1
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
2
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Nazeri N, Karimi R, Ghanbari H. The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J Biomed Mater Res A 2020; 109:159-169. [PMID: 32445230 DOI: 10.1002/jbm.a.37013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The presence of biological cues to promote the attachment, proliferation, and differentiation of neuronal cells is important in the process of nerve regeneration. In this study, laminin as a neurite promoting protein, has been used to modify poly-lactide-co-glycolide/carbon nanotube (PLGA/CNT) electrospun nanofibrous scaffolds by means of either mussel-inspired poly(dopamine) (PD) coating or via direct physical adsorption as a simple route for the functionalization of biomaterials. The laminin-modified scaffolds were characterized by a combination of field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and contact angle measurements. Subsequently, various properties of scaffolds such as degradation time, amount of attached laminin and the rate of CNT release were investigated. The synergistic effect of topographical and biological cues for PC12 cell attachment, proliferation, and differentiation were then studied by SEM and confocal microscopy. The results of degradation study showed that laminin-modified scaffolds were biodegradable with good structural integrity that persisted about 4 weeks. The amount of laminin attached to the PLGA/CNT and PLGA/CNT-PD scaffolds was 3.12 ± 0.6 and 3.04 ± 071 μg per mg of the scaffold, respectively. Although laminin-modified scaffolds could improve cell proliferation identically, neurite extensions on the PLGA/CNT scaffold modified via PD coating (PLGA/CNT-PD-lam scaffold) were significantly longer than those observed on PLGA/CNT scaffold modified via physical adsorption (PLGA/CNT-lam scaffold) and unmodified scaffolds. Together, these results indicated that surface modification via PD coating could be a promising strategy to fabricate biomimetic scaffolds capable of sustaining longer neuronal growth for nerve tissue engineering.
Collapse
Affiliation(s)
- Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Alagoz AS, Rodriguez-Cabello JC, Hasirci V. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Biomed Mater 2018; 13:055010. [DOI: 10.1088/1748-605x/aad139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Li W, Cicek N, Levin DB, Liu S. Enabling electrospinning of medium-chain length polyhydroxyalkanoates (PHAs) by blending with short-chain length PHAs. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Li
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - David B. Levin
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Song Liu
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Biazar E, Najafi S M, Heidari K S, Yazdankhah M, Rafiei A, Biazar D. 3D bio-printing technology for body tissues and organs regeneration. J Med Eng Technol 2018; 42:187-202. [PMID: 29671367 DOI: 10.1080/03091902.2018.1457094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the last decade, the use of new technologies in the reconstruction of body tissues has greatly developed. Utilising stem cell technology, nanotechnology and scaffolding design has created new opportunities in tissue regeneration. The use of accurate engineering design in the creation of scaffolds, including 3D printers, has been widely considered. Three-dimensional printers, especially high precision bio-printers, have opened up a new way in the design of 3D tissue engineering scaffolds. In this article, a review of the latest applications of this technology in this promising area has been addressed.
Collapse
Affiliation(s)
- Esmaeil Biazar
- a Department of Biomaterials Engineering, Tonekabon Branch , Islamic Azad University , Tonekabon , Iran
| | - Masoumeh Najafi S
- b Department of Biomaterials Engineering , Maziar University , Noor , Iran
| | - Saeed Heidari K
- c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,d Proteomics Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Meysam Yazdankhah
- e Department of Ophthalmology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Ataollah Rafiei
- f Department of Computer Engineering, Lahijan Branch , Islamic Azad University , Lahijan , Iran
| | - Dariush Biazar
- g Department of Electrical Engineering, Ramsar Branch , Islamic Azad University , Ramsar , Iran
| |
Collapse
|
7
|
Ebrahimi M, Ai J, Biazar E, Ebrahimi-Barough S, Khojasteh A, Yazdankhah M, Sharifi S, Ai A, Heidari-Keshel S. In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:394-401. [DOI: 10.1080/21691401.2018.1426593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maryam Ebrahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Yazdankhah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siavash Sharifi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Sharekord University, Sharekord, Iran
| | - Arman Ai
- Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari-Keshel
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Namdari M, Negahdari B, Eatemadi A. Paediatric nanofibrous bioprosthetic heart valve. IET Nanobiotechnol 2017; 11:493-500. [PMID: 28745279 PMCID: PMC8676244 DOI: 10.1049/iet-nbt.2016.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 09/22/2023] Open
Abstract
The search for an optimal aortic valve implant with durability, calcification resistance, excellent haemodynamic parameters and ability to withstand mechanical loading is yet to be met. Thus, there has been struggled to fabricate bio-prosthetics heart valve using bioengineering. The consequential product must be resilient with suitable mechanical features, biocompatible and possess the capacity to grow. Defective heart valves replacement by surgery is now common, this improves the value and survival of life for a lot of patients. The recent paediatric heart valve implant is suboptimal due to their inability of somatic growth. They usually have multiple surgeries to change outgrown valves. Short-lived valve bio-prostheses occurring in older patients and younger ones who more usually need the replacement of its damaged heart with prosthesis led to a new invasive surgical interventions with an improved quality of life. The authors propose that nanofibre scaffold for paediatric tissue-engineered heart valve will meet most of these conditions, most particularly those related to somatic growth, and, as the nanofibre scaffold is eroded, new valve is produced, the valve matures in the child until adulthood.
