1
|
Rifai OM, O’Shaughnessy J, Dando OR, Munro AF, Sewell MDE, Abrahams S, Waldron FM, Sibley CR, Gregory JM. Distinct neuroinflammatory signatures exist across genetic and sporadic amyotrophic lateral sclerosis cohorts. Brain 2023; 146:5124-5138. [PMID: 37450566 PMCID: PMC10690026 DOI: 10.1093/brain/awad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.
Collapse
Affiliation(s)
- Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judi O’Shaughnessy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owen R Dando
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael D E Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sharon Abrahams
- Human Cognitive Neuroscience-Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Christopher R Sibley
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FF, UK
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
2
|
Golberg M, Wysiadecki G, Kobos J, Brzeziński P, Polguj M, Clarke E, Barszcz K, Balawender K, Radek M, Żytkowski A. Application of automated immunohistochemistry in anatomical research: A brief review of the method. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Duncan EM, Nowotarski SH, Guerrero-Hernández C, Ross EJ, D'Orazio JA, McKinney S, McHargue MC, Guo L, McClain M, Alvarado AS. Molecular characterization of a flatworm Girardia isolate from Guanajuato, Mexico. Dev Biol 2022; 489:165-177. [PMID: 35710033 PMCID: PMC11104013 DOI: 10.1016/j.ydbio.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Planarian flatworms are best known for their impressive regenerative capacity, yet this trait varies across species. In addition, planarians have other features that share morphology and function with the tissues of many other animals, including an outer mucociliary epithelium that drives planarian locomotion and is very similar to the epithelial linings of the human lung and oviduct. Planarians occupy a broad range of ecological habitats and are known to be sensitive to changes in their environment. Yet, despite their potential to provide valuable insight to many different fields, very few planarian species have been developed as laboratory models for mechanism-based research. Here we describe a previously undocumented planarian isolate, Girardia sp. (Guanajuato). After collecting this isolate from a freshwater habitat in central Mexico, we characterized it at the morphological, cellular, and molecular level. We show that Girardia sp. (Guanajuato) not only shares features with animals in the Girardia genus but also possesses traits that appear unique to this isolate. By thoroughly characterizing this new planarian isolate, our work facilitates future comparisons to other flatworms and further molecular dissection of the unique and physiologically-relevant traits observed in this Girardia sp. (Guanajuato) isolate.
Collapse
Affiliation(s)
| | - Stephanie H Nowotarski
- Stowers Institute for Medical Research, Kansas City, MO, USA; Howard Hughes Medical Institute, Kansas City, MO, USA
| | | | - Eric J Ross
- Stowers Institute for Medical Research, Kansas City, MO, USA; Howard Hughes Medical Institute, Kansas City, MO, USA
| | | | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Longhua Guo
- University of California, Los Angeles, CA, USA
| | | | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, USA; Howard Hughes Medical Institute, Kansas City, MO, USA.
| |
Collapse
|
4
|
Liu H, Wang X. Epidermal growth factor-like domain protein 6 recombinant protein facilitates osteogenic differentiation in adipose stem cells via bone morphogenetic protein 2/recombinant mothers against decapentaplegic homolog 4 signaling pathway. Bioengineered 2022; 13:6558-6566. [PMID: 35220882 PMCID: PMC8973715 DOI: 10.1080/21655979.2022.2037380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are a class of pluripotent stem cells isolated from the adipose tissue; they can differentiate into osteoblasts after induction and play an important role in bone repair. EGFL6 protein is secreted by adipocytes and osteoblasts and can promote endothelial cell migration and angiogenesis. This study aimed to explore the effect of recombinant EGFL6 protein on the osteogenic differentiation of ADSCs. The cells were incubated with fluorescein isothiocyanate-conjugated antibodies and analyzed by flow cytometry. Alizarin red staining and alkaline phosphatase staining were used to detect the osteogenic differentiation ability. mRNA expression was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined using Western blotting. The osteogenic differentiation ability of ADSCs isolated from the adipose tissue was significantly weakened after EGFL6 knockdown; this ability was restored upon the addition of EGFL6 recombinant protein. BMP2 knockdown inhibited the effect of EGFL6 recombinant protein on osteogenic differentiation. EGFL6 recombinant protein promoted osteogenic differentiation of ADSCs through the BMP2/SMAD4 signaling pathway. This may provide a potential target for the osteogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Hairun Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University (CMU), Shenyang, China
- The Third Department of Orthopeadics, Jinzhou Central Hospital, Jinzhou, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University (CMU), Shenyang, China
| |
Collapse
|
5
|
Mack KL, Jaggard JB, Persons JL, Roback EY, Passow CN, Stanhope BA, Ferrufino E, Tsuchiya D, Smith SE, Slaughter BD, Kowalko J, Rohner N, Keene AC, McGaugh SE. Repeated evolution of circadian clock dysregulation in cavefish populations. PLoS Genet 2021; 17:e1009642. [PMID: 34252077 PMCID: PMC8297936 DOI: 10.1371/journal.pgen.1009642] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.
