1
|
Ribaudo G, Bortoli M, Pavan C, Zagotto G, Orian L. Antioxidant Potential of Psychotropic Drugs: From Clinical Evidence to In Vitro and In Vivo Assessment and toward a New Challenge for in Silico Molecular Design. Antioxidants (Basel) 2020; 9:E714. [PMID: 32781750 PMCID: PMC7465375 DOI: 10.3390/antiox9080714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies. Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations, the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in patients' treatment. Anyway, some drugs possess antioxidant capacity themselves and this aspect is discussed in this review, focusing on antipsychotics and antidepressants. In the context of a collection of clinical observations, in vitro and in vivo results are critically reported, often highlighting controversial aspects. Finally, a new challenge is discussed, i.e., the possibility of assessing in silico the antioxidant potential of these drugs, exploiting computational chemistry methodologies and machine learning. Despite the physiological environment being incredibly complex and the detection of meaningful oxidative stress biomarkers being all but an easy task, a rigorous and systematic analysis of the structural and reactivity properties of antioxidant drugs seems to be a promising route to better interpret therapeutic outcomes and provide elements for the rational design of novel drugs.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
2
|
Abstract
Determination of the corresponding bond dissociation enthalpy, ionization potential and proton affinity, dipole moment values, highest occupied molecular orbital eigenvalues, and spin density along with the bioactivity score is central to the antioxidant activity evaluation in this paper. Molecular geometries were optimized with DFT using B3LYP and UB3LYP for parent, ionic, and radical species and 6-311+G(d,p) basis set. Bioactivity, drug likeness, and drug scores were calculated using freely available cheminformatics programs for data visualization and analysis. Overall, the values revealed two structures as promising molecules because of good reaction enthalpies (ΔHr). Lipinski rules were fully satisfied for all molecules.
Collapse
Affiliation(s)
- Sandra Cotes
- Departamento de Química y Biología, Universidad del Norte, Km 5 Vía Puerto Colombia, Atlántico, Barranquilla, Colombia
| | - José Cotuá
- Facultad de Química y Farmacia, Universidad del Atlántico, Km 7 Vía Puerto Colombia, Atlántico, Barranquilla, Colombia
| | - Amner Muñoz
- Departamento de Química y Biología, Universidad del Norte, Km 5 Vía Puerto Colombia, Atlántico, Barranquilla, Colombia
| |
Collapse
|
3
|
Bensasson RV, Dinkova-Kostova AT, Zheng S, Saito A, Li W, Zoete V, Honda T. Electron affinity of tricyclic, bicyclic, and monocyclic compounds containing cyanoenones correlates with their potency as inducers of a cytoprotective enzyme. Bioorg Med Chem Lett 2016; 26:4345-9. [PMID: 27460172 DOI: 10.1016/j.bmcl.2016.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Tricyclic, bicyclic, and monocyclic compounds containing cyanoenones induce various anti-inflammatory and cytoprotective enzymes through activation of the Keap1/Nrf2/ARE (antioxidant response element) pathway. The potency of these compounds as Nrf2 activators was determined using a prototypic cytoprotective enzyme NAD(P)H quinone oxidoreductase 1 (NQO1) in Hepa1c1c7 murine hepatoma cells. The electron affinity (EA) of the compounds, expressed as the energy of their lowest unoccupied molecular orbital [E (LUMO)], was evaluated using two types of quantum mechanical calculations: the semiempirical (AM1) and the density functional theory (DFT) methods. We observed striking linear correlations [r=0.897 (AM1) and 0.936 (DFT)] between NQO1 inducer potency of these compounds and their E (LUMO) regardless of the molecule size. Importantly and interestingly, this finding demonstrates that the EA is the essentially important factor that determines the reactivity of the cyanoenones with Keap1.
Collapse
Affiliation(s)
- René V Bensasson
- Muséum National d'Histoire Naturelle, Molécules de Communication et Adaptation des Microorganismes (MCAM), Dept RDDM, UMR 7245 CNRS-MNHN, CP54, 63 rue Buffon, Paris 75005, France.
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Suqing Zheng
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Akira Saito
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Wei Li
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Vincent Zoete
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge-Batiment Genopode, CH-1015 Lausanne, Switzerland.
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
4
|
Localization-delocalization matrices and electron density-weighted adjacency matrices: new electronic fingerprinting tools for medicinal computational chemistry. Future Med Chem 2014; 6:1475-9. [DOI: 10.4155/fmc.14.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Röhrig UF, Majjigapu SR, Chambon M, Bron S, Pilotte L, Colau D, Van den Eynde BJ, Turcatti G, Vogel P, Zoete V, Michielin O. Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2014; 84:284-301. [PMID: 25036789 DOI: 10.1016/j.ejmech.2014.06.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/28/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.
Collapse
Affiliation(s)
- Ute F Röhrig
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Somi Reddy Majjigapu
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Marc Chambon
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sylvian Bron
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Luc Pilotte
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Didier Colau
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Benoît J Van den Eynde
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland; Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Matta* CF. Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J Comput Chem 2014; 35:1165-98. [PMID: 24777743 PMCID: PMC4368384 DOI: 10.1002/jcc.23608] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 11/11/2022]
Abstract
The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excited-states. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pK(a)'s, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, π-stacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme-substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as "interacting quantum atoms (IQA)" energies which are expressible into an interaction matrix of two body terms (and diagonal one body "self" terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established.
Collapse
Affiliation(s)
- Chérif F Matta*
- Department of Chemistry and Physics, Mount Saint Vincent UniversityHalifax, Nova Scotia, Canada, B3M 2J6
- Department of Chemistry, Dalhousie UniversityHalifax, Nova Scotia, Canada, B3H 4J3
- Department of Chemistry, Saint Mary's UniversityHalifax, Nova Scotia, Canada, B3H 3C3
| |
Collapse
|