1
|
Oruk S, Ergul Erkec O, Huyut Z, Acikgoz E. Neuroprotective effects of ghrelin in cuprizone-induced rat model of multiple sclerosis. Metab Brain Dis 2025; 40:176. [PMID: 40214860 PMCID: PMC11991981 DOI: 10.1007/s11011-025-01603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory central nervous system disease characterized by demyelination and axonal loss and is the main cause of non-traumatic neurological disability in young adults. Although there are several treatment approaches to manage the disease, there is no definitive cure for multiple sclerosis. Inflammation and oxidative stress are known to play important roles in the pathophysiology of MS. Ghrelin, a peptide secreted by the stomach, is reported to have neuroprotective properties through several pathways, including attenuating oxidative stress and inflammation. In the present study cuprizone (CPZ)-induced model of MS was used in Wistar albino rats to study the possible anti-inflammatory, antioxidant and neuroprotective effects of ghrelin. Rats were randomly divided into six groups: Control groups (Control35 and Control-S42), demyelination group, remyelination group, remyelination + ghrelin (20 µg/kg) group and remyelination + ghrelin (40 µg/kg) group. Y maze test was performed on the rats on their last day of the experiment. Oxidative stress and inflammatory parameters were investigated in brain using commercial kits by enzyme-linked immunosorbent assay (ELISA). Luxol fast blue (LFB) and hematoxylen&eosin (H&E) staining were performed in brain tissues. CPZ leads to a significant decrease in glutathione peroxidase (GSH-Px) levels and myelin content and a significant increase in malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-ɑ), interleukin- 6 (IL- 6) levels, the number of lymphatic cells and inflammatory cells. A significant increase in the antioxidant parameter levels and a significant decrease in MDA levels were found in the ghrelin treated groups (p < 0.05). CPZ leads to irregular, fragmented, demyelinating nerve fibers. A more significant remyelination was observed in the ghrelin treated groups compared to the other groups (p < 0.05). In conclusion, ghrelin treatment showed neuroprotective and antioxidant properties and reduced demyelination in the CPZ-induced rat model of multiple sclerosis.
Collapse
Affiliation(s)
- Sezai Oruk
- Department of Medical Physiology, Institute of Health Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
2
|
De Sousa RAL. Exercise-produced irisin effects on brain-related pathological conditions. Metab Brain Dis 2024; 39:1679-1687. [PMID: 39145861 DOI: 10.1007/s11011-024-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Exercise increases peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) expression, which in turn causes the fibronectin type III domain containing 5 (FNDC5) protein to be produced. This protein is then cleaved, primarily in skeletal muscle fibers, to produce irisin. When the mature FNDC5 is cleaved by proteases, Irisin - which is the fibronectin III domain without the signal sequence - is released. Resistance, aerobic, and high-intensity interval training (HIIT) are recognized as forms of physical exercise that raise irisin levels, and insulin receptor phosphorylation in tyrosine residues, favoring an increase in the activity of the insulin-dependent pathway (PI3K pathway) and assisting in the fight against insulin resistance, inflammation, and cognitive decline. Irisin may represent a promising option for the therapeutic targeting in several brain-related pathological conditions, like Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, type 2 diabetes, and obesity. Exercise protocols are healthy and inexpensive interventions that can help find cellular and molecular changes in several brain-related pathological conditions. Here, it was reviewed what is known about exercise-produced irisin studies involving AD, PD, epilepsy, type 2 diabetes, and obesity.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
- Multicenter Graduate Program in Physiological Sciences, Laboratório Experimental de Treinamento Físico (LETFIS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Rodovia MGT 367, Km 583, Alto da Jacuba, nº 5000, Diamantina, MG, CEP 39100-000, Brazil.
| |
Collapse
|
3
|
Ozdemir-Kumral ZN, Akgün T, Haşim C, Ulusoy E, Kalpakçıoğlu MK, Yüksel MF, Okumuş T, Us Z, Akakın D, Yüksel M, Gören Z, Yeğen BÇ. Intracerebroventricular administration of the exercise hormone irisin or acute strenuous exercise alleviates epileptic seizure-induced neuroinflammation and improves memory dysfunction in rats. BMC Neurosci 2024; 25:36. [PMID: 39103771 DOI: 10.1186/s12868-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.
