1
|
Ban L, Wu D, Sun D, Zhou H, Wang H, Zhang H, Charles Xu C, Yang S. Sustainable Production of Biofuels from Biomass Feedstocks Using Modified Montmorillonite Catalysts. CHEMSUSCHEM 2025; 18:e202401025. [PMID: 38984900 DOI: 10.1002/cssc.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
The rampant exploitation of fossil fuels has led to the significant energy scarcity and environmental disruption, affecting the sound momentum of development and progress of human civilization. To build a closed-loop anthropogenic carbon cycle, development of biofuels employing sustainable biomass feedstocks stands at the forefront of advancing carbon neutrality, yet its widespread adoption is mainly hampered by the high production costs. Montmorillonite, however, has garnered considerable attention serving as an efficient heterogeneous catalyst of ideal economic feasibility for biofuel production, primarily due to its affordability, accessibility, stability, and excellent plasticity. Up to now, nevertheless, it has merely received finite concerns and interests in production of various biofuels using montmorillonite-based catalysts. There is no timely and comprehensive review that addresses this latest relevant progress. This review fills the gap by providing a systematically review and summary in controllable synthesis, performance enhancement, and applications related to different kinds of biofuels including biodiesel, biohydrogenated diesel, levulinate, γ-valerolactone, 5-ethoxymethylfurfural, gaseous biofuels (CO, H2), and cycloalkane, by using montmorillonite catalysts and its modified forms. Particularly, this review critically depicts the design strategies for montmorillonite, illustrates the relevant reaction mechanisms, and assesses their economic viability, realizing sustainable biofuels production via efficient biomass valorization. Overall, this may offer valuable insights into cost-effective biofuel production and proposes strategic recommendations for advancement of montmorillonite applications and future biofuel development.
Collapse
Affiliation(s)
- Lin Ban
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Deyu Wu
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Dalin Sun
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhou
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Wang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunbao Charles Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, 999077, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Zhao W, Yin P, Wang Z, Huang J, Fu Y, Hu W. Recent advances in regulation methods for selective separation and precise control of two-dimensional (2D) lamellar membranes. Adv Colloid Interface Sci 2024; 334:103330. [PMID: 39486346 DOI: 10.1016/j.cis.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.
Collapse
Affiliation(s)
- Weixuan Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ping Yin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zulin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junnan Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Wenjihao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Gong X, Jiang H, Lu C, Zhang K, Long Y, Yang Z, Sun S, Chang Y, Ma L, Peng H, Wang B. Extending The Calendar Life of Fiber Lithium-Ion Batteries to 200 Days with Ultra-High Barrier Polymer Tubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409910. [PMID: 39258364 DOI: 10.1002/adma.202409910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Scalable fiber lithium-ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra-high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day-1 pkg-1. Furthermore, through the melt extrusion, OMMT with its plate-like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day-1 pkg-1. This innovation enabled an ultra-long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT-PCTFE-FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high-performance polymer-based encapsulation layer.
Collapse
Affiliation(s)
- Xiaocheng Gong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Haibo Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Chenhao Lu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yao Long
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Zhe Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Shiqi Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yingfan Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Longmei Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Li Z, Chen K, Zhai S, Yang L, Yu T, Yuan H, Zeng B, Yang L, Qi F, Zhu H. Preparation of biochar from anaerobic digested sludge for enhancement of sludge dewatering. CHEMOSPHERE 2024; 362:142687. [PMID: 38936488 DOI: 10.1016/j.chemosphere.2024.142687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Effective dewatering is vital for both sludge treatment and resource recovery. This study focuses on converting post-anaerobic digested sludge into biochar to enhance sludge dewatering. The sludge-derived biochar is further modified with polyacrylamide (PAM-ADBC) and applied with sulfuric acid-modified montmorillonite (HMTS) for better performance. Significant advancements in dewatering were noted, even at reduced HMTS (0.1 g/g DS) and PAM-ADBC (25 g/kg DS) dosages. These improvements resulted in a remarkable 41.96% enhancement in capillary suction time (17.2 s) and a notable 20.26% reduction in moisture content (66.33%), respectively, all while maintaining a stable pH level. HMTS, with leached cations, improved dewatering by decomposing the extracellular polymeric substance structure through electro-neutralization to release the internal bound water within sludge flocs. Simultaneously, PAM-ADBC coagulated decomposed sludge particles into larger flocs to form a skeletal structure with itself to discharge internal water in compression dewatering. This study introduces a resource recovery method for anaerobically digested sludge and highlights its potential for sustainable utilization.
