs to reach the required plasma concentration of chemotherapeutic drugs, which is of great significance for the combination of anti-tumor chemotherapeutic drugs and is worthy of further in-depth study and clinical attention.
Collapse
Affiliation(s)
- Yuan Lu
- The Affiliated Hospital of Guizhou Medical University, 28(#) Guiyi Road, Guiyang, 550004, Guizhou, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yanli Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yan He
- The Affiliated Hospital of Guizhou Medical University, 28(#) Guiyi Road, Guiyang, 550004, Guizhou, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yang Jin
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Wen Liu
- The Affiliated Hospital of Guizhou Medical University, 28(#) Guiyi Road, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
| |
Collapse
|
3
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
4
|
Lu Y, Pan J, Zhu X, Zhang S, Liu C, Sun J, Li Y, Chen S, Huang J, Cao C, Wang Y, Li Y, Liu T. Pharmacokinetic herb-drug interactions between Aidi injection and doxorubicin in rats with diethylnitrosamine-induced hepatocellular carcinoma. BMC Pharmacol Toxicol 2021; 22:48. [PMID: 34488896 PMCID: PMC8419969 DOI: 10.1186/s40360-021-00515-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Aidi Injection (ADI), a Chinese herbal preparation with anti-cancer activity, is used for the treatment of hepatocellular carcinoma (HCC). Several clinical studies have shown that co-administration of ADI with doxorubicin (DOX) is associated with reduced toxicity of chemotherapy, enhanced clinical efficacy and improved quality of life for patients. However, limited information is available about the herb-drug interactions between ADI and DOX. The study aimed to investigate the pharmacokinetic mechanism of herb-drug interactions between ADI and DOX in a rat model of HCC. METHODS Experimental HCC was induced in rats by oral administration of diethylnitrosamine. The HCC rats were pretreated with ADI (10 mL/kg, intraperitoneal injection) for 14 consecutive days prior to administration of DOX (7 mg/kg, intravenous injection) to investigate pharmacokinetic interactions. Plasma concentrations of DOX and its major metabolite, doxorubicinol (DOXol), were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS Preadministration of ADI significantly altered the pharmacokinetics of DOX in HCC rats, leading to increased plasma concentrations of both DOX and DOXol. The area under the plasma drug concentration-time curve (AUCs) of DOX and DOXol in rats pretreated with ADI were 3.79-fold and 2.92-fold higher, respectively, than those in control rats that did not receive ADI. CONCLUSIONS Increased levels of DOX and DOXol were found in the plasma of HCC rats pretreated with ADI.
Collapse
Affiliation(s)
- Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Jie Pan
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Xiaoqing Zhu
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Chunhua Liu
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yueting Li
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Siying Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Jing Huang
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Chuang Cao
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yongjun Li
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China.
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
| |
Collapse
|
5
|
Piska K, Jamrozik M, Koczurkiewicz-Adamczyk P, Bucki A, Żmudzki P, Kołaczkowski M, Pękala E. Carbonyl reduction pathway in hepatic in vitro metabolism of anthracyclines: Impact of structure on biotransformation rate. Toxicol Lett 2021; 342:50-57. [PMID: 33581289 DOI: 10.1016/j.toxlet.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 11/29/2022]
Abstract
Carbonyl reduction biotransformation pathway of anthracyclines (doxorubicin, daunorubicin) is a significant process, associated with drug metabolism and elimination. However, it also plays a pivotal role in anthracyclines-induced cardiotoxicity and cancer resistance. Herein, carbonyl reduction of eight anthracyclines, at in vivo relevant concentrations (20 μM), was studied in human liver cytosol, to describe the relationship between their structure and metabolism. Significant differences of intrinsic clearance between anthracyclines, ranging from 0,62-74,9 μL/min/mg were found and associated with data from in silico analyses, considering their binding in active sites of the main anthracyclines-reducing enzymes: carbonyl reductase 1 (CBR1) and aldo-keto reductase 1C3 (AKR1C3). Partial atomic charges of carbonyl oxygen atom were also determined and considered as a factor associated with reaction rate. Structural features, including presence or absence of side-chain hydroxy group, a configuration of sugar chain hydroxy group, and tetracyclic rings substitution, affecting anthracyclines susceptibility for carbonyl reduction were identified.
Collapse
Affiliation(s)
- Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland.
| | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-638, Kraków, Poland
| |
Collapse
|