Collapse
Affiliation(s)
- Zarife Nigâr Ozdemir-Kumral
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Tuğçe Akgün
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Ceren Haşim
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Ezgi Ulusoy
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | | | | | - Tunahan Okumuş
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Zeynep Us
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Services, İstanbul, Türkiye
| | - Zafer Gören
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye.
| |
Collapse
|
4
|
Ergul Erkec O, Yunusoglu O, Huyut Z. Evaluation of repeated ghrelin administration on seizures, oxidative stress and neurochemical parameters in pentyleneterazole induced kindling in rats. Int J Neurosci 2024; 134:420-428. [PMID: 35903909 DOI: 10.1080/00207454.2022.2107516] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Introduction: Epileptic seizures are thought to be caused by the impaired balance between excitatory (glutamate) and inhibitor [gamma amino butyric acid (GABA)] neurotransmitters in the brain. Neuropeptides have potent modulator properties on these neurotransmitters.Objective: Ghrelin exerts anticonvulsant effects in an acute pentylenetetrazole (PTZ) model. However, the effect of repeated ghrelin injections in chronic pentylenetetrazole kindling model is not known. In this study, the effects of repeated ghrelin administration on seizure scores, working memory, locomotor activity, oxidative biomarkers, and neurochemical parameters in PTZ kindling in rats was examined.Methods: For this purpose, 35 mg/kg of PTZ was administered intraperitoneally to the experimental groups. The rats also received physiological saline/diazepam or ghrelin before each PTZ injection. After behavioural analysis (Y-maze, rotarod, and locomotor activity tests), biochemical and neurochemical analyses were conducted using ELISA.Results: PTZ administration induced progression in the seizure scores and all of the rats in the PS + PTZ group were kindled with the 20th injection. Ghrelin treatment significantly reduced the seizure scores. The difference among the groups in terms of the Y-maze, locomotor activity, and rotarod tests was nonsignificant. PTZ administration significantly decreased the brain GABA, CAT, and AChE levels, and increased the MDA, NO, and protein carbonyl levels. Repeated ghrelin treatment ameliorated the GABA, AChE, CAT, MDA, NO, and protein carbonyl levels.Conclusion: Taken together, the results indicated that repeated ghrelin treatment had antioxidant, and anticonvulsant activity on PTZ kindling in rats.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Oruc Yunusoglu
- Department of Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
Azimzadeh M, Beheshti S. Down regulation of the hippocampal ghrelin receptor type-1a during electrical kindling-induced epileptogenesis. Epilepsy Res 2023; 189:107064. [PMID: 36516566 DOI: 10.1016/j.eplepsyres.2022.107064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Numerous studies have shown that the ghrelin hormone is involved in epileptic conditions. However, the profile of ghrelin or its functional receptor mRNAs in seizure-susceptible brain areas was not assessed during epileptogenesis. Here, we measured the expression levels of the hippocampal ghrelin or its receptor mRNAs during electrical kindling-induced epileptogenesis. The study was conducted on twenty adult male Wistar rats. One tri-polar and two uni-polar electrodes were stereotaxically implanted in the baso-lateral amygdala or skull surface, respectively. Animals were divided into four groups, consisting of two sham groups (sham1 and sham2), and two other groups, which were partially or fully kindled. After the establishment of partial or full kindling, the hippocampi of the animals and that of the corresponding sham groups were removed. A quantitative real-time PCR technique was used to measure the expression levels of ghrelin or its functional receptor mRNAs. The results indicated that the expression levels of ghrelin did not alter in either of the partially or fully kindled rats compared to the corresponding sham groups. Ghrelin receptor (ghrelinR) down regulated, significantly in the fully-kindled rats, compared to sham2 group. Meanwhile, the mRNA expression levels of ghrelinR did not change in partially-kindled rats compared to sham1 group. The outcomes of the current study highlight the crucial, unknown impact of the hippocampal ghrelinR through the development of electrical kindling epileptogenesis, and points out the importance of ghrelinR as a goal to adjust epileptogenic progression.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
6
|
Okasha TA, El-Gabry DA, Ali MH, Gabrielle FF. The role of ghrelin peptide among a sample of Egyptian patients with first episode of major depressive disorder. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Major depressive disorder (MDD) is a prominent psychiatric disorder that significantly reduces living quality and increases the risk of suicide. Ghrelin influences the central nervous system (CNS) and impacts reward, inspiration, and signaling pathways in addition to acting as an appetite signal. This case-controlled comparative study focused on the association between serum ghrelin levels and MDD. The study was done during September 2021 and March 2022 on 25 people with MDD and 25 healthy controls. SCID-1 and the Ham-D 17 scales were used to evaluate the cases. The GHQ scale was used to evaluate the controls. The serum ghrelin levels of all samples were determined. The findings were presented, and statistically analyzed to perform an accurate assessment.
