1
|
Littleflower AB, Parambil ST, Antony GR, M S A, Subhadradevi L. Glut-1 inhibition in breast cancer cells. VITAMINS AND HORMONES 2025; 128:181-211. [PMID: 40097250 DOI: 10.1016/bs.vh.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Breast cancer is a widely prevalent and devastating morbidity that affects millions of women around the world. Conventional treatment options for breast cancer include surgery, chemotherapy, and radiotherapy. However, these therapies can frequently have adverse side effects and may not be effective for all patients. In recent years, there has been an increasing interest in the development of targeted therapies for breast cancer. Glut-1, a key glucose transporter that is often overexpressed in breast cancer cells, is a potential candidate for targeted therapies. Glut-1 is crucial for basal glucose transport into cancer cells and is necessary for their rapid growth and survival. Several Glut-1 inhibitors - both natural and synthetic small molecules - have been identified and used as anticancer agents. In this chapter, we summarize the different approaches of Glut-1 inhibition in breast cancer and the mode of inhibition used by various Glut-1 inhibitors. Further understanding of the mechanisms underlying the efficacy of Glut-1 inhibitors in breast cancer treatment may provide crucial insights that can lead to the advancement of current treatment strategies. The functional inhibition of Glut-1 by specific Glut-1 inhibitors is being explored as a potential treatment modality for breast cancer. This approach holds great promise for improving the therapeutic efficacy of breast cancer treatment and minimizing the side effects associated with conventional therapies.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Anju M S
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Martiniakova M, Penzes N, Biro R, Sarocka A, Kovacova V, Mondockova V, Ciernikova S, Omelka R. Sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol favorably influence bone and breast tissue health. Front Pharmacol 2024; 15:1462823. [PMID: 39444603 PMCID: PMC11497132 DOI: 10.3389/fphar.2024.1462823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Bone tissue and breast tissue are interrelated, as demonstrated by breast microcalcifications, breast cancer bone metastases, bone morphogenetic proteins, and Wnt signaling. In addition, osteoblasts and osteoclasts represent an important switch of tumor cell dormancy during bone metastasis. Damage to both types of tissues mentioned above is highly prevalent, especially in postmenopausal women, and manifests itself in osteoporosis and breast cancer. Sea buckthorn (Elaeagnus rhamnoides L.), a botanical drug with high antioxidant, antitumor, anti-inflammatory, immunomodulatory, and regenerative properties, has great therapeutic potential due to the unique composition of its bioactive metabolites. This review aimed to summarize the current knowledge from in vitro and in vivo studies on the effect of sea buckthorn, as well as its most widespread flavonoids isorhamnetin, quercetin, and kaempferol, on bone and breast tissue health. In vitro studies have revealed the beneficial impacts of sea buckthorn and aforementioned flavonoids on both bone health (bone remodeling, mineralization, and oxidative stress) and breast tissue health (cancer cell proliferation, apoptosis, tumor growth, and metastatic behavior). In vivo studies have documented their protective effects against disturbed bone microarchitecture and reduced bone strength in animal models of osteoporosis, as well as against tumor expansion and metastatic properties in animal xenograft models. In any case, further research and clinical trials are needed to carefully evaluate the potential therapeutic benefits of sea buckthorn and its flavonoids. Based on the available information, however, it can be concluded that these bioactive metabolites favorably affect both bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
4
|
Ovcharenko D, Mukhin D, Ovcharenko G. Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology. Pharmaceutics 2024; 16:1237. [PMID: 39339273 PMCID: PMC11435428 DOI: 10.3390/pharmaceutics16091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval. The complex relationship between patent protection and pharmaceutical innovation complicates cancer drug development and contributes to high mortality rates. Adjusting patent criteria for alternative cancer therapeutics could stimulate innovation, enhance treatment options, and ultimately improve outcomes for cancer patients. This article explores the potential of alternative cancer therapeutics, chemopreventive agents, natural products, off-patent drugs, generic unpatentable chemicals, and repurposed drugs in cancer treatment, emphasizing the mechanisms and therapeutic potential of these unconventional compounds as combinatorial cancer therapies. The biological pathways, therapeutic effects, and potential to enhance existing therapies are reviewed, demonstrating their cost-effective and accessible options as adjuvant cancer therapies.
Collapse
Affiliation(s)
| | - Dmitry Mukhin
- Altogen Labs, 11200 Menchaca Road, Austin, TX 78748, USA
| | | |
Collapse
|
5
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
6
|
Kawatani M, Osada H. Small-molecule inhibitors of glucose transporters. VITAMINS AND HORMONES 2024; 128:213-242. [PMID: 40097251 DOI: 10.1016/bs.vh.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Facilitative glucose transporters (GLUTs) encoded by the SLC2A genes mediate the initial steps of sugar utilization in cells. Fourteen existing GLUT family members are classified into three subclasses based on the characteristics of the gene structure. Several GLUT isoforms, especially GLUT1 and GLUT3, are overexpressed in many tumors, and their high expression correlates with poor clinical outcomes in patients. Altered energy metabolism, such as increased glycolysis, is a critical hallmark of most human cancers. Therefore, small-molecule GLUT inhibitors are promising bioprobes for understanding complex tumor metabolism and may serve as new candidate drugs for cancer therapy. Certain naturally occurring flavonoids have been shown to inhibit glucose uptake by GLUTs. Recently, a variety of potent and selective GLUT inhibitors of different chemotypes have been developed to target glycolysis-addicted tumors. Moreover, the elucidation of GLUT crystal structures has enabled high-throughput virtual screening to identify GLUT isoform-specific inhibitors. In this chapter, we provide an overview of small-molecule GLUT inhibitors, ranging from natural products to natural product-inspired and synthetic compounds.
