1
|
Ferreira AM, Sales I, Santos SAO, Santos T, Nogueira F, Mattedi S, Pinho SP, Coutinho JA, Freire MG. Enhanced Antimalarial Activity of Extracts of Artemisia annua L. Achieved with Aqueous Solutions of Salicylate Salts and Ionic Liquids. CHEM & BIO ENGINEERING 2024; 1:44-52. [PMID: 38434799 PMCID: PMC10906083 DOI: 10.1021/cbe.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 12/06/2023] [Indexed: 03/05/2024]
Abstract
Artemisinin, a drug used to treat malaria, can be chemically synthesized or extracted from Artemisia annua L. However, the extraction method for artemisinin from biomass needs to be more sustainable while maintaining or enhancing its bioactivity. This work investigates the use of aqueous solutions of salts and ionic liquids with hydrotropic properties as alternative solvents for artemisinin extraction from Artemisia annua L. Among the investigated solvents, aqueous solutions of cholinium salicylate and sodium salicylate were found to be the most promising. To optimize the extraction process, a response surface method was further applied, in which the extraction time, hydrotrope concentration, and temperature were optimized. The optimized conditions resulted in extraction yields of up to 6.50 and 6.44 mg·g-1, obtained with aqueous solutions of sodium salicylate and cholinium salicylate, respectively. The extracts obtained were tested for their antimalarial activity, showing a higher efficacy against the Plasmodium falciparum strain compared with pure (synthetic) artemisinin or extracts obtained with conventional organic solvents. Characterization of the extracts revealed the presence of artemisinin together with other compounds, such as artemitin, chrysosplenol D, arteannuin B, and arteannuin J. These compounds act synergistically with artemisinin and enhance the antimalarial activity of the obtained extracts. Given the growing concern about artemisinin resistance, the results here obtained pave the way for the development of sustainable and biobased antimalarial drugs.
Collapse
Affiliation(s)
- Ana M. Ferreira
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabela Sales
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Escola
Politécnica, Universidade Federal
da Bahia, Bahia 40210-630, Brazil
| | - Sónia A. O. Santos
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Santos
- Global
Health and Tropical Medicine, GHTM, Associate Laboratory in Translation
and Innovation towards Global Health, LA-REAL, Instituto de Higiene
e Medicina Tropical, IHMT, Universidade
Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Global
Health and Tropical Medicine, GHTM, Associate Laboratory in Translation
and Innovation towards Global Health, LA-REAL, Instituto de Higiene
e Medicina Tropical, IHMT, Universidade
Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE,
MolSyn, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Silvana Mattedi
- Escola
Politécnica, Universidade Federal
da Bahia, Bahia 40210-630, Brazil
| | - Simão P. Pinho
- Mountain
Research Center − CIMO, Polytechnic
Institute of Bragança, Bragança 5300-253, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança 5300-253, Portugal
| | - João A.
P. Coutinho
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Thakare VB, Jadeja GC, Desai MA. Extraction of mangiferin and pectin from mango peels using process intensified tactic: A step towards waste valorization. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Patel AD, Desai MA. Progress in the field of hydrotropy: mechanism, applications and green concepts. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sustainability and greenness are the concepts of growing interest in the area of research as well as industries. One of the frequently encountered challenges faced in research and industrial fields is the solubility of the hydrophobic compound. Conventionally organic solvents are used in various applications; however, their contribution to environmental pollution, the huge energy requirement for separation and higher consumption lead to unsustainable practice. We require solvents that curtail the usage of hazardous material, increase the competency of mass and energy and embrace the concept of recyclability or renewability. Hydrotropy is one of the approaches for fulfilling these requirements. The phenomenon of solubilizing hydrophobic compound using hydrotrope is termed hydrotropy. Researchers of various fields are attracted to hydrotropy due to its unique physicochemical properties. In this review article, fundamentals about hydrotropes and various mechanisms involved in hydrotropy have been discussed. Hydrotropes are widely used in separation, heterogeneous chemical reactions, natural product extraction and pharmaceuticals. Applications of hydrotropes in these fields are discussed at length. We have examined the significant outcomes and correlated them with green engineering and green chemistry principles, which could give an overall picture of hydrotropy as a green and sustainable approach for the above applications.