Collapse
Affiliation(s)
- Mehrdad Namdari
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran.
| |
Collapse
|
9
|
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
10
|
Wu T, Li D, Wang Y, Sun B, Li D, Morsi Y, El-Hamshary H, Al-Deyab SS, Mo X. Laminin-coated nerve guidance conduits based on poly(l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration. J Mater Chem B 2017; 5:3186-3194. [DOI: 10.1039/c6tb03330j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A laminin-coated and yarn-encapsulated PLGA nerve guidance conduit for Schwann cells’ proliferation and migration.
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Dandan Li
- College of Material Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Yuanfei Wang
- State Key Laboratory of Bioreactor Engineering
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Binbin Sun
- State Key Lab for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Dawei Li
- College of Textiles
- Donghua University
- Shanghai 201620
- China
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences
- Swinburne University of Technology
- Hawthorn
- Australia
| | - Hany El-Hamshary
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Salem S. Al-Deyab
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
11
|
Namdari M, Eatemadi A. Nanofibrous bioengineered heart valve—Application in paediatric medicine. Biomed Pharmacother 2016; 84:1179-1188. [DOI: 10.1016/j.biopha.2016.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
|
12
|
Heidari K S, Biazar E, Seyedbarzegar SM, Mousavi N, Vosoughi F, Khademi S N, Nami F, Hosseinkazemi H. Simple design of an aligned transparent biofilm by magnetic particles and its cellular study. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saeed Heidari K
- Ophtalmoproteomics Lab, Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - S. Meysam Seyedbarzegar
- Department of Electric power Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Nayerehsadat Mousavi
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Fina Vosoughi
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Naghmeh Khademi S
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Fariba Nami
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Hesam Hosseinkazemi
- Department of Biomaterials Engineering; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
13
|
Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JFJ. Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials. Adv Healthc Mater 2016; 5:2732-2744. [PMID: 27600578 DOI: 10.1002/adhm.201600236] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Experiments concerning peripheral nerve regeneration have been reported since the end of the 19th century. The need to implement an effective surgical procedure in terms of functional recovery has resulted in the appearance of several approaches to solve this problem. Nerve autograft was the first approach studied and is still considered the gold standard. Since autografts require donor harvesting, other strategies involving the use of natural materials have also been studied. Nevertheless, the results were not very encouraging and attention has moved towards the use of nerve conduits made from polymers, whose properties can be easily tailored and which allow the nerve conduit to be easily processed into a variety of shapes and forms. Some of these materials are already approved by the US Food and Drug Administration (FDA), as is presented here. Furthermore, polymers with conductive properties have very recently been subject to intensive study in this field, since it is believed that such properties have a positive influence in the regeneration of the new axons. This manuscript intends to give a global view of the mechanisms involved in peripheral nerve regeneration and the main strategies used to recover motor and sensorial function of injured nerves.
Collapse
Affiliation(s)
- Ana C. Pinho
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - Ana C. Fonseca
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - Arménio C. Serra
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| | - José D. Santos
- CEMUC Department of Metallurgical and Materials Engineering; University of Porto; Rua Dr Roberto Frias 4200-465 Porto Portugal
| | - Jorge F. J. Coelho
- CEMUC Department of Chemical Engineering; University of Coimbra; Rua Sílvio Lima-Pólo II 3030-790 Coimbra Portugal
| |
Collapse
|
14
|
Biazar E. Application of polymeric nanofibers in medical designs, part IV: Drug and biological materials delivery. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Biazar E. Application of polymeric nanofibers in medical designs, part III: Musculoskeletal and urological tissues. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
16
|
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| |
Collapse
|
17
|
Biazar E. Application of polymeric nanofibers in medical designs, part II: Neural and cardiovascular tissues. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Kuppan P, Sethuraman S, Krishnan UM. Interaction of human smooth muscle cells on random and aligned nanofibrous scaffolds of PHBV and PHBV-gelatin. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1163562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Moghaddam S, Taghi Khorasani M, Hosseinkazemi H, Biazar E, Fazeli M. Fabrication of polyhydroxybutyrate (PHB)/γ-Fe2O3 nanocomposite film and its properties study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:793-804. [PMID: 27095384 DOI: 10.1080/09205063.2016.1143320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Magnetic separation has numerous advantages in isolating cancerous and normal cells used in the diagnosis and treatment sectors. Here, we produced magnetic nanocomposite films made of polyhydroxybutyrate (PHB)/magnetite nanoparticles (γ-Fe2O3), and the properties of the films by SEM, TEM, FTIR, DMTA, contact angle, and cellular analyses were investigated. The microscopic images showed uniform distribution of γ-Fe2O3 magnetic nanoparticles in polymeric matrix. The chemical bounds between magnetic nanoparticles and polymeric matrix demonstrated using the FTIR spectrophotometer. The DMTA and contact angle results indicated an increase in the glass transition temperature and hydrophilic properties of nanocomposites is achieved by increasing the magnetic nanoparticles amount in polymer matrix. The cellular results were showed that adhesion of cancer cells compared to normal cells was significantly enhanced by the induction of a magnetic field. These nanocomposite films can be used as a substrate for cellular adhesion and separation processes.