Collapse
Affiliation(s)
- Makoto Kawatani
- Chemical Resource Development Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science (CSRS), Wako-shi, Saitama, Japan; Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science (CSRS), Wako-shi, Saitama, Japan.
| | - Hiroyuki Osada
- Chemical Resource Development Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science (CSRS), Wako-shi, Saitama, Japan
| |
Collapse
|
7
|
Golonko A, Olichwier AJ, Paszko A, Świsłocka R, Szczerbiński Ł, Lewandowski W. Biomaterials in Cancer Therapy: Investigating the Interaction between Kaempferol and Zinc Ions through Computational, Spectroscopic and Biological Analyses. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2526. [PMID: 38893790 PMCID: PMC11172956 DOI: 10.3390/ma17112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
A complex of the natural flavonoid kaempferol with zinc (Kam-Zn) was synthesized, and its physicochemical properties were investigated using spectroscopic methods such as Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy and theoretical chemistry. Biological studies were conducted to evaluate the cytotoxic and antiproliferative effects of these complexes on MCF-7 breast cancer cells. Treatment with Kam 100 µM (84.86 ± 7.79%; 64.37 ± 8.24%) and Kam-Zn 100 µM (91.87 ± 3.80%; 87.04 ± 13.0%) showed no significant difference in proliferation between 16 h and 32 h, with the gap width remaining stable. Both Kam-Zn 100 μM and 200 μM demonstrated effective antiproliferative and cytotoxic activity, significantly decreasing cell viability and causing cell death and morphology changes. Antioxidant assays revealed that Kam (IC50 = 5.63 ± 0.06) exhibited higher antioxidant potential compared to Kam-Zn (IC50 = 6.80 ± 0.075), suggesting that zinc coordination impacts the flavonoid's radical scavenging activity by the coordination of metal ion to hydroxyl groups. Computational studies revealed significant modifications in the electronic structure and properties of Kam upon forming 1:1 complexes with Zn2+ ions. Spectroscopy analyses confirmed structural changes, highlighting shifts in absorption peaks and alterations in functional group vibrations indicative of metal-ligand interactions. FT-IR and UV-Vis spectra analysis suggested that Zn coordinates with the 3-OH and 4C=O groups of ligand. These findings suggest that the Kam-Zn complex exhibits interesting antiproliferative, cytotoxic and modified antioxidant effects on MCF-7 cells, providing valuable insights into their structural and anticancer properties.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
| | - Adam Jan Olichwier
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Paszko
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Renata Świsłocka
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Łukasz Szczerbiński
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Włodzimierz Lewandowski
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, 15-351 Bialystok, Poland
| |
Collapse
|
8
|
Méndez-Luna D, Guzmán-Velázquez S, Padilla-Martínez II, García-Sánchez JR, Bello M, García-Vázquez JB, Mendoza-Figueroa HL, Correa-Basurto J. GPER binding site detection and description: A flavonoid-based docking and molecular dynamics simulations study. J Steroid Biochem Mol Biol 2024; 239:106474. [PMID: 38307214 DOI: 10.1016/j.jsbmb.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Flavonoids, a phenolic compounds class widely distributed in the plant kingdom, have attracted much interest for their implications on several health and disease processes. Usually, the consumption of this type of compounds is approximately 1 g/d, primarily obtained from cereals, chocolate, and dry legumes ensuring its beneficial role in maintaining the homeostasis of the human body. In this context, in cancer disease prominent data points to the role of flavonoids as adjuvant treatment aimed at the regression of the disease. GPER, an estrogen receptor on the cell surface, has been postulated as a probable orchestrator of the beneficial effects of several flavonoids through modulation/inhibition of various mechanisms that lead to cancer progression. Therefore, applying pocket and cavity protein detection and docking and molecular dynamics simulations (MD), we generate, from a cluster composed of 39 flavonoids, crucial insights into the potential role as GPER ligands, of Puerarin, Isoquercetin, Kaempferol 3-O-glucoside and Petunidin 3-O-glucoside, aglycones whose sugar moiety delimits a new described sugar-acceptor sub-cavity into the cavity binding site on the receptor, as well as of the probable activation mechanism of the receptor and the pivotal residues involved in it. Altogether, our results shed light on the potential use of the aforementioned flavonoids as GPER ligands and for further evaluations in in vitro and in vivo assays to elucidate their probable anti-cancer activity.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico.
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico.
| | - Itzia-Irene Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Alcaldía Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico.
| | - José-Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Juan-Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Humberto-Lubriel Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| |
Collapse
|
9
|
Zhao J, Sun H, Wang C, Shang D. Breast cancer therapy: from the perspective of glucose metabolism and glycosylation. Mol Biol Rep 2024; 51:546. [PMID: 38642246 DOI: 10.1007/s11033-024-09466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in developing effective interventions targeting glycolysis and glycosylation are further discussed.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Haiting Sun
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Che Wang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Dejing Shang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
10
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
11
|
Ma X, Zhang X, Wang X, Wang C, Ma Y. The role of kaempferol in gynaecological malignancies: progress and perspectives. Front Pharmacol 2023; 14:1310416. [PMID: 38143502 PMCID: PMC10748757 DOI: 10.3389/fphar.2023.1310416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Kaempferol, a flavonoid derived from various herbs such as cocoyam, propolis, and grapefruit, has garnered interest due to its numerous pharmacological benefits, including anti-inflammatory, antioxidant, and anti-diabetic properties. Kaempferol has been shown to possess notable anti-tumour bioactivity, indicating potential for treating gynaecological malignancies. To date, numerous studies have demonstrated the potential of kaempferol to induce tumour cell apoptosis, inhibit proliferation, and prevent metastasis and invasion in several gynaecological malignancies, including breast, ovarian and endometrial cancers. However, there is currently insufficient research investigating the efficacy of kaempferol for the treatment of gynaecological malignancies, and a lack of systematic review of its mechanism of action. Therefore, this review is founded on a literature analysis of the anticancer effects of kaempferol on gynaecological malignancies. The goal is to provide valuable reference material for scientific researchers and medical practitioners.
Collapse
Affiliation(s)
- Xijun Ma
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Congan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Alfahel R, Sawicki T, Jabłońska M, Przybyłowicz KE. Anti-Hyperglycemic Effects of Bioactive Compounds in the Context of the Prevention of Diet-Related Diseases. Foods 2023; 12:3698. [PMID: 37835351 PMCID: PMC10572282 DOI: 10.3390/foods12193698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Diet-related diseases are health conditions primary caused by poor nutrition. These diseases encompass obesity, type 2 diabetes, cardiovascular diseases, osteoporosis, and certain types of cancer. Functional foods and nutraceuticals offer a promising dietary approach to addressing diet-related diseases across various clinical contexts. The bioactive compounds found in these foods are the subject of intensive studies aimed at discovering their anti-hyperglycemic effects, which are beneficial in alleviating chronic diseases and protecting human health. Hyperglycemia is a common risk factor for metabolic disease and mortality worldwide. Chronic hyperglycemic states can lead to many long-term complications, such as retinopathy, neuropathy, kidney disease, heart disease, cancer, and diabetes. This review explores the potential anti-hyperglycemic effects of bioactive compounds, specifically flavonoids and phenolic acids, and their proposed roles in mitigating chronic diseases and promoting human health. By thoroughly examining the existing literature, we investigated the potential anti-hyperglycemic effects of these bioactive compounds and their proposed roles in managing chronic diseases. The goal of this paper was to enhance our comprehension of how these compounds modulate glucose transporters, with the ultimate aim of identifying effective strategies for the prevention and treatment of diet-related diseases. Overall, this review investigated the use of bioactive compounds from functional foods as potential inhibitors of glucose transporters in the context of prevention/treatment of diet-related diseases.