Collapse
Affiliation(s)
- Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Shixin Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Lisha Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Tong Yu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Huibin Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Bizhen Zeng
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Lan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Feilan Qi
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Chellapandi T, Roopan SM, Madhumitha G. Interfacial charge transfer of Carrisa edulis fruit extract capped Co 3O 4 nanoparticles on the surface of MK30: An efficient photocatalytic removal of methylthioninium chloride and tetracycline organic pollutants. ENVIRONMENTAL RESEARCH 2023; 219:115052. [PMID: 36535397 DOI: 10.1016/j.envres.2022.115052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The in-depth usage of organic pollutants by pharmaceutical industries constitutes a major contaminant to the bodies of water due to their solubility, great mobility, ability to get attached to water bodies for a long period of time, and low biodegradability. Due to these, it may further cause disease and change the ecosystem of aqueous and other living organisms. Accordingly, effective removal of organic contaminants from waste water is a vital step in reducing the hazards. Photocatalysis is a potential technique for removing hazardous organic pollutants from wastewater. In this work, a simple ultra-sonication assisted approach, a series of Carrisa edulis fruit extract capped Co3O4 nanoparticles decorated on Montmorillonite K30 nanosheets (Co3O4/MK30) were prepared. The inherent physicochemical appearance and optical properties of as-prepared nanomaterials were investigated using a variety of analytical techniques. TEM analysis depicted the spherical shape of the Co3O4 NPs with the size of 11.25 nm. The degradation of methylthioninium chloride as a dye and tetracycline drug pollutants has been investigated in this study using individual and simultaneous photocatalysis systems in the presence of pure Co3O4 NPs and different ratios of Co3O4/MK30 nanocomposites. Owing to the generation of OH and O2 radicals, the 20% loaded Co3O4 on MK30 had the best photocatalytic performance of methylthioninium chloride (98.12%) and tetracycline degradation (87.4%), on exposing it to visible light. This research introduces a new design for MK30-based nanomaterials and proposes its use in environmental challenges.
Collapse
Affiliation(s)
- Thangapandi Chellapandi
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India.
| |
Collapse
|
6
|
Hydrophobic self-cleaning micro-nano composite polyethylene-based agricultural plastic film with light conversion and abrasion resistance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhu Z, Huang Y, Yu M, Cheng H, Li Z, Xu W. Improved adsorption capacity and applicable temperature of gaseous PbCl 2 capture by modified montmorillonite with combined thermal treatment and acid activation. CHEMOSPHERE 2023; 313:137466. [PMID: 36481175 DOI: 10.1016/j.chemosphere.2022.137466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The emission of semi-volatile heavy metals during the thermal utilization of various fuels has been a huge threat to the environment. In this study, the montmorillonite modified by thermal treatment and hydrochloric acid activation was evaluated for the PbCl2 adsorption performance. The optimum adsorption temperature of sorbents increased with the thermal treatment temperature (<500 °C) for the increased amount of reactive sites caused by the removal of interlayer water and hydroxyl, while a higher treatment temperature will collapse the lamellar structure of montmorillonite and greatly inhibit the PbCl2 adsorption. Besides, the hydrochloric acid activation can help inhibit the melting of sorbents during the adsorption process by removing the impurities and promote the PbCl2 vapor to contact with more reactive sites at higher temperatures. By comparing different sorbents, montmorillonite was found to exhibit better adsorption performance at 600-700 °C, while the sorbent thermal-treated at 500 °C and then acid-activated got the highest adsorption efficiency at 900 °C, which was 17.83% higher than that of montmorillonite. This study provided an environmental-friendly modification method to capture more heavy metals at high-temperature conditions, which can be partly realized by the recycling of montmorillonite used for the removal of normal gas pollutants in lower temperatures conditions or acid wastewater treatment.