Collapse
Affiliation(s)
- Shokooh Moghaddam
- a Biomaterials Department , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | | | - Hesam Hosseinkazemi
- c Faculty of Biomedical Engineering, Department of Tissue Engineering , AmirKabir University of Technology , Tehran , Iran
| | - Esmaeil Biazar
- d Faculty of Biomedical Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Mahyar Fazeli
- e Department of Materials Science and Engineering , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
20
|
Khaledian M, Jiroudhashemi F, Biazar E. Chitosan- and polypropylene-oriented surface modification using excimer laser and their biocompatibility study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:135-138. [DOI: 10.3109/21691401.2016.1138485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammad Khaledian
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Faeze Jiroudhashemi
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
21
|
Momenzadeh D, Baradaran-Rafii A, Keshel SH, Ebrahimi M, Biazar E. Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:120-127. [PMID: 26837778 DOI: 10.3109/21691401.2016.1138483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to develop nanofibrous gelatin substrates for eyelid fat stem cell (EFSC) expansion that can serve as a potential alternative substrate to replace human amniotic membrane. Biocompatibility results indicated that all substrates were highly biocompatible, as EFSCs could favorably attach and proliferate on the nanofibrous surfaces. Microscopic figures showed that the EFSC were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real time-PCR results revealed change in the expression profile of EFSCs grown on nanofibrous substrates when compared to those grown on control in epithelial induction condition. In addition, electrospun gelatin mats especially oriented scaffold provides not only a milieu supporting EFSCs expansion, but also serves as a useful alternative carrier for ocular surface tissue engineering and could be used as an alternative substrate to amniotic membrane.
Collapse
Affiliation(s)
- Daruosh Momenzadeh
- a Brain and Spinal Injury Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Baradaran-Rafii
- b Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Heidari Keshel
- c Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Ebrahimi
- d Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Esmaeil Biazar
- e Department of Biomaterials Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| |
Collapse
|
22
|
Heidari Keshel S, Rostampour M, Khosropour G, Bandbon B A, Baradaran-Rafii A, Biazar E. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:339-50. [PMID: 26675143 DOI: 10.1080/09205063.2015.1130406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.
Collapse
Affiliation(s)
| | - Maryam Rostampour
- b Department of Biomaterials Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Golbahar Khosropour
- b Department of Biomaterials Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Atefehsadat Bandbon B
- b Department of Biomaterials Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Alireza Baradaran-Rafii
- c Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Esmaeil Biazar
- b Department of Biomaterials Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| |
Collapse
|
23
|
Ameri Bafghi R, Biazar E. Development of oriented nanofibrous silk guide for repair of nerve defects. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1074907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1139-51. [DOI: 10.1080/09205063.2015.1078930] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Bahrami H, Keshel SH, Chari AJ, Biazar E. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1556-60. [PMID: 26140614 DOI: 10.3109/21691401.2015.1062390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unrestricted somatic stem cells (USSCs) loaded in nanofibrous polycaprolactone (PCL) scaffolds can be used for skin regeneration when grafted onto full-thickness skin defects of rats. Nanofibrous PCL scaffolds were designed by the electrospinning method and crosslinked with laminin protein. Afterwards, the scaffolds were evaluated by scanning electron microscopy, and physical and mechanical assays. In this study, nanofibrous PCL scaffolds loaded with USSCs were grafted onto the skin defects. The wounds were subsequently investigated 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; study samples exhibited the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen at 21 days post-operatively. Histological examinations of healed wounds from all samples showed a thin epidermis plus recovered skin appendages in the dermal layer for samples with cell. Thus, the graft of nanofibrous PCL scaffolds loaded with USSC showed better results during the healing process of skin defects in rat models.
Collapse
Affiliation(s)
- Hoda Bahrami
- a Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Saeed Heidari Keshel
- a Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences , Tehran , Iran.,b Proteomics Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Aliakbar Jafari Chari
- c Faculty of Medical Sciences, Guilan University of Medical Sciences , Guilan , Iran
| | - Esmaeil Biazar
- d Department of Biomaterials Engineering , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| |
Collapse
|
26
|
Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular Response of Limbal Stem Cells on Poly (Hydroxybuthyrate-co-Hydroxyvalerate) Porous Scaffolds for Ocular Surface Bioengineering. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1030651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|