Collapse
Affiliation(s)
| | | | | | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 45f Słoneczna Street, 10-718 Olsztyn, Poland; (R.A.); (T.S.); (M.J.)
| |
Collapse
|
13
|
Couto M, Andrade N, Magro F, Martel F. Taurocholate uptake by Caco-2 cells is inhibited by pro-inflammatory cytokines and butyrate. Cytokine 2023; 169:156307. [PMID: 37487380 DOI: 10.1016/j.cyto.2023.156307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic and life-threating inflammatory diseases of the gastrointestinal tract. The active intestinal absorption of bile salts is reduced in IBD, resulting in higher luminal concentrations of these agents that contribute to the pathophysiology of IBD-associated diarrhea. Butyrate (BT) is a short-chain fatty acid produced by colonic bacterial fermentation of dietary fibers. BT utilization is impaired in the intestinal inflamed mucosa of IBD patients. Our aim was to investigate the link between IBD and bile acid absorption, by testing the effect of the pro-inflammatory cytokines TNF-α and IFN-γ and of BT upon 3H-TC uptake by Caco-2 cells. The proinflammatory cytokines TNF-α and IFN-γ inhibit Na+-independent, non-ASBT (sodium-dependent bile acid transporter)-mediated 3H-TC uptake by Caco-2 cells. The inhibitory effect of these cytokines on Na+-independent 3H-TC uptake is PI3K- and JAK/STAT1-mediated. These two compounds upregulate ASBT expression levels, but no corresponding increase in Na+-dependent component of 3H-TC is observed. Moreover, BT was also found to inhibit 3H-TC uptake and showed an additive effect with IFN-γ in reducing 3H-TC uptake. We conclude that an interaction between BT and bile acids appears to exist in IBD, which may participate in the link between diet, microbiota and IBD.
Collapse
Affiliation(s)
- Mafalda Couto
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Gastroenterology Unit, Department of Medicine, Centro Hospitalar S. João, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
14
|
Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA, Rahmani AH. Effects and Mechanisms of Kaempferol in the Management of Cancers through Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:ijms24108630. [PMID: 37239974 DOI: 10.3390/ijms24108630] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Basmah F Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
15
|
Garcia-Guasch M, Escrich E, Moral R, Duarte IF. Metabolomics Insights into the Differential Response of Breast Cancer Cells to the Phenolic Compounds Hydroxytyrosol and Luteolin. Molecules 2023; 28:molecules28093886. [PMID: 37175295 PMCID: PMC10179918 DOI: 10.3390/molecules28093886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effects of two phenolic compounds found in extra virgin olive oil, hydroxytyrosol (HT) and luteolin (LUT), on the metabolism of breast cancer (BC) cells of different molecular subtypes. An untargeted metabolomics approach was used to characterize the metabolic responses of both triple-negative MDA-MB-231 cells and hormone-responsive MCF-7 cells to treatment with these phenols. Notably, while some effects were common across both cell types, others were dependent on the cell type, highlighting the importance of cellular metabolic phenotype. Common effects included stimulation of mitochondrial metabolism, acetate production, and formate overflow. On the other hand, glucose metabolism and lactate production were differentially modulated. HT and LUT appeared to inhibit glycolysis and promote the hexosamine biosynthetic pathway in MDA-MB-231 cells, while MCF-7 cells exhibited higher glycolytic flux when treated with phenolic compounds. Another significant difference was observed in lipid metabolism. Treated MDA-MB-231 cells displayed increased levels of neutral lipids (likely stored in cytosolic droplets), whereas treatment of MCF-7 cells with HT led to a decrease in triacylglycerols. Additionally, glutathione levels increased in MDA-MB-231 cells treated with HT or LUT, as well as in MCF-7 cells treated with LUT. In contrast, in HT-treated MCF-7 cells, glutathione levels decreased, indicating different modulation of cellular redox status. Overall, this work provides new insights into the metabolic impact of HT and LUT on different BC cell subtypes, paving the way for a better understanding of the nutritional relevance of these phenolic compounds in the context of BC prevention and management.
Collapse
Affiliation(s)
- Maite Garcia-Guasch
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Eduard Escrich
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Raquel Moral
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
17
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
18
|
Zhou H, Duan C, Qin H, Huang C, Hou J, Chen Y, Zhu J, Xu C, Jin J, Zhuang T. Synthesis and structural characterization of a novel palbociclib-kaempferol cocrystal with improved tabletability and synergistic antitumor activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Shum HCE, Wu K, Vadgama J, Wu Y. Potential Therapies Targeting the Metabolic Reprogramming of Diabetes-Associated Breast Cancer. J Pers Med 2023; 13:157. [PMID: 36675817 PMCID: PMC9861470 DOI: 10.3390/jpm13010157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, diabetes-associated breast cancer has become a significant clinical challenge. Diabetes is not only a risk factor for breast cancer but also worsens its prognosis. Patients with diabetes usually show hyperglycemia and hyperinsulinemia, which are accompanied by different glucose, protein, and lipid metabolism disorders. Metabolic abnormalities observed in diabetes can induce the occurrence and development of breast cancer. The changes in substrate availability and hormone environment not only create a favorable metabolic environment for tumorigenesis but also induce metabolic reprogramming events required for breast cancer cell transformation. Metabolic reprogramming is the basis for the development, swift proliferation, and survival of cancer cells. Metabolism must also be reprogrammed to support the energy requirements of the biosynthetic processes in cancer cells. In addition, metabolic reprogramming is essential to enable cancer cells to overcome apoptosis signals and promote invasion and metastasis. This review aims to describe the major metabolic changes in diabetes and outline how cancer cells can use cellular metabolic changes to drive abnormal growth and proliferation. We will specifically examine the mechanism of metabolic reprogramming by which diabetes may promote the development of breast cancer, focusing on the role of glucose metabolism, amino acid metabolism, and lipid metabolism in this process and potential therapeutic targets. Although diabetes-associated breast cancer has always been a common health problem, research focused on finding treatments suitable for the specific needs of patients with concurrent conditions is still limited. Most studies are still currently in the pre-clinical stage and mainly focus on reprogramming the glucose metabolism. More research targeting the amino acid and lipid metabolism is needed.
