1
|
Hakura A, Sui H, Seki Y, Sonoda J, Yoshida Y, Takagi H, Yokose S, Matsuda T, Asakura S, Nohmi T. DNA polymerase κ suppresses inflammation and inflammation-induced mutagenesis and carcinogenic potential in the colon of mice. Genes Environ 2023; 45:15. [PMID: 37087526 PMCID: PMC10122296 DOI: 10.1186/s41021-023-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Chronic inflammation induces DNA damage and promotes cell proliferation, thereby increasing the risk of cancer. DNA polymerase κ (Pol κ), involved in translesion DNA synthesis, counteracts mutagenesis induced by inflammation in the colon of mice. In the present study, we examined whether Pol κ suppressed inflammation-induced colon tumorigenesis by treating inactivated Polk knock-in (Polk-/-) mice with dextran sulfate sodium (DSS), an inducer of colon inflammation. RESULTS Male and female Polk-/- and Polk+/+ mice were administered 2% DSS in drinking water for six consecutive days, succeeded via a recovery period of 16 days, followed by 2% DSS for another two days. DSS treatment strongly induced colitis, and the severity of colitis was higher in Polk-/- mice than in Polk+/+ mice. The mice were sacrificed after 19 weeks from the initiation of the first DSS treatment and subjected to pathological examination and mutation analysis. DSS treatment induced colonic dysplasia, and the multiplicity of dysplasia was higher in Polk-/- mice than in Polk+/+mice. Some of the dysplasias in Polk-/- mice exhibited β-catenin-stained nucleus and/or cytoplasm. Mutation frequencies in the gpt reporter gene were increased by DSS treatment in Polk-/- mice, and were higher than those in Polk+/+ mice. CONCLUSIONS Pol κ suppresses inflammation and inflammation-induced dysplasia as well as inflammation-induced mutagenesis. The possible mechanisms by which Pol κ suppresses colitis- and colitis-induced dysplasia are discussed.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan.
| | - Hajime Sui
- Division of Safety Testing, Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, 257-0025, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
- Present Address: Operations Department, Global Safety HQS, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-Ku, Tokyo, 112-8088, Japan
| | - Yusaku Yoshida
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Hisayoshi Takagi
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
2
|
Hakura A, Koyama N, Seki Y, Sonoda J, Asakura S. o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea, which are mutagenic but not carcinogenic in the colon, rapidly induce colonic tumors in mice with dextran sulfate sodium-induced colitis. Genes Environ 2022; 44:11. [PMID: 35351212 PMCID: PMC8966303 DOI: 10.1186/s41021-022-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several rodent models with chemically induced colon cancer have been developed. Among these models, dextran sulfate sodium (DSS), a colitis inducer, combined with azoxymethane as a colon mutagenic carcinogen, is commonly used. We previously reported that although benzo [a] pyrene (BP) is mutagenic but not carcinogenic in the colon, it rapidly develops colon tumors at a high incidence/multiplicity after treatment with DSS. In the present study, we examined whether other colon-mutagenic non-carcinogens (CMNCs) induced colon tumors after treatment with DSS. RESULTS o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea were selected as CMNCs. Male CD2F1 mice were orally administered CMNC for 5 consecutive days. After a 9-day dose-free period, mice were treated with 4% DSS in drinking water for 1 week. Three months after DSS treatment, colon samples were collected for histopathology and β-catenin immunohistochemistry analyses. All CMNCs in combination with DSS induced colonic adenocarcinomas at a high incidence/multiplicity in the distal and middle parts of the colon, coinciding with the location of colitis. Unlike in normal cells where β-catenin is exclusively located on the cell membrane, in adenocarcinoma cells, it was translocated to both the nucleus and cytoplasm or only to cytoplasm. The translocation of β-catenin is closely associated with colon carcinogenesis in rodents and humans. No colonic tumors or dysplastic lesions were found after exposure to either CMNC or DSS alone. CONCLUSION We provided further evidence clearly showing that CMNCs can rapidly induce colonic tumors in mice with DSS-induced colitis, even if they are not colonic carcinogens.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Naoki Koyama
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety (present affiliation, Advanced Data Assurance), Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