Results
There were 50 subjects: 25 cases of MDD and 25 healthy matched controls with non-statistically significant difference to cases as regard gender, marital status, residence, education, age, height, weight and body mass index (BMI). Total serum ghrelin levels among our cases showed a mean value of 4.152, while the controls showed markedly low values, with a mean value of 0.436, showing a statistically significant difference between both groups with p < 0.001. Furthermore, Post Hoc analysis by least significant difference showed a significant difference between mild-severe and moderate-severe groups, although there was no statistically significant difference between mild and moderate groups.
Conclusions
There was a significant indirect correlation between serum ghrelin level and severity of the illness. Further investigations via longitudinal studies and on larger samples are recommended to settle specific causal paths between the two variables.
Collapse
|
7
|
Qi JY, Yang LK, Wang XS, Wang M, Li XB, Feng B, Wu YM, Zhang K, Liu SB. Irisin: A promising treatment for neurodegenerative diseases. Neuroscience 2022; 498:289-299. [PMID: 35872251 DOI: 10.1016/j.neuroscience.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
The beneficial effects of exercise on human brain function have been demonstrated in previous studies. Myokines secreted by muscle have attracted increasing attention because of their bridging role between exercise and brain health. Regulated by PPARγ coactivator 1α, fibronectin type III domain-containing protein 5 releases irisin after proteolytic cleavage. Irisin, a type of myokine, is secreted during exercise, which induces white adipose tissue browning and relates to energy metabolism. Recently, irisin has been shown to exert a protective effect on the central nervous system. Irisin secretion triggers an increase in brain-derived neurotrophic factor levels in the hippocampus, contributing to the amelioration of cognition impairments. Irisin also plays an important role in the survival, differentiation, growth, and development of neurons. This review summarizes the role of irisin in neurodegenerative diseases and other neurological disorders. As a novel positive mediator of exercise in the brain, irisin may effectively prevent or decelerate the progress of neurodegenerative diseases in models and also improve cognitive functions. We place emphasis herein on the potential of irisin for prevention rather than treatment in neurodegenerative diseases. In ischemic diseases, irisin can alleviate the pathophysiological processes associated with stroke. Meanwhile, irisin has anxiolytic and antidepressant effects. The potential therapeutic effects of irisin in epilepsy and pain have been initially revealed. Due to the pleiotropic and beneficial properties of irisin, the possibility of irisin treating other neurological diseases could be gradually explored in the future.
