1
|
Rai S, Pokhrel P, Udash P, Chemjong M, Bhattarai N, Thuanthong A, Nalinanon S, Nirmal N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit Rev Biotechnol 2025:1-19. [PMID: 40090738 DOI: 10.1080/07388551.2025.2473576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.
Collapse
Affiliation(s)
- Sampurna Rai
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Prashant Pokhrel
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Government of Nepal, Babar Mahal, Kathmandu, Nepal
| | - Pranaya Udash
- Faculty of Life Science, Campus Kulmbach, University of Bayreuth, Kulmbach, Germany
| | - Menjo Chemjong
- German Institute of Food Technologies-DIL e.V., Quakenbrück, Germany
| | - Namita Bhattarai
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Kato S, Kansha Y. Comprehensive review of industrial wastewater treatment techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51064-51097. [PMID: 39107648 PMCID: PMC11374848 DOI: 10.1007/s11356-024-34584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Water is an indispensable resource for human activity and the environment. Industrial activities generate vast quantities of wastewater that may be heavily polluted or contain toxic contaminants, posing environmental and public health challenges. Different industries generate wastewater with widely varying characteristics, such as the quantity generated, concentration, and pollutant type. It is essential to understand these characteristics to select available treatment techniques for implementation in wastewater treatment facilities to promote sustainable water usage. This review article provides an overview of wastewaters generated by various industries and commonly applied treatment techniques. The characteristics, advantages, and disadvantages of physical, chemical, and biological treatment methods are presented.
Collapse
Affiliation(s)
- Shoma Kato
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
3
|
Poddar S, Ullas Krishnan JN, Chandra Babu JS. Non-catalytic and catalytic pyrolysis of citrus waste (orange peel). Chem Ind 2022. [DOI: 10.1080/00194506.2022.2046510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sourav Poddar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - J. N. Ullas Krishnan
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - J. Sarat Chandra Babu
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
4
|
Gnanasekaran G, Sudhakaran MSP, Kulmatova D, Han J, Arthanareeswaran G, Jwa E, Mok YS. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. CHEMOSPHERE 2021; 284:131244. [PMID: 34175516 DOI: 10.1016/j.chemosphere.2021.131244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The purification of hazardous textile dyeing wastewater has exhibited many challenges because it consists of a complex mixture, including dyestuff, additives, and salts. It is necessary to fabricate membranes with enhanced permeability, fouling resistance, stability, and superior dyes and salts removal from wastewater. Incorporating a highly water stable metal-organic framework (MOFs) into membranes would meet the requirements for the efficient purification of textile wastewater. In this study, nanofiltration (NF) membranes are fabricated by incorporating MIL-100 (Fe) into the chitosan (CS) through film casting technique. The effect of MIL-100 (Fe) loadings on chitosan characterized by FT-IR, XRD, contact angle measurement, FESEM-EDS, XPS, zeta potential, and surface roughness analysis. The membrane characterization confirmed the enhanced surface roughness, pore size, surface charge, and hydrophilicity. The CS/MIL-100 (Fe) membrane exhibited an improved pure water flux from 5 to 52 L/m2h as well as 99% rejection efficiency for cationic methylene blue (MB) and anionic methyl orange (MO). We obtained the rejection efficiency trend for the MB mixed salts in the order of MgSO4 (Mg2+ - 51.6%, SO42- - 52.5%) > Na2SO4 (Na+ - 26.3%, SO42- - 29.3%) > CaCl2 (Ca2+ - 21.4%, Cl- - 23.8%) > NaCl (Na+ - 16.8%, Cl- - 19.2%). In addition, the CS/MIL-100 (Fe) composite membrane showed excellent rejection efficiency and antifouling performances with high recycling stability. These stunning results evidenced that the CS/MIL-100 (Fe) nanofiltration membrane is a promising candidate for removing toxic pollutants in the textile dyeing wastewater.
Collapse
Affiliation(s)
- Gnanaselvan Gnanasekaran
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - M S P Sudhakaran
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Dilafruz Kulmatova
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongho Han
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Eunjin Jwa
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju, 63359, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
5
|
Asgharnejad H, Khorshidi Nazloo E, Madani Larijani M, Hajinajaf N, Rashidi H. Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water-food-environment nexus. Compr Rev Food Sci Food Saf 2021; 20:4779-4815. [PMID: 34190421 DOI: 10.1111/1541-4337.12782] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/25/2023]
Abstract
Food processing is among the greatest water-consuming industries with a significant role in the implementation of sustainable development goals. Water-consuming industries such as food processing have become a threat to limited freshwater resources, and numerous attempts are being carried out in order to develop and apply novel approaches for water management in these industries. Studies have shown the positive impact of the new methods of process integration (e.g., water pinch, mathematical optimization, etc.) in maximizing water reuse and recycle. Applying these methods in food processing industries not only significantly supported water consumption minimization but also contributed to environmental protection by reducing wastewater generation. The methods can also increase the productivity of these industries and direct them to sustainable production. This interconnection led to a new subcategory in nexus studies known as water-food-environment nexus. The nexus assures sustainable food production with minimum freshwater consumption and minimizes the environmental destructions caused by untreated wastewater discharge. The aim of this study was to provide a thorough review of water-food-environment nexus application in food processing industries and explore the nexus from different aspects. The current study explored the process of food industries in different sectors regarding water consumption and wastewater generation, both qualitatively and quantitatively. The most recent wastewater treatment methods carried out in different food processing sectors were also reviewed. This review provided a comprehensive literature for choosing the optimum scenario of water and wastewater management in food processing industries.
Collapse
Affiliation(s)
- Hashem Asgharnejad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ehsan Khorshidi Nazloo
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Madani Larijani
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nima Hajinajaf
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Hamidreza Rashidi
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10101903. [PMID: 32987697 PMCID: PMC7598667 DOI: 10.3390/nano10101903] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this review, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed, with some insights into the possible mechanisms of action. Additionally, the toxicity arising from the accumulation of these nanomaterials in biological systems and future research avenues that had gained limited attention from the scientific community are discussed here. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner.
Collapse
|