3
|
Hakura A, Sui H, Sonoda J, Matsuda T, Nohmi T. DNA polymerase kappa counteracts inflammation-induced mutagenesis in multiple organs of mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:320-330. [PMID: 30620413 DOI: 10.1002/em.22272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 05/07/2023]
Abstract
In vitro studies indicate that DNA polymerase kappa (Polκ) is able to accurately and efficiently perform DNA synthesis using templates containing various types of DNA damage, including benzo[a]pyrene (BP)-induced N2 -deoxyguanosine adducts. In this study, we examined sensitivity of inactivated Polk knock-in (Polk-/- ) mice to BP carcinogenicity in the colon by administering an oral dose of BP plus dextran sulfate sodium (DSS), an inflammation causing promoter of carcinogenesis. Although colon cancer was successfully induced by BP plus DSS, there was no significant difference in tumor incidence or multiplicity between Polk-/- and Polk+/+ mice. Malignant lymphoma was induced in thymus by the treatment only in Polk-/- mice, but it lacked statistical significance. Mutant frequencies (MFs) in the gpt reporter gene were strongly enhanced in colon; almost to the same extent in both types of mice. Micronucleus formation in bone marrow at the high dose of BP and DNA adducts in colon and lung was not significantly different between two types of mice. Surprisingly, however, Polk-/- mice exhibited significantly higher MFs in colon and lung than did Polk+/+ mice when they were treated with DSS alone. The most prominent mutation induced by DSS treatment was G:C to C:G transversion, whose specific MF in proximal colon was 30 times higher in Polk-/- than in Polk+/+ mice. DSS alone did not enhance MF at all in Polk+/+ mice. The results indicate that Polκ does not suppress BP-induced mutagenesis and carcinogenesis in the colon, but counteracts inflammation-induced mutagenesis in multiple organs. Environ. Mol. Mutagen. 60:320-330, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atsushi Hakura
- Tsukuba Drug Safety, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Hajime Sui
- Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, Japan
| | - Jiro Sonoda
- GLP, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| |
Collapse
|
4
|
Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Brimer L, Lindtner O, Mosesso P, Christodoulidou A, Ioannidou S, Lodi F, Dusemund B. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J 2018; 16:e05238. [PMID: 32625873 PMCID: PMC7009739 DOI: 10.2903/j.efsa.2018.5238] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The present opinion deals with the re-evaluation of the safety of food-grade carrageenan (E 407) and processes Eucheuma seaweed (E 407a) used as food additives. Because of the structural similarities, the Panel concluded that processed Eucheuma seaweed can be included in the evaluation of food-grade carrageenan. Poligeenan (average molecular weight 10-20 kDa) has not been authorised as a food additive and is not used in any food applications. In its evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a), the Panel noted that the ADME database was sufficient to conclude that carrageenan was not absorbed intact; in a subchronic toxicity study performed with carrageenan almost complying with the EU specification for E 407 in rats, the no-observed-adverse-effect level (NOAEL) was 3,400-3,900 mg/kg body weight (bw) per day, the highest dose tested; no adverse effects have been detected in chronic toxicity studies with carrageenan in rats up to 7,500 mg/kg bw per day, the highest dose tested; there was no concern with respect to the carcinogenicity of carrageenan; carrageenan and processed Eucheuma seaweed did not raise a concern with respect to genotoxicity; the NOAEL of sodium and calcium carrageenan for prenatal developmental dietary toxicity studies were the highest dose tested; the safety of processed Eucheuma seaweed was sufficiently covered by the toxicological evaluation of carrageenan; data were adequate for a refined exposure assessment for 41 out of 79 food categories. However, the Panel noted uncertainties as regards the chemistry, the exposure assessment and biological and toxicological data. Overall, taking into account the lack of adequate data to address these uncertainties, the Panel concluded that the existing group acceptable daily intake (ADI) for carrageenan (E 407) and processed Eucheuma seaweed (E 407a) of 75 mg/kg bw per day should be considered temporary, while the database should be improved within 5 years after publication of this opinion.