Collapse
Affiliation(s)
- Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Tamer SA, Koyuncuoğlu T, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure. Life Sci 2022; 294:120376. [DOI: 10.1016/j.lfs.2022.120376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
9
|
Azimzadeh M, Beheshti S. Antagonism of the ghrelin receptor type 1a in the rat brain induces status epilepticus in an electrical kindling model of epilepsy. Psychopharmacology (Berl) 2022; 239:479-487. [PMID: 34845505 DOI: 10.1007/s00213-021-06026-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Studies have shown the anti-seizure properties of the ghrelin hormone in different models of epilepsy. Nevertheless, the role of the endogenous ghrelin is unknown in the electrical kindling model of epilepsy. In this study, we evaluated the effect of the antagonism of the ghrelin receptors in the brain of fully kindled rats. Adult male Wistar rats weighing 300 g were used. Animals were stereotaxically implanted with two uni-polar electrodes in the skull surface and a tri-polar electrode in the basolateral amygdala, and a guide cannula in the left lateral ventricle. Animals underwent a rapid kindling protocol. After showing three consecutive stages of five seizures, the animals were considered fully kindled. D-Lys-3-GHRP-6 (1, 50, and 100 μg/rat) was injected intracerebroventricularly (i.c.v.) in the kindled animals. Each rat was considered as its control and received a single dose of D-Lys-3-GHRP-6. Seizure parameters including after discharge duration (ADD), seizure stage (SS), stage four latency (S4L), and stage five duration (S5D) were recorded. The paired t test indicated a significant increase in seizure induction. D-Lys-3-GHRP-6 (1 μg/rat; i.c.v.) prolonged ADD in the kindled rats, significantly. D-Lys-3-GHRP-6 (50 and 100 μg/rat; i.c.v.) induced spontaneous seizures, which led to status epilepticus in the kindled rats. The results indicate that the antagonism of the ghrelin functional receptors prolongs seizures and induces status epilepticus in the kindling model of epilepsy, and propose that the endogenous ghrelin signaling has crucial antiepileptic properties.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
10
|
Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy. Biomedicines 2021; 10:biomedicines10010053. [PMID: 35052733 PMCID: PMC8773216 DOI: 10.3390/biomedicines10010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.
Collapse
|
11
|
Erkec OE, Milanlıoğlu A, Komuroglu AU, Kara M, Huyut Z, Keskin S. Evaluation of serum ghrelin, nesfatin-1, irisin, and vasoactive intestinal peptide levels in temporal lobe epilepsy patients with and without drug resistance: a cross-sectional study. Rev Assoc Med Bras (1992) 2021; 67:207-212. [PMID: 34406243 DOI: 10.1590/1806-9282.67.02.20200521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Epilepsy is a common disorder that affects the nervous systems of 1% of worldwide population. In epilepsy, one-third of patients are unresponsive to current drug therapies and develop drug-resistant epilepsy. Alterations in ghrelin, nesfatin-1, and irisin levels with epilepsy were reported in previous studies. Vasoactive intestinal peptide is among the most common neuropeptides in the hippocampus, which is the focus of the seizures in temporal lobe epilepsy. However, there is also lack of evidence of whether these four neuropeptide levels are altered with drug resistant temporal lobe epilepsy or not. The aim herein was the evaluation of the serum levels of nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide in drug-resistant temporal lobe epilepsy patients and temporal lobe epilepsy (TLE) without drug resistance, and to compare them to healthy controls. METHODS This cross-sectional study group included 58 temporal lobe epilepsy patients (24 with drug resistant temporal lobe epilepsy and 34 with temporal lobe epilepsy who were not drug-resistant) and 28 healthy subjects. Nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide serum levels were determined using enzyme-linked immunosorbent assay. RESULTS The serum ghrelin levels of patients with drug resistant temporal lobe epilepsy were seen to have significantly decreased when compared to those of the control group (p<0.05). Serum nesfatin-1, vasoactive intestinal peptide, and irisin levels were seen to have decreased in the drug resistant temporal lobe epilepsy group when compared to those of the control and temporal lobe epilepsy groups; however, the difference was non-significant (p>0.05). CONCLUSIONS The results herein suggested that ghrelin might contribute to the pathophysiology of drug resistant temporal lobe epilepsy. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology - Van, Turkey
| | - Aysel Milanlıoğlu
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Neurology - Van, Turkey
| | - Ahmet Ufuk Komuroglu
- Van Yüzüncü Yıl University, Van Vocational Higher School of Healthcare Studies - Van, Turkey
| | - Mehmet Kara
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology - Van, Turkey
| | - Zubeyir Huyut
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Biochemistry - Van, Turkey