Collapse
Affiliation(s)
- Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| | - Yong Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1748 E. 118th Street, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, Wang Y. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol 2023; 12:1063423. [PMID: 36686771 PMCID: PMC9853001 DOI: 10.3389/fonc.2022.1063423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Tumors meet their energy, biosynthesis, and redox demands through metabolic reprogramming. This metabolic abnormality results in elevated levels of metabolites, particularly lactate, in the tumor microenvironment. Immune cell reprogramming and cellular plasticity mediated by lactate and lactylation increase immunosuppression in the tumor microenvironment and are emerging as key factors in regulating tumor development, metastasis, and the effectiveness of immunotherapies such as immune checkpoint inhibitors. Reprogramming of glucose metabolism and the "Warburg effect" in hepatocellular carcinoma (HCC) lead to the massive production and accumulation of lactate, so lactate modification in tumor tissue is likely to be abnormal as well. This article reviews the immune regulation of abnormal lactate metabolism and lactate modification in hepatocellular carcinoma and the therapeutic strategy of targeting lactate-immunotherapy, which will help to better guide the medication and treatment of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yiwei Xu
- Marine College, Shandong University, Weihai, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| |
Collapse
|
21
|
Qattan MY, Khan MI, Alharbi SH, Verma AK, Al-Saeed FA, Abduallah AM, Al Areefy AA. Therapeutic Importance of Kaempferol in the Treatment of Cancer through the Modulation of Cell Signalling Pathways. Molecules 2022; 27:8864. [PMID: 36557997 PMCID: PMC9788613 DOI: 10.3390/molecules27248864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-derived flavonoids are considered natural nontoxic chemo-preventers and have been widely studied for cancer treatment in recent decades. Mostly all flavonoid compounds show significant anti-inflammatory, anticancer and antioxidant properties. Kaempferol (Kmp) is a well-studied compound and exhibits remarkable anticancer and antioxidant potential. Kmp can regulate various cancer-related processes and activities such as cell cycle, oxidative stress, apoptosis, proliferation, metastasis, and angiogenesis. The anti-cancer properties of Kmp primarily occur via modulation of apoptosis, MAPK/ERK1/2, P13K/Akt/mTOR, vascular endothelial growth factor (VEGF) signalling pathways. The anti-cancer property of Kmp has been recognized in several in-vivo and in-vitro studies which also includes numerous cell lines and animal models. This flavonoid possesses toxic activities against only cancer cells and have restricted toxicity on healthy cells. In this review, we present extensive research investigations about the therapeutic potential of Kmp in the management of different types of cancers. The anti-cancer properties of Kmp are discussed by concentration on its capability to target molecular-signalling pathway such as VEGF, STAT, p53, NF-κB and PI3K-AKT signalling pathways. The anti-cancer property of Kmf has gained a lot of attention, but the accurate action mechanism remains unclear. However, this natural compound has a great pharmacological capability and is now considered to be an alternative cancer treatment.
Collapse
Affiliation(s)
- Malak Yahia Qattan
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, KSA- 4545, Riyadh 11451, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Shudayyed Hasham Alharbi
- Pharmacy Department, Maternity and Children Hospital (MCH), Qassim Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi 110025, India
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Azza A. Al Areefy
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Nutrition & Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11281, Egypt
| |
Collapse
|
22
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Cui Y, Li C, Sang F, Cao W, Qin Z, Zhang P. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy. Front Pharmacol 2022; 13:1035882. [PMID: 36339566 PMCID: PMC9631946 DOI: 10.3389/fphar.2022.1035882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Glycolysis is a complex metabolic process that occurs to convert glucose into pyruvate to produce energy for living cells. Normal cells oxidized pyruvate into adenosine triphosphate and carbon dioxide in the presence of oxygen in mitochondria while cancer cells preferentially metabolize pyruvate to lactate even in the presence of oxygen in order to maintain a slightly acidic micro-environment of PH 6.5 and 6.9, which is beneficial for cancer cell growth and metastasis. Therefore targeting glycolytic signaling pathways provided new strategy for anti-cancer therapy. Natural products are important sources for the treatment of diseases with a variety of pharmacologic activities. Accumulated studies suggested that natural products exhibited remarkable anti-cancer properties both in vitro and in vivo. Plenty of studies suggested natural products like flavonoids, terpenoids and quinones played anti-cancer properties via inhibiting glucose metabolism targets in glycolytic pathways. This study provided an updated overview of natural products controlling glycolytic pathways, which also provide insight into druggable mediators discovery targeting cancer glucose metabolism.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Zhuo Qin
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| |
Collapse
|
24
|
Correlation of Glucose Metabolism with Cancer and Intervention with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2192654. [PMID: 36276846 PMCID: PMC9586738 DOI: 10.1155/2022/2192654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Cancer is a complex disease with several distinct characteristics, referred to as “cancer markers” one of which is metabolic reprogramming, which is a common feature that drives cancer progression. Over the last ten years, researchers have focused on the reprogramming of glucose metabolism in cancer. In cancer, the oxidative phosphorylation metabolic pathway is converted into the glycolytic pathway in order to meet the growth requirements of cancer cells, thereby creating a microenvironment that promotes cancer progression. The precise mechanism of glucose metabolism in cancer cells is still unknown, but it is thought to involve the aberrant levels of metabolic enzymes, the influence of the tumor microenvironment (TME), and the activation of tumor-promoting signaling pathways. It is suggested that glucose metabolism is strongly linked to cancer progression because it provides energy to cancer cells and interferes with antitumor drug pharmacodynamics. Therefore, it is critical to unravel the mechanism of glucose metabolism in tumors in order to gain a better understanding of tumorigenesis and to lay the groundwork for future research into the identification of novel diagnostic markers and therapeutic targets for cancer treatment. Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, multiple components, and less toxic side effects and has unique advantages in tumor treatment. In recent years, researchers have found that a variety of Chinese medicine monomers and compound recipes play an antitumor role by interfering with the reprogramming of tumor metabolism. The underlying mechanisms of metabolism reprogramming of tumor cells and the role of TCM in regulating glucose metabolism are reviewed in this study, so as to provide a new idea for antitumor research in Chinese medicine.