Collapse
|
5
|
Li Y, Fan L, Tang T, Tang Y, Xie M, Zeng X, Sun Y, Mei Q. Modified apple polysaccharide prevents colitis through modulating IL-22 and IL-22BP expression. Int J Biol Macromol 2017; 103:1217-1223. [PMID: 28579463 DOI: 10.1016/j.ijbiomac.2017.05.172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023]
Abstract
Chronic intestinal inflammation enhances cell proliferation, angiogenesis, and migration, then promotes the development of colorectal cancer (CRC). Many ingredients of apples have been proven to have anti-inflammatory properties, and show benefits for colitis treatment. In our previous studies, we found modified apple polysaccharide (MAP) could prevent colitis associated colorectal carcinogenesis effectively. Herein, we further our study to observe the effect of MAP on dextran sodium sulfate (DSS)-induced colitis and to investigate the possible mechanisms. IL-22 has both pathogenic and protective effects during intestinal tissue damage. It could be neutralized by the soluble IL-22 receptor, known as the IL-22 binding protein (IL-22BP). A DSS-induced colitis mouse model, a mouse CRC cell line MCA-38 and a mouse dendritic cell line DC2.4 were treated with MAP. Western blot, ELISA, BrdU staining and a co-culture system were used to detect the expression of IL-22 and IL-22BP. MAP significantly protected ICR mice against DSS-induced colitis, and inhibited the growth of MCA-38 cells. The mechanisms may be that MAP down-regulated IL-22 level and up-regulated expression of IL-22BP. These data may provide another molecular basis for understanding how apples act to prevent colitis and suggest that MAP has a potential to treat colitis and prevent CRC.
Collapse
Affiliation(s)
- Yuhua Li
- Laboratory of Oncological Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; No. 422 Hospital of PLA, Zhanjiang 524005, Guangdong, PR China
| | - Lei Fan
- Department of Pharmacy, No. 210 Hospital of PLA, Liaoning, 116000, PR China
| | - Tianle Tang
- Class 4 of the Second Brigade, The Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yuan Tang
- No. 422 Hospital of PLA, Zhanjiang 524005, Guangdong, PR China
| | - Ming Xie
- No. 422 Hospital of PLA, Zhanjiang 524005, Guangdong, PR China
| | - Xiaocong Zeng
- No. 422 Hospital of PLA, Zhanjiang 524005, Guangdong, PR China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | - Qibing Mei
- Laboratory of Oncological Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
6
|
Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics. Int J Toxicol 2016; 35:5S-49S. [DOI: 10.1177/1091581816651606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Cosmetic Ingredient Review Expert Panel assessed the safety of 34 microbial polysaccharide gums for use in cosmetics, finding that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. The microbial polysaccharide gums named in this report have a variety of reported functions in cosmetics, including emulsion stabilizer, film former, binder, viscosity-increasing agent, and skin-conditioning agent. The Panel reviewed available animal and clinical data in making its determination of safety.