Collapse
Affiliation(s)
- Zhicheng Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Mengzhu Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Haoqiang Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhiyuan Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Wentao Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
8
|
Chen H, Kang C, Shang E, Liu G, Chen D, Yuan Z. Montmorillonite-Based Separator Enables a Long-Life Alkaline Zinc–Iron Flow Battery. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huiling Chen
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850, Dalian, Liaoning116029, China
| | - Chengzi Kang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850, Dalian, Liaoning116029, China
| | - Erhui Shang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850, Dalian, Liaoning116029, China
| | - Guangyu Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850, Dalian, Liaoning116029, China
| | - Dongju Chen
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850, Dalian, Liaoning116029, China
| | - Zhizhang Yuan
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning116023, China
| |
Collapse
|
9
|
Preparation of a Montmorillonite-Modified Chitosan Film-Loaded Palladium Heterogeneous Catalyst and its Application in the Preparation of Biphenyl Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248984. [PMID: 36558118 PMCID: PMC9782881 DOI: 10.3390/molecules27248984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The natural polymer chitosan was modified with polyvinyl alcohol to enhance the mechanical properties of the membrane, and then, the montmorillonite-modified chitosan-loaded palladium catalyst was prepared using the excellent coordination properties of montmorillonite. The results showed that the catalyst has good tensile strength, thermal stability, catalytic activity, and recycling performance and is a green catalytic material with industrial application potential.
Collapse
|
10
|
Bahranowski K, Klimek A, Gaweł A, Olejniczak Z, Serwicka EM. Rehydration Driven Acid Impregnation of Thermally Pretreated Ca-Bentonite—Evolution of the Clay Structure. MATERIALS 2022; 15:ma15062067. [PMID: 35329522 PMCID: PMC8951250 DOI: 10.3390/ma15062067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
A new approach to acid activation of raw Ca-bentonite was explored. The method consisted in dehydration of clay by thermal pretreatment at 200 °C, followed by immediate impregnation with H2SO4 solution. The acid concentration was 1.5 × or 2.0 × cation exchange capacity (CEC) of clay. The volume of the liquid was adjusted so as to leave the material in the apparently dry state. Structural evolution of the activated solids after 1, 2, 3, and 4 weeks of storage was monitored with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning nuclear magnetic resonance (MAS NMR), and chemical analysis. In the macroscopically dry solids, the rehydrated interlayer Ca2+ underwent rapid exchange with H3O+ and formed extra-framework gypsum. Acid attack on montmorillonite structure resulted in continuous removal of layer forming Mg, Al, and Fe cations, with Mg2+ being eliminated most efficiently. No significant damage to the montmorillonite lattice was observed. Al was extracted both from the tetrahedral and the octahedral sheets. Under less acidic conditions, the monohydrated H-montmorillonite changed upon storage to bi-hydrated form, as a result of clay auto-transformation. Higher concentrations of acid in the pore network of clay stabilized the H-form of montmorillonite. The data indicate that compositional transformation of acid impregnated bentonite extended beyond the one month of aging investigated in the present work.
Collapse
Affiliation(s)
- Krzysztof Bahranowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (A.G.)
- Correspondence:
| | - Agnieszka Klimek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (A.G.)
| | - Adam Gaweł
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (A.G.)
| | - Zbigniew Olejniczak
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland;
| | - Ewa M. Serwicka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
11
|
Fu C, She Q, Tesser R, Zhou CH. Cleaner One-Pot Transformation of Glycerol to Acrylic Acid and 1,2-Propanediol over Cu2O/Montmorillonite Bifunctional Catalysts Without External Oxygen and Hydrogen. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient conversion of glycerol, an inevitable by-product of the transesterification process producing biodiesel, to acrylic acid (AA) and 1,2-propanediol (1,2-PDO) via a cleaner process is much attractive and challenging. In...
Collapse
|
12
|
Yaghmaeiyan N, Mirzaei M, Delghavi R. Montmorillonite clay: Introduction and evaluation of its applications in different organic syntheses as catalyst: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|