Collapse
|
25
|
Beylerli O, Beilerli A, Shumadalova A, Wang X, Yang M, Sun H, Teng L. Therapeutic effect of natural polyphenols against glioblastoma. Front Cell Dev Biol 2022; 10:1036809. [PMID: 36268515 PMCID: PMC9577362 DOI: 10.3389/fcell.2022.1036809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive tumor of the central nervous system, which has a highly invasive growth pattern, which creates poor prospects for patient survival. Chemotherapy and tumor surgery are limited by anticancer drug resistance and tumor invasion. Evidence suggests that combinations of treatments may be more effective than single drugs alone. Natural polyphenolic compounds have potential as drugs for the treatment of glioblastoma and are considered as potential anticancer drugs. Although these beneficial effects are promising, the efficacy of natural polyphenolic compounds in GBM is limited by their bioavailability and blood-brain barrier permeability. Many of them have a significant effect on reducing the progression of glioblastoma through mechanisms such as reduced migration and cell invasion or chemosensitization. Various chemical formulations have been proposed to improve their pharmacological properties. This review summarizes natural polyphenolic compounds and their physiological effects in glioblastoma models by modulating signaling pathways involved in angiogenesis, apoptosis, chemoresistance, and cell invasion. Polyphenolic compounds are emerging as promising agents for combating the progression of glioblastoma. However, clinical trials are still needed to confirm the properties of these compounds in vitro and in vivo.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingchun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanran Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Teng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Teng,
| |
Collapse
|
26
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
27
|
Chandekar L, Katgeri R, Takke A. The Potential Clinical Uses and Nanoformulation Strategies of Kaempferol, a Dietary Flavonoid. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:693-707. [DOI: 10.1007/s43450-022-00290-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/22/2022] [Indexed: 01/04/2025]
|
28
|
A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int 2022; 22:260. [PMID: 35986346 PMCID: PMC9392350 DOI: 10.1186/s12935-022-02673-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
It has been shown in multiple experimental and biological investigations that kaempferol, an edible flavonoid generated from plants, may be used as an anti-cancer drug and has been shown to have anti-cancer properties. Many signaling pathways are altered in cancer cells, resulting in cell growth inhibition and death in various tumor types. Cancer is a multifaceted illness coordinated by multiple external and internal mechanisms. Natural extracts with the fewest side effects have piqued the attention of researchers in recent years, attempting to create cancer medicines based on them. An extensive array of natural product-derived anti-cancer agents have been examined to find a successful method. Numerous fruits and vegetables have high levels of naturally occurring flavonoid kaempferol, and its pharmacological and biological effects have been studied extensively. Certain forms of cancer are sensitive to kaempferol-mediated anti-cancer activity, although complete research is needed. We have endeavored to concentrate our review on controlling carcinogenic pathways by kaempferol in different malignancies. Aside from its extraordinary ability to modify cell processes, we have also discussed how kaempferol has the potential to be an effective therapy for numerous tumors.
Collapse
|
29
|
Miranda CL, Kumbi Y, Wu W, Lee HS, Reed RL, Stevens JF. Phytochemical characterization and bioactivity toward breast cancer cells of unhydrolyzed and acid-hydrolyzed extracts of Fagonia indica. Nat Prod Commun 2022; 17:10.1177/1934578x221109426. [PMID: 35875707 PMCID: PMC9302922 DOI: 10.1177/1934578x221109426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Phytochemicals from the genus, Fagonia, have been attracting increasing attention due to their potential beneficial effects on human health. Fagonia species contain various types of phytochemicals such as flavonoids, alkaloids, saponins, terpenoids, coumarins and tannins. In this study, we investigated the phytochemical composition of unhydrolyzed and acid-hydrolyzed extracts of Fagonia indica and their bioactivity toward breast cancer MCF-7 cells in vitro. The results revealed that F. indica contains phytochemicals consistent with the reported phytochemical composition of this Fagonia species, with greater amounts of aglycones detected in the hydrolyzed extract. The crude extract of F. indica without acid hydrolysis was found to be ineffective in inhibiting the growth of MCF-7 cells at doses below 1000 μg/mL. However, after acid hydrolysis (to mimic gastro-intestinal hydrolysis), the F. indica extract became growth-inhibitory to MCF-7 cells as low as 10 μg/mL and the cytotoxicity increased with increasing dose and time of treatment. The results suggest that F. indica extracts contain phytochemicals in glycosidic forms whose aglycones are active as anti-proliferative agents toward breast cancer cells in vitro.
Collapse
Affiliation(s)
- Cristobal L. Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| | - Yadano Kumbi
- BioResource Research Interdisciplinary Program, Oregon State University, Corvallis, Oregon, 97331
| | - Wenbin Wu
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| | - Hyi-Seung Lee
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
- Korean Institute of Ocean Science and Technology, Busan, South Korea
| | - Ralph L. Reed
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331
| |
Collapse
|
30
|
Phytochemicals as Regulators of Tumor Glycolysis and Hypoxia Signaling Pathways: Evidence from In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:ph15070808. [PMID: 35890106 PMCID: PMC9315613 DOI: 10.3390/ph15070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia. Herein, we present a comprehensive overview of the natural compounds which demonstrated, in vitro studies, an effective anticancer activity by affecting key regulators of the glycolytic pathway such as glucose transporters, hexokinases, phosphofructokinase, pyruvate kinase or lactate dehydrogenase. Moreover, we assessed how phytochemicals could interfere in HIF-1 synthesis, stabilization, accumulation, and transactivation, emphasizing PI3K/Akt/mTOR and MAPK/ERK pathways as important signaling cascades in HIF-1 activation. Special consideration was given to cell culture-based metabolomics as one of the most sensitive, accurate, and comprising approaches for understanding the response of cancer cell metabolome to phytochemicals.
Collapse
|
31
|
Naeem M, Iqbal MO, Khan H, Ahmed MM, Farooq M, Aadil MM, Jamaludin MI, Hazafa A, Tsai WC. A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. Molecules 2022; 27:3412. [PMID: 35684353 PMCID: PMC9182524 DOI: 10.3390/molecules27113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China;
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Humaira Khan
- Department of Chemistry, University of Management and Technology, Lahore 54770, Pakistan;
| | - Muhammad Masood Ahmed
- Faculty of Pharmaceutical Sciences, Times Institute, Multan 60000, Pakistan;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Muhammad Farooq
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (M.F.); (M.M.A.)
| | - Muhammad Moeen Aadil
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (M.F.); (M.M.A.)