Collapse
Affiliation(s)
- Akash D. Patel
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| | - Meghal A. Desai
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| |
Collapse
|
4
|
Ganorkar PV, Jadeja GC, Desai MA. Extraction of shikimic acid from water hyacinth (Eichhornia crassipes) using sonication: An approach towards waste valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114419. [PMID: 34991027 DOI: 10.1016/j.jenvman.2021.114419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Shikimic acid (SA) is a valuable compound found in water hyacinth and is a precursor for synthesis of antiviral drug oseltamivir phosphate (Tamiflu®) which is used to treat H5N1 avian influenza. In the present work, the acid was extracted from different morphological parts (stem, leaves, and roots) of water hyacinth (a notorious aquatic weed) using sonication. The parametric study has been conducted by varying sonication time (10-50 min), solvent composition (methanol + water), solvent volume (20-50 mL), amplitude of sonication (30-60%), and pulse ratio (20-50%) for improving the recovery of shikimic acid (SA), antioxidant activity (AA) and total phenolic content (TPC) of water hyacinth extract. Also, the acid was extracted conventionally as a benchmark study. The highest yield of 2.4% at 40 min and 3.1% at 30 min was observed in case of conventional and ultrasound assisted extraction (UAE), respectively for stem. Leaves showed a higher TPC value of 7.4 mg GAE/g biomass and a higher AA was observed 83.21% at 20 min for stem in case of conventional method. The highest TPC value of 11.11 mg GAE/g biomass has been observed for leaves while stem has shown the highest AA of 87.72% at 10 min of sonication time for UAE. It was possible to recover the valuable chemicals with better processing conditions in the case of UAE.
Collapse
Affiliation(s)
- Priti V Ganorkar
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| | - G C Jadeja
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| | - Meghal A Desai
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India.
| |
Collapse
|
5
|
Díaz-Montes E, Castro-Muñoz R. Analyzing the phenolic enriched fractions from Nixtamalization wastewater (Nejayote) fractionated in a three-step membrane process. Curr Res Food Sci 2021; 5:1-10. [PMID: 34917951 PMCID: PMC8666514 DOI: 10.1016/j.crfs.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Nejayote is recognized as the main by-product resulting from the nixtamalization process of maize kernels, which is categorized as an alkaline residue with a chemical composition based on carbohydrates (37.8-55.7%), fiber (22.8-25.5%), protein (4.9-7.4%), and lipids (0.4-1.5%). In addition, Nejayote has an extensive content of simple (e.g., phenolic acids) and complex phenolic compounds (e.g., anthocyanins), which are responsible for the pigmentation and antioxidant activity of maize; therefore, there is a need of their identification depending on the type of maize. The current research has focused on the efficient extraction and identification of the phenolic acids contained in Nejayote after the processing of different types of maize. The target of this work was to fractionate Nejayote from white (NWM), red (NRM), and purple maize (NPM), using three different membranes, such as microfiltration (MF with a pore size of 1 μm) and ultrafiltration (UF100 and UF1 with a molecular weight cut-off of 100 kDa and 1 kDa, respectively), which were strategically applied to extract phenolic acids while retaining other molecules. Such a membrane system exhibited a retention in the first stage of almost all carbohydrates (MF-Retentate: ca. 12-19 g GE/L), while second stage (UF100-Permeate) a concentration of phenolic components was recovered ranging from 768 to 800 mg GAE/L. Finally, in the third stage (UF1-Permeate), 14 phenolic acids were identified, including ferulic and p-coumaric acids, derived from caffeic and ferulic acids, along with other molecules (e.g., glucose and fructose).