Collapse
Affiliation(s)
- Monice M. Fiume
- Cosmetic Ingredient Review Scientific Analyst/Writer, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Chemist, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F. Bergfeld
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V. Belsito
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A. Hill
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D. Klaassen
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C. Liebler
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G. Marks
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C. Shank
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J. Slaga
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W. Snyder
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - F. Alan Andersen
- Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
7
|
RETRACTED ARTICLE: Mouse models of intestinal inflammation and cancer. Arch Toxicol 2016; 90:2109-2130. [DOI: 10.1007/s00204-016-1747-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|
8
|
Sonoda J, Seki Y, Hakura A, Hosokawa S. Time course of the incidence/multiplicity and histopathological features of murine colonic dysplasia, adenoma and adenocarcinoma induced by benzo[a]pyrene and dextran sulfate sodium. J Toxicol Pathol 2015; 28:109-20. [PMID: 26028820 PMCID: PMC4444509 DOI: 10.1293/tox.2014-0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
Abstract
Benzo[a]pyrene (BP) is mutagenic but noncarcinogenic in the murine colon. Recently, we reported rapid induction of colonic tumors by treatment of CD2F1 mice with BP (125 mg/kg for 5 days) followed by a colitis inducer, dextran sulfate sodium (DSS) (4% in drinking water for 1 or 2 weeks). However, there are no reports on detailed time course and histopathological features of colonic proliferative lesions in this model. Here, we show the detailed time course of colonic dysplasia, adenoma and adenocarcinoma induced by treatment with BP, DSS, and a combination of the two (BP/DSS). In the colon of mice exposed to BP/DSS, 14.6 dysplastic foci per mouse were present one week after DSS treatment (week 4). The number of dysplastic foci decreased with time to 3.1 at week 9 and thereafter remained almost constant. At week 4, 1.5 adenocarcinomas were also observed, with a marked increase in numbers with time, reaching 29.3 at week 14. In contrast, the number of dysplastic foci induced by DSS alone showed a time course similar to that following BP/DSS treatment; however, only a few tumors appeared. Neither dysplastic foci nor neoplastic lesions were induced by BP only. In mice exposed to BP/DSS, β-catenin was demonstrated immunohistochemically in the nucleus and/or cytoplasm of the tumor cells, and this translocation from the cell membrane was evident in subsets of dysplastic foci. In dysplastic foci induced by DSS alone, β-catenin was absent in the nucleus/cytoplasm. These finding suggest that aberrant β-catenin accumulation in dysplastic foci is associated with tumor progression in this BP/DSS model.
Collapse
Affiliation(s)
- Jiro Sonoda
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yuki Seki
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Atsushi Hakura
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Satoru Hosokawa
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
9
|
Weiner ML. Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Crit Rev Toxicol 2014; 44:244-69. [PMID: 24467586 DOI: 10.3109/10408444.2013.861798] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carrageenan (CGN) is a seaweed-derived high molecular weight (Mw) hydrocolloid, primarily used as a stabilizer and thickener in food. The safety of CGN regarding its use in food is reviewed. Based on experimental studies in animals, ingested CGN is excreted quantitatively in the feces. Studies have shown that CGN is not significantly degraded by low gastric pH or microflora in the gastrointestinal (GI) tract. Due to its Mw, structure and its stability when bound to protein, CGN is not significantly absorbed or metabolized. CGN also does not significantly affect the absorption of nutrients. Subchronic and chronic feeding studies in rodents indicate that CGN at doses up to 5% in the diet does not induce any toxicological effects other than soft stools or diarrhea, which are a common effect for non-digestible high molecular weight compounds. Review of several studies from numerous species indicates that food grade CGN does not produce intestinal ulceration at doses up to 5% in the diet. Effects of CGN on the immune system following parenteral administration are well known, but not relevant to food additive uses. The majority of the studies evaluating the immunotoxicity potential were conducted with CGN administered in drinking water or by oral gavage where CGN exists in a random, open structured molecular conformation, particularly the lambda form; hence, it has more exposure to the intestinal mucosa than when bound to protein in food. Based on the many animal subchronic and chronic toxicity studies, CGN has not been found to affect the immune system, as judged by lack of effects on organ histopathology, clinical chemistry, hematology, normal health, and the lack of target organ toxicities. In these studies, animals consumed CGN at orders of magnitude above levels of CGN in the human diet: ≥1000 mg/kg/d in animals compared to 18-40 mg/kg/d estimated in the human diet. Dietary CGN has been shown to lack carcinogenic, tumor promoter, genotoxic, developmental, and reproductive effects in animal studies. CGN in infant formula has been shown to be safe in infant baboons and in an epidemiology study on human infants at current use levels.