| | - Mohamad Ikhwan Jamaludin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
32
|
Carmo F, Silva C, Martel F. Inhibition of Glutamine Cellular Uptake Contributes to the Cytotoxic Effect of Xanthohumol in Triple-Negative Breast Cancer Cells. Nutr Cancer 2022; 74:3413-3430. [PMID: 35594207 DOI: 10.1080/01635581.2022.2076889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes the most incident cancer and one of the most common causes of cancer-related death. "Glutamine addiction", an important metabolic feature of cancer cells, is dependent on supply of this amino acid from external sources. In this study, the effect of several polyphenols (catechin, epicatechin, EGCG, catechin:lysine, naringenin, hesperidin, malvidin, delphinidin, kaempferol, quercetin, rutin, myricetin, resveratrol, xanthohumol, and chrysin) upon glutamine (3H-GLN) uptake by human breast epithelial adenocarcinoma cell lines with distinct characteristics (MCF-7 and MDA-MB-231) was assessed.Several polyphenols interfere with 3H-GLN uptake by both cell lines. Xanthohumol markedly decreases total and Na+-dependent 3H-GLN uptake and showed a cytotoxic and anti-proliferative effect in MDA-MB-231 cells. Xanthohumol is as an uncompetitive inhibitor of Na+-dependent 3H-GLN uptake and inhibits GPNA (L-γ-glutamyl-p-nitroanilide)-sensitive, both ASCT2 (alanine, serine, cysteine transporter 2)-mediated and non-ASCT2-mediated 3H-GLN uptake. Xanthohumol does not interfere with the transcription rates of ASCT2. The cytotoxic effect of xanthohumol, but not its anti-proliferative effect, is GPNA-sensitive and related to ASCT2 inhibition. Combination of xanthohumol with the breast cancer chemotherapeutic agent doxorubicin results in an additive anti-proliferative, but not cytotoxic effect.We conclude that targeting glutamine uptake might constitute a potential interesting strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- F Carmo
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - C Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - F Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Lakhani M, Azim S, Akhtar S, Ahmad Z. Inhibition of Escherichia coli ATP synthase and cell growth by dietary pomegranate phenolics. Int J Biol Macromol 2022; 213:195-209. [PMID: 35597381 DOI: 10.1016/j.ijbiomac.2022.05.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Historically, people have been using pomegranate to alleviate many disease conditions. Pomegranate is known for its antiinflammatory, antioxidant, neuroprotective, anticancer, and antibacterial properties. In the current study, we examined effects of 8 dietary phenolics present in pomegranate (DPPs)-cyanidin-3-glucoside, cyanin chloride, delphinidin-3-glucoside, delphinidin-3,5-diglucoside, pelargonidin-3-glucoside, pelargonin chloride, punicalagin, and punicalin-on Escherichia coli ATP synthase and cell growth. DPPs caused complete or near complete (89%-100%) inhibition of wild-type E. coli ATP synthase and partial (5%-64%) inhibition of mutant enzymes αR283D, αE284R, βV265Q, and γT273A. Growth inhibition of wild-type, null, and mutant strains in the presence of DPPs were lower than that of isolated wild-type and mutant ATP synthase. On a molar scale, cyanin chloride was the most potent, and pelargonidin-3-glucoside was the least effective inhibitor of wild-type ATP synthase. Partial inhibition of mutant enzymes confirmed that αR283D, αE284R, βV265Q, and γT273A are essential in the formation of the phytochemical binding site. Our results establish that DPPs are potent inhibitors of wild-type E. coli ATP synthase and that the antimicrobial nature of DPPs can be associated with the binding and inhibition of microbial ATP synthase. Additionally, selective inhibition of microbial ATP synthase by DPPs is a useful method to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Muhaib Lakhani
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Samiya Azim
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Suhail Akhtar
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|
34
|
Drețcanu G, Știrbu I, Leoplold N, Cruceriu D, Danciu C, Stănilă A, Fărcaș A, Borda IM, Iuhas C, Diaconeasa Z. Chemical Structure, Sources and Role of Bioactive Flavonoids in Cancer Prevention: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091117. [PMID: 35567117 PMCID: PMC9101215 DOI: 10.3390/plants11091117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 05/12/2023]
Abstract
There has been a major shift in the collective mindset around the world in recent decades, both in terms of food and in terms of the treatment of chronic diseases. Increasing numbers of people are choosing to prevent rather than treat, which is why many consumers are choosing plant-based diets, mainly due to their bioactive compounds. A significant case of bioactive compound is flavonoids-a wide subclass of an even wider class of phytochemicals: polyphenols. Flavonoids are a broad topic of study for researchers due to their potential in the prevention and treatment of a broad range of cancers. The aim of this review is to inform/update the reader on the diversity, accessibility and importance of flavonoids as biomolecules that are essential for optimal health, focusing on the potential of these compounds in the prevention of various types of cancer. Along with conventional sources, this review presents some of the possible methods for obtaining significant amounts of flavonoids based on a slightly different approach, genetic manipulation.
Collapse
Affiliation(s)
- Georgiana Drețcanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Ioana Știrbu
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (I.Ș.); (N.L.)
| | - Nicolae Leoplold
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (I.Ș.); (N.L.)
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Anca Fărcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Ileana Monica Borda
- Sixth Department of Medical Specialties, Medical Rehabilitation, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristian Iuhas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-596893
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| |
Collapse
|
35
|
G MS, Swetha M, Keerthana CK, Rayginia TP, Anto RJ. Cancer Chemoprevention: A Strategic Approach Using Phytochemicals. Front Pharmacol 2022; 12:809308. [PMID: 35095521 PMCID: PMC8793885 DOI: 10.3389/fphar.2021.809308] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.
Collapse
Affiliation(s)
- Mohan Shankar G
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - C K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Tennyson P Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
36
|
Sengupta B, Biswas P, Roy D, Lovett J, Simington L, Fry DR, Travis K. Anticancer Properties of Kaempferol on Cellular Signaling Pathways. Curr Top Med Chem 2022; 22:2474-2482. [PMID: 36082856 PMCID: PMC10754212 DOI: 10.2174/1568026622666220907112822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 01/20/2023]
Abstract
Polyhydroxy compounds are secondary metabolites that are ubiquitous in plants of higher genera. They possess therapeutic properties against a wide spectrum of diseases, including cancers, neurodegenerative disorders, atherosclerosis, as well as cardiovascular disease. The phytochemical flavonol (a type of flavonoid) kaempferol (KMP) (3,5,7-trihydroxy-2-(4-hydroxyphenyl)- 4Hchromen-4-one) is abundant in cruciferous vegetables, including broccoli, kale, spinach, and watercress, as well as in herbs like dill, chives, and tarragon. KMP is predominantly hydrophobic in nature due to its diphenylpropane structure (a characteristic feature of flavonoids). Recent findings have indicated the promise of applying KMP in disease prevention due to its potential antioxidant, antimutagenic, antifungal, and antiviral activities. In the literature, there is evidence that KMP exerts its anticancer effects by modulating critical elements in cellular signal transduction pathways linked to apoptosis, inflammation, angiogenesis, and metastasis in cancer cells without affecting the viability of normal cells. It has been shown that KMP triggers cancer cell death by several mechanisms, including cell cycle arrest, caspase activation, metabolic alteration, and impacting human telomerase reverse-transcriptase gene expression. This review is aimed at providing critical insights into the influence of KMP on the intracellular cascades that regulate metabolism and signaling in breast, ovarian, and cervical cancer cells.