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticoman, Ciudad de México, 07340, Mexico
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo, 50110, Mexico
| |
Collapse
|
6
|
Narayanan M, Baskaran D, Sampath V. Experimental design of hydrotropic extraction for recovery of bioactive limonin from lemon (Citrus limon L.) seeds. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, India
| | - Divya Baskaran
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, India
| | - Vasumathi Sampath
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, India
| |
Collapse
|
7
|
Zannou O, Koca I, Aldawoud TMS, Galanakis CM. Recovery and Stabilization of Anthocyanins and Phenolic Antioxidants of Roselle ( Hibiscus sabdariffa L.) with Hydrophilic Deep Eutectic Solvents. Molecules 2020; 25:E3715. [PMID: 32824080 PMCID: PMC7464405 DOI: 10.3390/molecules25163715] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/02/2023] Open
Abstract
Deep eutectic solvents (DESs) have got huge interest as new green and sustainable solvents for the extraction of bioactive compounds from plants in recent decades. In the present study, we aimed to investigate the effectiveness of hydrophilic DES for the extraction of anthocyanin and polyphenol antioxidants from Roselle. A natural hydrophilic DES constituted of sodium acetate (hydrogen bond acceptor) and formic acid (hydrogen bond donor) designed to evaluate the total phenolic compound (TPC), total flavonoid (TFC), total anthocyanin (TACN), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP) values of Roselle. Distilled water, 70% ethanol, and 80% methanol used as conventional solvents for comparison. The results indicated that the DES prepared in molarity ratio (SAFAm) was the most efficient. Subsequently, this prominent DES selected for the optimization and the optimum extraction conditions were 1:3.6 molarity ratio, 0% additional water, and 10 mL solvent. TPC, TFC, TACN, FRAP, and DPPH radical scavenging at the optimum point were 233.26 mg GAE/g, 10.14 mg ECE/g, 10.62 mg D3S/g, 493.45 mmol ISE/g, and 343.41 mmol TE/g, respectively. The stability tests showed that anthocyanins were more stable in SAFAm. These findings revealed that SAFAm is an effective green solvent for the extraction of polyphenols from various plants.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Ondokuz Mayis University, Samsun 55139, Turkey
| | - Ilkay Koca
- Department of Food Engineering, Ondokuz Mayis University, Samsun 55139, Turkey
| | - Turki M. S. Aldawoud
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.M.S.A.); (C.M.G.)
| | - Charis M. Galanakis
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.M.S.A.); (C.M.G.)
- Research & Innovation Department, Galanakis Laboratories, 73131 Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| |
Collapse
|
8
|
Castro-Muñoz R, Díaz-Montes E, Cassano A, Gontarek E. Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit Rev Food Sci Nutr 2020; 61:2152-2174. [PMID: 32496876 DOI: 10.1080/10408398.2020.1772717] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Steviol glycosides (SGs), as natural sweeteners from Stevia rebaudiana, are currently employed for replacing sugar and its derivatives in several food products and formulations. Such compounds play an essential role in human health. Their usage provides a positive effect on preventing diseases related to sugar consumption, including diabetes mellitus, cancer, and lipid metabolism disorders. The traditional extraction of SGs is performed by means of solvent extraction, which limits their application since the removal of residual solvents is a challenging task requiring further downstream purification steps. In addition, the presence of residual solvents negatively affects the quality of such compounds. Today, food technicians are looking for innovative and improved techniques for the extraction, recovery and purification of SGs. Membrane-based technologies, including microfiltration, ultrafiltration, and nanofiltration, have long been proven to be a valid alternative for efficient extraction and purification of several high added-value molecules from natural sources. Such processes and their possible coupling in integrated membrane systems have been successfully involved in recovery protocols of several compounds, such as metabolites, polyphenols, anthocyanins, natural pigments, proteins, from different sources (e.g., agro-food wastes, plant extracts, fruits, fermentation broths, among others). Herein, we aim to review the current progresses and developments about the extraction of SGs with membrane operations. Our attention has been paid to the latest insights in the field. Furthermore, key process parameters influencing the extraction and purification of SGs are also discussed in detail.