Collapse
|
10
|
McKim JM. Food additive carrageenan: Part I: A critical review of carrageenanin vitrostudies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 2014; 44:211-43. [DOI: 10.3109/10408444.2013.861797] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Wilson GS, George J. Physical and chemical insults induce inflammation and gastrointestinal cancers. Cancer Lett 2013; 345:190-5. [PMID: 23879959 DOI: 10.1016/j.canlet.2013.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
Chronic inflammation associated with viral and bacterial infections of the gastrointestinal tract (GI) and liver renders these organs susceptible to tumour development. There is also a growing body of evidence demonstrating that chemical and physical insults promote GI cancers by inducing inflammation. For example, excessive alcohol consumption and tobacco smoking induces inflammation and gastrointestinal carcinogenesis. Likewise, drinking hot beverages and intentional or accidental exposure to toxic substances leads to inflammation and GI cancer formation. However, further work needs to be undertaken using animal models to separate the direct carcinogenic effects of physical and chemical insults from the indirect effects of these insults to promote tumor formation through tissue inflammation.
Collapse
Affiliation(s)
- George S Wilson
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
12
|
Trivedi PP, Jena GB. Ulcerative colitis-induced hepatic damage in mice: studies on inflammation, fibrosis, oxidative DNA damage and GST-P expression. Chem Biol Interact 2012; 201:19-30. [PMID: 23261717 DOI: 10.1016/j.cbi.2012.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 12/08/2012] [Indexed: 12/12/2022]
Abstract
There exists a close relationship between ulcerative colitis and various hepatic disorders. The present study was aimed to evaluate the hepatocellular damage in experimental colitis model. Ulcerative colitis was induced in Swiss mice by cyclic treatment with 3% w/v dextran sulfate sodium in drinking water. The severity of colitis was assessed on the basis of disease activity index and colon histology. The effect of ulcerative colitis on the liver was assessed using various biochemical parameters, histological evaluation, sirius red staining, immunohistochemical staining with peroxisome proliferator-activated receptor γ, 8-oxo-7,8-dihydro-2'-deoxyguanosine and placental glutathione S-transferase, comet assay (alkaline and modified), Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assay and western blot analysis to detect the protein expression of nuclear factor kappa B, cyclooxygenase-2, nuclear erythroid 2-related factor 2 and NADPH: quinone oxidoreductase-1. Dextran sulfate sodium induced severe colitis in mice as evident from an elevated disease activity index and histological abnormalities. Ulcerative colitis increased the permeability of colon as apparent from a significant reduction in the expression of tight junction protein, occludin. Further, the bacterial translocation assay as well as the analysis of lipopolysaccharide level revealed the existence of various bacterial species in the liver of ulcerative colitis-induced mice. There was a significant increase in the plasma alanine and aspartate transaminases and liver triglyceride levels, expression of peroxisome proliferator-activated receptor γ, inflammatory markers, oxidative stress, fibrosis, oxidative DNA damage and apoptosis in the liver of mice. Moreover, there was an increase in the expression of nuclear factor kappa B and cyclooxygenase-2 and a reduction in the expression of nuclear erythroid 2-related factor 2 and NADPH: quinone oxidoreductase-1 in the liver of severe ulcerative colitis-induced mice. The results of the present study provide evidence that ulcerative colitis is accompanied with hepatic damage in mice.
Collapse
Affiliation(s)
- P P Trivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| | | |
Collapse
|
13
|
Tanaka T. Preclinical cancer chemoprevention studies using animal model of inflammation-associated colorectal carcinogenesis. Cancers (Basel) 2012; 4:673-700. [PMID: 24213461 PMCID: PMC3712717 DOI: 10.3390/cancers4030673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/14/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022] Open
Abstract
Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC). Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described.