Collapse
Affiliation(s)
- Bidisha Sengupta
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Pragnya Biswas
- School of Biotechnology, Presidency University, Kolkata, India
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Justin Lovett
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Laken Simington
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Darrell R. Fry
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Kaelin Travis
- Center of Biotechnology, Alcorn State University, Lorman, Mississippi, USA
| |
Collapse
|
37
|
Lipovka Y, Alday E, Hernandez J, Velazquez C. Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2003380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
38
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021; 11:1692. [PMID: 34827690 PMCID: PMC8615418 DOI: 10.3390/biom11111692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari Bd., 020021 Bucharest, Romania
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| |
Collapse
|
40
|
Comparative study between in vivo- and in vitro-derived extracts of cactus ( Opuntis ficus-indica L. Mill) against prostate and mammary cancer cell lines. Heliyon 2021; 7:e08016. [PMID: 34622044 PMCID: PMC8481975 DOI: 10.1016/j.heliyon.2021.e08016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Opuntia ficus-indica L. Mill cladodes are considered to be a source of an abundance of bioactive compounds. To identify a natural product that can be used in the chemoprevention and treatment of cancer, this study was conducted to produce an anticancer agent extracted from in vitro-derived cladodes of prickly pear cactus. Toward this goal, assays of seed germination and micropropagation revealed that the highest seed germination rate was 66% and that the highest shoot number per explant was obtained with benzyl adenine (BA) (2 mg/l) and kinetin (Kin) (1 mg/l) within 2 months, at 22.6. In addition, the maximum length of shoots was obtained with BA (3 mg/l) and Kin (0.5 mg/l), at 7.44 cm. The in vitro-derived cladode extract showed higher total phenolic and kaempferol contents than the in vivo-derived cladode extract (total phenolics 156.5 mg/g and 86 mg/g DW; kaempferol 2.807 mg/g and 1.304 mg/g DW, respectively). These remarkable results reflected the anticancer activity on the viability and proliferation/migration of PC3 prostate and mammary Mcf7-7 cells. In terms of cytotoxicity, the IC50 values on PC3 and Mcf7 cells were 5775.7 and 6311.3 μg/ml, respectively, showing dose-dependent increases. Meanwhile, from in vivo analyses of the plants, the IC50 values were 5927.93 and 6825.6 μg/ml, respectively, again showing dose-dependent increases.
Collapse
|
41
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
42
|
Fathi F, Ebrahimi SN, Valadão AIG, Andrade N, Costa ASG, Silva C, Fathi A, Salehi P, Martel F, Alves RC, Oliveira MBPP. Exploring Gunnera tinctoria: From Nutritional and Anti-Tumoral Properties to Phytosome Development Following Structural Arrangement Based on Molecular Docking. Molecules 2021; 26:5935. [PMID: 34641482 PMCID: PMC8512520 DOI: 10.3390/molecules26195935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Gunnera tinctoria, an underexplored invasive plant found in Azores, Portugal, was studied regarding its nutritional, antioxidant, and antitumoral properties. Higher antioxidant activity was found in baby leaves, followed by adult leaves and inflorescences. A phenolic fraction of the plant was enriched using adsorbent resin column chromatography (DiaionTM HP20LX, and Relite EXA90). Antitumoral effects were observed with the enriched fractions in breast (MCF-7) and pancreatic (AsPC-1) cancer cell lines, being more pronounced in the latter. To improve protection and membrane absorption rates of phenolic compounds, nano-phytosomes and cholesterol-conjugated phytosomes coated with natural polymers were loaded with the enriched fraction. The particles were characterized, and their physiochemical properties were evaluated and compared. All samples presented anionic charge and nanometer size in relation to the inner layer and micrometer size regarding the external layers. In addition, the molecular arrangement of phenolics within both types of phytosomes were studied for the first time by molecular docking. Polarity and molecular size were key factors on the molecular arrangement of the lipid bilayer. In conclusion, G. tinctoria showed to be an interesting source of nutrients and phenolic compounds with anti-tumoral potential. Moreover, phytosome loading with these compounds can increase their stability and bioavailability having in view future applications.
Collapse
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; (F.F.); (S.N.E.); (P.S.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; (F.F.); (S.N.E.); (P.S.)
| | - Ana I. G. Valadão
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Alireza Fathi
- Sana Technologists Segal Private Company (STM), Ashrafi Esfahani, Tehran 1469963811, Iran;
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983969411, Iran; (F.F.); (S.N.E.); (P.S.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal; (A.I.G.V.); (N.A.); (A.S.G.C.); (R.C.A.)
| |
Collapse
|
43
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacology-Based Dissection of the Comprehensive Molecular Mechanisms of the Herbal Prescription FDY003 Against Estrogen Receptor-Positive Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211044377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor-positive breast cancer (ERPBC) is the commonest subtype of breast cancer, with a high prevalence, incidence, and mortality. Herbal drugs are increasingly being used to treat ERPBC, although their mechanisms of action are not fully understood. Therefore, in this study, we aimed to analyze the therapeutic properties of FDY003, a herbal anti-ERPBC prescription, using a network pharmacology approach. FDY003 decreased the viability of human ERPBC cells and sensitized them to tamoxifen, an endocrine drug that is widely used in the treatment of ERPBC. The network pharmacology analysis revealed 18 pharmacologically active components in FDY003 that may interact with and regulate 66 therapeutic targets. The enriched gene ontology terms for the FDY003 targets were associated with the modulation of cell survival and death, cell proliferation and growth arrest, and estrogen-associated cellular processes. Analysis of the pathway enrichment of the targets showed that FDY003 may target a variety of ERPBC-associated pathways, including the PIK3-Akt, focal adhesion, MAPK, and estrogen pathways. Overall, these data provide a comprehensive mechanistic insight into the anti-ERPBC activity of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | | | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
44
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
45
|
Hughes T, Azim S, Ahmad Z. Inhibition of Escherichia coli ATP synthase by dietary ginger phenolics. Int J Biol Macromol 2021; 182:2130-2143. [PMID: 34087308 DOI: 10.1016/j.ijbiomac.2021.05.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
For centuries, dietary ginger has been known for its antioxidant, anticancer, and antibacterial properties. In the current study, we examined the link between antibacterial properties of 7 dietary ginger phenolics (DGPs)-gingerenone A, 6-gingerol, 8-gingerol, 10-gingerol, paradol, 6-shogaol, and zingerone-and inhibition of bacterial ATP synthase. DGPs caused complete (100%) inhibition of wild-type Escherichia coli membrane-bound F1Fo ATP synthase, but partial and variable (0%-87%) inhibition of phytochemical binding site mutant enzymes αR283D, αE284R, βV265Q, and γT273A. The mutant enzyme ATPase activity was 16-fold to 100-fold lower than that of the wild-type enzyme. The growth of wild-type, null, and mutant strains in the presence of the 7 DGPs were abrogated to variable degrees on limiting glucose and succinate media. DGPs-caused variable inhibitory profiles of wild-type and mutant ATP synthase confirm that residues of α-, β-, and γ-subunits are involved in the formation of phytochemical binding site. The variable degree of growth in the presence of DGPs also indicates the possibility of molecular targets other than ATP synthase. Our results establish that antibacterial properties of DGPs can be linked to the binding and inhibition of bacterial ATP synthase. Therefore, bacterial ATP synthase is a valuable molecular target for DGPs.