| | - Sıddık Keskin
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Biostatistics - Van, Turkey
| |
Collapse
|
12
|
Su M, Yan M, Gong Y. Ghrelin fiber projections from the hypothalamic arcuate nucleus into the dorsal vagal complex and the regulation of glycolipid metabolism. Neuropeptides 2019; 78:101972. [PMID: 31610887 DOI: 10.1016/j.npep.2019.101972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study aimed to explore the involvement of the ghrelin pathway from the arcuate nucleus (ARC) to the dorsal vagal complex (DVC) and to determine its role in the regulation of glycolipid metabolism. METHODS The protein and mRNA expression of ghrelin and growth hormone (GH) secretagogue receptor type 1a (GHSR-1a) were measured using immunohistochemistry and the polymerase chain reaction (PCR) method, respectively. Ghrelin fiber projections arising from the ARC and projecting into the DVC were investigated using retrograde tracing, combined with fluorescence immunohistochemical staining. The effects of electrical stimulation (ES) of the ARC on ghrelin-responsive, glucose-sensitive DVC neurons, glycolipid metabolism, and liver lipid enzymes were determined using electrical physiological method, biochemical analysis, quantitative real-time PCR (qRT-PCR) and Western blot analysis. RESULTS GHSR-1a was expressed in the DVC neurons. Ghrelin fibers originating from the ARC projected into the DVC. ES of the ARC-activated the ghrelin-responsive glucose-excited (GE) and glucose-inhibited (GI) neurons in the DVC. ES of the ARC significantly elevated the serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and glucose levels; it reduced the serum high-density lipoprotein (HDLC) and insulin levels. Moreover, ES of the ARC increased liver acetyl-CoA carboxylase-1 (ACC-1) and decreased carnitine palmitoyltransferase-1 (CPT-1) expression, resulting in lipid accumulation in the liver. All the aforementioned effects were partially blocked by pretreatment with the ghrelin receptor antagonist [D-Lys-3]-GHRP-6 in the DVC and were reduced by vagotomy. ES of the ARC increased agouti-related protein (AgRP)/neuropeptide Y (NPY) expression in the ARC and ghrelin expression in the DVC. CONCLUSION Ghrelin fiber projections arising from the ARC and projecting into the DVC play a role in the regulation of afferent glucose metabolism and glycolipid metabolism via the ghrelin receptor GHSR-1a in the DVC.
Collapse
Affiliation(s)
- Manqing Su
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Meixing Yan
- Qingdao Women and Children's Hospital, Qingdao 266042, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
13
|
Liu Y, Yan M, Guo Y, Niu Z, Sun R, Jin H, Gong Y. Ghrelin and electrical stimulating the lateral hypothalamus area regulated the discharges of gastric distention neurons via the dorsal vagal complex in cisplatin-treated rats. Gen Comp Endocrinol 2019; 279:174-183. [PMID: 30914266 DOI: 10.1016/j.ygcen.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cisplatin is an important antineoplastic drug and has side effects such as nausea, vomiting, and dyspepsia. The detailed mechanisms for its side effects are yet not well be illustrated. Our purpose was to investigate the discharges of gastric distention (GD) sensitive neurons regulated by ghrelin and electrical stimulation of the lateral hypothalamus area (LHA) via the dorsal vagal complex (DVC) in cisplatin-treated rats. MATERIALS AND METHODS Extracellular discharge recording was performed to observe the effects of ghrelin and electrical stimulation of the LHA on discharges of GD neurons in the DVC. RESULTS GD neurons were recorded in DVC in saline-treated and cisplatin-treated rats and identified as GD-excitatory (GD-E) neurons, which are excited by gastric distension, and GD-inhibitory (GE-I) neurons, which are inhibited by gastric distension. Microinjection of ghrelin into the DVC increased the firing frequency of most GD neurons, while the ratios of excited GD-E and GD-I neurons in cisplatin-treated rats were significantly lower than those in saline-treated rats. The excitatory effect of ghrelin was eliminated completely by DVC pretreatment with ghrelin receptor antagonist [D-Lys-3]-GHRP-6. After electrical stimulation of the LHA, the firing frequency of these neurons significantly increased. This excitatory effect was weaker in cisplatin-treated rats than in saline-treated rats and could be partly blocked by DVC pretreatment with [D-Lys-3]-GHRP-6. CONCLUSION GD neurons in the DVC could be excited by microinjecting ghrelin into the DVC and electrical stimulation of the LHA, respectively. The excitatory effect was attenuated by cisplatin injected intraperitoneally.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China; Shandong Xiandai University, Jinan, Shandong, China
| | - Meixing Yan
- Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Yaoyao Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Zhenzhen Niu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Runzhou Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Hong Jin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|