Collapse
Affiliation(s)
- Takuji Tanaka
- Cytopatholgy Division, Tohkai Cytopathology Institute, Cancer Research and Prevention (TCI-CaRP), 5-1-2 Minami-uzura, Gifu 500-8285, Japan.
| |
Collapse
|
14
|
Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. Int J Inflam 2012; 2012:658786. [PMID: 22518340 PMCID: PMC3299397 DOI: 10.1155/2012/658786] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/25/2011] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is a well-recognized risk factor for development of human cancer in several tissues, including large bowel. Inflammatory bowel disease, including ulcerative colitis and Crohn's disease, is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer development. Several molecular events involved in chronic inflammatory process may contribute to multistep carcinogenesis of human colorectal cancer in the inflamed colon. They include overproduction of reactive oxygen and nitrogen species, overproduction and upregulation of productions and enzymes of arachidonic acid biosynthesis pathway and cytokines, and intestinal immune system dysfunction. In this paper, I will describe several methods to induce colorectal neoplasm in the inflamed colon. First, I will introduce a protocol of a novel inflammation-associated colon carcinogenesis in mice. In addition, powerful tumor-promotion/progression activity of dextran sodium sulfate in the large bowel of ApcMin/+ mice will be described. Finally, chemoprevention of inflammation-associated colon carcinogenesis will be mentioned.
Collapse
|
15
|
Modified apple polysaccharide prevents against tumorigenesis in a mouse model of colitis-associated colon cancer: role of galectin-3 and apoptosis in cancer prevention. Eur J Nutr 2011; 51:107-17. [PMID: 21516492 DOI: 10.1007/s00394-011-0194-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/29/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common and preventable cancers. Regular consumption of apples is conducive to reduction in CRC risk. AIM OF THE STUDY To evaluate effects of modified apple polysaccharide (MAP) on tumorigenesis in a mouse model of colitis-associated colon cancer. METHODS One hundred male ICR mice were administered with 1, 2-dimethyl-hydrazine (DMH) and dextran sodium sulfate (DSS). Forty mice were given no further treatment, the rest were fed basal diet blended with three different doses of MAP; 2.5, 5, and 10% (20 mice in each group). RESULTS MAP significantly protected ICR mice against DMH/DSS-induced tumorigenesis. The incidence of tumor development was 90% (18/20) in the mice treated with DMH/DSS, but that was reduced to 25% (5/20), 15% (3/20), and 5% (1/20), respectively, in the mice treated with basal diets plus 2.5, 5, and 10% of MAP. Study of apoptosis of colonic epithelial cells revealed that MAP moderately increased apoptosis, suggesting that the anti-tumor potency of MAP was probably attributed to its ability to induce apoptosis. Western blot analysis demonstrated that carbohydrate-binding protein galectin-3 changed in both the nucleus and the cytoplasm during the process from colitis to colon cancer in the model. And MAP could inhibit the binding of galectin-3 to its ligand: this is, at least in part, the possible mechanism of MAP by enhancing apoptosis and preventing tumorigenesis. CONCLUSIONS These data suggest that MAP has a potential role in clinical prevention and treatment for colon cancer.
Collapse
|
16
|
Westbrook AM, Szakmary A, Schiestl RH. Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 2010; 705:40-59. [PMID: 20298806 PMCID: PMC2878867 DOI: 10.1016/j.mrrev.2010.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/21/2010] [Accepted: 03/08/2010] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is strongly associated with approximately 1/5th of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With regards to extraintestinal manifestations such as lymphoma, however, more suitable models are required to further investigate the complex and heterogeneous mechanisms that may be at play.