Collapse
Affiliation(s)
- Taurin Hughes
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Samiya Azim
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|
46
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
47
|
Abstract
The GLUT is a key regulator of glucose metabolism and is widely expressed on the surface of most cells of the body. GLUT provides a variety of nutrients for the growth, proliferation and differentiation of cells. In recent years, the development of drugs affecting the energy intake of tumor cells has become a research hotspot. GLUT inhibitors are gaining increased attention because they can block the energy supply of malignant tumors. Herein, we elaborate on the structure and function of GLUT1, the structural and functional differences among GLUT1-4 transporters and the relationship between GLUT1 and tumor development, as well as GLUT1 transporter inhibitors, to provide a reference for the development of new GLUT1 inhibitors.
Collapse
|
48
|
Arundhathi JRD, Mathur SR, Gogia A, Deo SVS, Mohapatra P, Prasad CP. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep 2021; 48:4733-4745. [PMID: 34047880 DOI: 10.1007/s11033-021-06414-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023]
Abstract
Among breast cancer subtypes, the triple negative breast cancer (TNBC) has the worst prognosis. In absence of any permitted targeted therapy, standard chemotherapy is the mainstay for TNBC treatment. Hence, there is a crucial need to identify potential druggable targets in TNBCs for its effective treatment. In recent times, metabolic reprogramming has emerged as cancer cells hallmark, wherein cancer cells display discrete metabolic phenotypes to fuel cell progression and metastasis. Altered glycolysis is one such phenotype, in which even in oxygen abundance majority of cancer cells harvest considerable amount of energy through elevated glycolytic-flux. In the present review, we attempt to summarize the role of key glycolytic enzymes i.e. HK, Hexokinase; PFK, Phosphofructokinase; PKM2, Pyruvate kinase isozyme type 2; and LDH, Lactate dehydrogenase in TNBCs, and possible therapeutic options presently available.
Collapse
Affiliation(s)
- J R Dev Arundhathi
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | - S V S Deo
- Department of Surgical Oncology, Dr BRA IRCH, AIIMS, New Delhi, 110029, India
| | | | | |
Collapse
|
49
|
Chen X, Zhao Y, Lyu S, Gao G, Gao Y, Qi Y, Du J. Identification of novel inhibitors of GLUT1 by virtual screening and cell-based assays. Invest New Drugs 2021; 39:1242-1255. [PMID: 33900490 DOI: 10.1007/s10637-021-01109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
In order to fuel the uncontrolled cell proliferation and division, tumor cells reprogram the energy metabolism to Warburg effect, where glucose is preferably converted by glycolysis even in the presence of oxygen. However, the high energetic demand of tumor cells require upregulating the expression of glucose transporters, notably GLUT1, which substantially increases glucose uptake into cytoplasm. GLUT1 is overexpressed in a variety of tumor cells and is likely to be a potential drug target in the treatment of pan-cancers. Although many small molecules were reported to inhibit the glucose uptake function by various measurements, several shortcomings such as weak binding affinity, low specificity of the known inhibitors demand the identification of alternative inhibitors with novel scaffolds. In this study, we performed a virtual screening campaign by docking each compound from Chemdiv database to the glucose binding pocket based on the crystal structure of GLUT1 (PDB ID 4PYP) and four small molecules with novel scaffolds were identified to inhibit the glucose uptake of cancer cells at the sub-micromole level. The identified compounds may serve as starting points for the development of anti-cancer drugs via the manipulation of the energy metabolism.
Collapse
Affiliation(s)
- Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sifan Lyu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
50
|
Sahu R, Kar RK, Sunita P, Bose P, Kumari P, Bharti S, Srivastava S, Pattanayak SP. LC-MS characterized methanolic extract of zanthoxylum armatum possess anti-breast cancer activity through Nrf2-Keap1 pathway: An in-silico, in-vitro and in-vivo evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113758. [PMID: 33359860 DOI: 10.1016/j.jep.2020.113758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC (Rutaceae) containing flavonoids, alkaloids, coumarins, lignans, amides and terpenoid is well-known for its curative properties against various ailments including cancer. In the current research, phytochemicals present in the methanolic extract of Zanthoxylum armatum bark (MeZb) were characterized by LC-MS/MS analysis and chemotherapeutic potential of this extract was determined on DMBA-induced female Sprague Dawley rats. MATERIALS AND METHODS A simple and fast high-performance liquid chromatography-mass spectroscopy (LC-MS/MS) of MeZb was established followed by in-vitro antioxidant assays. This was followed by in-silico docking analysis as well as cytotoxicity assessment. Successively in-vivo study of MeZb was performed in DMBA-induced Sprague Dawley rats possessing breast cancer along with detailed molecular biology studies involving immunofluorescence, RT-qPCR and Western blot analysis. RESULTS LC-MS/MS investigation revealed the presence of compounds belonging to flavonoid, alkaloid and glycoside groups. MeZb revealed potential antioxidant activity in in-vitro antioxidant assays and strong binding energy of identified compounds was seen from the in-silico study with both HO1 and Keap1 receptor. Furthermore, the antioxidant action of MeZb was proven from the in-vivo analysis of antioxidant marker enzymes (lipid peroxidation, enzymic and non-enzymic antioxidants). This study also revealed upregulation of protective Nrf-2 following downregulation of Keap1 after MeZb treatment with respect to untreated cancerous rats. CONCLUSION These results exhibited anti-breast-cancer potential of MeZb through Nrf2-Keap1 pathway which may be due to the flavonoids, alkaloids and glycosides present in it.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Rajiv Kumar Kar
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Priyashree Sunita
- Government Pharmacy Institute, Department of Health, Family Welfare and Medical Education, Government of Jharkhand, Bariatu, Ranchi, 834009, India
| | - Pritha Bose
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Puja Kumari
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Salona Bharti
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Sharad Srivastava
- Pharmacognosy & Ethnopharmacology Division, CSIR-National Botanical Research Institute, NBRI-Govt. of India, Lucknow, 226001, India
| | - Shakti P Pattanayak
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India; Department of Pharmacy, School of Health Sciences, Central University of South Bihar (Gaya), Bihar, 824236, India.
| |
Collapse
|