Collapse
Affiliation(s)
- Katya L. Mack
- Biology, Stanford University, Stanford, California, United States of America
| | - James B. Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Jenna L. Persons
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Emma Y. Roback
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Courtney N. Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Bethany A. Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Estephany Ferrufino
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E. Smith
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Johanna Kowalko
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Alex C. Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Suzanne E. McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
6
|
Malloy S, Wang Y. A review on histotechnology practices in COVID-19 pathology investigations. J Histotechnol 2020; 43:153-158. [PMID: 32643596 DOI: 10.1080/01478885.2020.1779484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
COVID-19 disease in humans, caused by the novel SARS-CoV-2 virus, was first reported in the city of Wuhan, China in December 2019. This disease has quickly developed into a global pandemic, resulting in over 350,000 deaths worldwide and over 5 million confirmed infections in a matter of 6 months. Although the genome of this novel viral RNA was sequenced quickly and testing kits were manufactured to assist in combatting COVID-19, the diagnosis and treatment will remain relatively unsuccessful until the pathology of this disease is fully understood. Histotechnology plays an important role in understanding the pathology of many diseases, including COVID-19. The first postmortem biopsy of a COVID-19 patient was collected on 27 January 2020, and the pathology finding was published in mid-February 2020. Since then, more studies have been published in scientific literatures as the global outbreak continues. This mini-review summarizes the published articles in which histotechnology aspects were utilized with the intent to understand the pathology of COVID-19. In addition, it is anticipated there will be more molecular and immunohistochemical studies to further understand the mechanism of the disease in the near future.
Collapse
Affiliation(s)
- Seth Malloy
- Stowers Institute for Medical Research , Kansas City, MO, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research , Kansas City, MO, USA
| |
Collapse
|
7
|
Singh VP, McKinney S, Gerton JL. Persistent DNA Damage and Senescence in the Placenta Impacts Developmental Outcomes of Embryos. Dev Cell 2020; 54:333-347.e7. [PMID: 32800293 DOI: 10.1016/j.devcel.2020.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cohesin is an evolutionarily conserved chromosome-associated protein complex essential for chromosome segregation, gene expression, and repair of DNA damage. Mutations that affect this complex cause the human developmental disorder Cornelia de Lange syndrome (CdLS), thought to arise from defective embryonic transcription. We establish a significant role for placental defects in the development of CdLS mouse embryos (Nipbl and Hdac8). Placenta is a naturally senescent tissue; we demonstrate that persistent DNA damage potentiates senescence and activates cytokine signaling. Mutant embryo developmental outcomes are significantly improved in the context of a wild-type placenta or by genetically restricting cytokine signaling. Our study highlights that cohesin is required for maintaining ploidy and the repair of spontaneous DNA damage in placental cells, suggesting that genotoxic stress and ensuing placental senescence and cytokine production could represent a broad theme in embryo health and viability.
Collapse
Affiliation(s)
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|