Collapse
Affiliation(s)
- Aya M. Westbrook
- Molecular Toxicology Interdepartmental Program, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Pathology and Lab Medicine, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
| | - Akos Szakmary
- Institute for Cancer Research, Medical University of Vienna, Austria
| | - Robert H. Schiestl
- Molecular Toxicology Interdepartmental Program, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Pathology and Lab Medicine, UCLA School of Medicine and School of Public Health, University of California at Los Angeles, Los Angeles, CA 90095
- Institute for Cancer Research, Medical University of Vienna, Austria
| |
Collapse
|
17
|
Westbrook AM, Schiestl RH. Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer Res 2010; 70:1875-84. [PMID: 20179206 DOI: 10.1158/0008-5472.can-09-2584] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.
Collapse
Affiliation(s)
- Aya M Westbrook
- Molecular Toxicology Interdepartmental Program, University of California at Los Angeles School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
18
|
Westbrook AM, Wei B, Braun J, Schiestl RH. More damaging than we think: systemic effects of intestinal inflammation. Cell Cycle 2009; 8:2482-3. [PMID: 19657227 DOI: 10.4161/cc.8.16.9274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
19
|
Westbrook AM, Wei B, Braun J, Schiestl RH. Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 2009; 69:4827-34. [PMID: 19487293 DOI: 10.1158/0008-5472.can-08-4416] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease, including ulcerative colitis and Crohn's disease, substantially increases the risk of colorectal cancer. However, mechanisms linking mucosal inflammation to the sequence of dysplasia are incompletely understood. Whereas studies have shown oxidative damage to the colon, this study tests whether genotoxicity is elicited systemically by acute and chronic intestinal inflammation. In this study, genotoxic endpoints were assessed in peripheral leukocytes (DNA single- and double-stranded breaks and oxidative DNA damage) and normochromatic erythrocytes (micronuclei) during chemical or immune-mediated colitis. During three consecutive cycles of intestinal inflammation induced by dextran sulfate sodium administration, genotoxicity to peripheral leukocytes and erythroblasts was detected in both acute and chronic phases of dextran sulfate sodium-induced inflammation. Reactive oxygen species-mediated oxidative stress and DNA damage was confirmed with positive 8-oxoguanine and nitrotyrosine staining in peripheral leukocytes. Levels of DNA damage generally decreased during remission and increased during treatment, correlating with clinical symptoms and systemic inflammatory cytokine levels. In Galphai2(-/-) and interleukin-10(-/-) transgenic mice susceptible to immune-mediated colitis and inflammation-associated adenocarcinoma, similar levels of peripheral leukocyte and erythroblast genotoxicity were also observed. Moreover, this systemic genotoxicity was observed in mice with subclinical inflammation, which was further elevated in those with severe mucosal inflammation. We propose that mucosal inflammation, by eliciting substantial and ongoing systemic DNA damage, contributes early on to genetic instability necessary for progression to inflammatory bowel disease-associated dysplasia and the development of cancer.
Collapse
Affiliation(s)
- Aya M Westbrook
- Departments of Molecular Toxicology, University of California at Los Angeles School of Medicine and School of Public Health, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
20
|
Chung YS, Eum KH, Choi SA, Oh SW, Park SN, Yum YN, Kim JH, Seo YR, Lee M. Genotoxicity Studies on Carrageenan: Short-term In Vitro Assays. Toxicol Res 2009; 25:51-58. [PMID: 32038820 PMCID: PMC7006343 DOI: 10.5487/tr.2009.25.1.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/20/2009] [Indexed: 11/20/2022] Open
Abstract
Carrageenan is a naturally-occurring sulfated polygalactan which has been widely used in the dairy industry and a gelling agent in non-dairy products. In this study, four short-term in vitro genotoxicity assays were investigated to evaluate the potential genotoxic effects of carrageenan. The mutagenic-ity of carrageenan was evaluated up to a maximum dose of 5 mg/plate in Ames test. There was no increase in the number of revertant colonies compared to its negative control at any dose in all of strains tested. To assess clastogenic effect, the in vitro chromosomal aberration assay was performed using Chinese hamster lung cells. Carrageenan was not considered to be clastogenic in this assay at up to the highest feasible concentration which could be evaluated. The in vitro comet assay and micronucleus test results obtained on L5178Y cells also revealed that carrageenan has no genotoxicity potential, although there was a marginal increase in micronuclei frequencies and DNA damage in the respective micronucleus and comet assays. Taken together, our results indicate that carrageenan was not genotoxic based on four in vitro genotoxicity results.