Collapse
Affiliation(s)
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, México City, México
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Rende, Italy
| | - Emilia Gontarek
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
9
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
10
|
Boyko N, Zhilyakova E, Malyutina A, Novikov O, Pisarev D, Abramovich R, Potanina O, Lazar S, Mizina P, Sahaidak-Nikitiuk R. Studying and Modeling of the Extraction Properties of the Natural Deep Eutectic Solvent and Sorbitol-Based Solvents in Regard to Biologically Active Substances from Glycyrrhizae Roots. Molecules 2020; 25:E1482. [PMID: 32218268 PMCID: PMC7180746 DOI: 10.3390/molecules25071482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was the studying and modeling of the extraction properties of the sorbitol-based natural deep eutectic solvent (NADES) and sorbitol-based solvents in regard to biologically-active substances (BASs) from Glycyrrhizae roots using theoretical fundamentals based on the laws of statistical physics, thermodynamics, and physical chemistry previously developed by us. In our studies, we used Glycyrrhizae roots, simple maceration, plant raw material:solvent ratio 1:10 w/v, temperature 25 °С, extraction time 24 h; standards of licuroside and glycyram; RP HPLC, differential scanning calorimetry, integral dielectric, impedance and conductivity spectroscopy method of analysis; the following solvents: sorbitol-based NADES sorbitol:malic acid:water (1:1:3 in molar ratio), a modified solvent based on NADES sorbitol:malic acid:water:glycerin (1:1:1:1 in molar ratio) and sorbitol-based solvents sorbitol:ethanol:water at different ratios. It has been found that regression equations for sorbitol-based solvents in coordinates predicted by the theory have a high value of determination coefficient that equals to R²e = 0.993 for glycyram and R²e = 0.976 for licuroside. It has been found that the extraction properties of sorbitol-based NADES with a dielectric constant (ε) equal to 33 ± 2 units are equivalent to those of the sorbitol:ethanol:water solvent with ε = 34 units, and the extraction properties of modified solvent based on NADES with ε = 41 ± 2 units are inferior to those of the sorbitol-ethanol-water solvents with maximum value of BASs yield with the dielectric constant range 40÷50 units. The theoretical fundamentals suggested provide a possibility for an explanation of the mechanism, quantitative description of the extraction properties of the solvent, and target search of the optimal solvent by its dielectric constant.
Collapse
Affiliation(s)
- Nikolay Boyko
- Belgorod National Research University, BelSU, 308015 Belgorod, Russia; (E.Z.); (A.M.)
| | - Elena Zhilyakova
- Belgorod National Research University, BelSU, 308015 Belgorod, Russia; (E.Z.); (A.M.)
| | - Anastasiya Malyutina
- Belgorod National Research University, BelSU, 308015 Belgorod, Russia; (E.Z.); (A.M.)
| | - Oleg Novikov
- Peoples’ Friendship University of Russia, RUDN University, 117198 Moscow, Russia; (O.N.); (D.P.); (R.A.); (O.P.); (S.L.)
| | - Dmitriy Pisarev
- Peoples’ Friendship University of Russia, RUDN University, 117198 Moscow, Russia; (O.N.); (D.P.); (R.A.); (O.P.); (S.L.)
| | - Rimma Abramovich
- Peoples’ Friendship University of Russia, RUDN University, 117198 Moscow, Russia; (O.N.); (D.P.); (R.A.); (O.P.); (S.L.)
| | - Olga Potanina
- Peoples’ Friendship University of Russia, RUDN University, 117198 Moscow, Russia; (O.N.); (D.P.); (R.A.); (O.P.); (S.L.)
| | - Simon Lazar
- Peoples’ Friendship University of Russia, RUDN University, 117198 Moscow, Russia; (O.N.); (D.P.); (R.A.); (O.P.); (S.L.)
| | - Praskovia Mizina
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, ARSRIMAP, 117216 Moscow, Russia;
| | | |
Collapse
|
11
|
Gençdağ E, Görgüç A, Yılmaz FM. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1709203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
12
|
Solanki KP, Desai MA, Parikh JK. Improved hydrodistillation process using amphiphilic compounds for extraction of essential oil from java citronella grass. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Díaz‐Montes E, Castro‐Muñoz R. Metabolites recovery from fermentation broths via pressure‐driven membrane processes. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elsa Díaz‐Montes
- Laboratorio de Biotecnología AlimentariaUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (UPIBI‐IPN) Av. Acueducto s/n Col. Barrio La Laguna, Ticomán CP 07340 México City México
| | - Roberto Castro‐Muñoz
- Department of Inorganic TechnologyUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
- Tecnológico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo México
| |
Collapse
|
14
|
Hashemi B, Zohrabi P, Dehdashtian S. Application of green solvents as sorbent modifiers in sorptive-based extraction techniques for extraction of environmental pollutants. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Res Int 2018; 108:516-529. [PMID: 29735087 DOI: 10.1016/j.foodres.2018.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 11/24/2022]
Abstract
Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified.
Collapse
|
16
|
Assessment of glucosinolates, antioxidative and antiproliferative activity of broccoli and collard extracts. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|