Collapse
Affiliation(s)
| | - Ki-Hwan Eum
- 29Department of Biology, College of Natural Sciences, University of Incheon, 177 Dowha-dong, Nam-gu, Incheon, 402-749 Korea
| | - Seon-A Choi
- Medvill Co., Ltd., Gasan-dong, Geumcheon-gu, Seoul, Korea
| | - Se-Wook Oh
- 39Korea Food Research Institute, Sungnam, Korea
| | - Sue Nie Park
- 49Division of Genetic Toxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, Korea
| | - Young-Na Yum
- 49Division of Genetic Toxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, Korea
| | - Joo-Hwan Kim
- 49Division of Genetic Toxicology, National Institute of Toxicological Research, Korea Food and Drug Administration, Korea
| | - Young-Rok Seo
- 59Department of Pharmacology, Institute for Basic Medical Science, Kyung Hee University, Seoul, Korea
| | - Michael Lee
- 29Department of Biology, College of Natural Sciences, University of Incheon, 177 Dowha-dong, Nam-gu, Incheon, 402-749 Korea
| |
Collapse
|
21
|
Kohno H, Suzuki R, Sugie S, Tanaka T. Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci 2005; 96:69-76. [PMID: 15723650 PMCID: PMC11159258 DOI: 10.1111/j.1349-7006.2005.00020.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a previous study, we developed a novel mouse model for colitis-related carcinogenesis, utilizing a single dose of azoxymethane (AOM) followed by dextran sodium sulfate (DSS) in drinking water. In the present study, we investigated whether colonic neoplasms can be developed in mice initiated with a single injection of another genotoxic colonic carcinogen 1,2-dimethylhydrazine (DMH), instead of AOM and followed by exposure of DSS in drinking water. Male crj: CD-1 (ICR) mice were given a single intraperitoneal administration (10, 20 or 40 mg/kg body weight) of DMH and 1-week oral exposure (2% in drinking water) of a non-genotoxic carcinogen, DSS. All animals were killed at week 20, histological alterations and immunohistochemical expression of beta-catenin, cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were examined in induced colonic epithelial lesions (colonic dysplasias and neoplasms). Also, the beta-catenin gene mutations in paraffin-embedded colonic adenocarcinomas were analyzed by the single strand conformation polymorphism method, restriction enzyme fragment length polymorphism and direct sequencing. The incidences of colonic neoplasms with dysplastic lesions developed were 100% with 2.29+/-0.95 multiplicity, and 100% with 10.38+/-4.00 multiplicity in mice given DMH at doses of 10 mg/kg or 20 mg/kg and 2%DSS, respectively. Although approximately half of the mice given DMH at a dose of 40 mg/kg bodyweight were dead after 2-3 days after the injection, mice who received DMH 40 mg/kg and 2%DSS had 100% incidence of colonic neoplasms with 9.75+/-6.29 multiplicity. Immunohistochemical investigation revealed that adnocarcinomas, induced by DMH at all doses and 2%DSS, showed positive reactivities against beta-catenin, COX-2 and iNOS. In DMH/DSS-induced adenocarcinomas, 10 of 11 (90.9%) adenocacrcinomas had beta-catenin gene mutations. Half of the mutations were detected at codon 37 or 41, encoding serine and threonine that are direct targets for phosphorylation by glycogen synthase kinase-3beta. The present results suggests that, as in the previously reported model (AOM/DSS) our experimental protocol, DMH initiation followed by DSS, may provide a novel and useful mouse model for investigating inflammation-related colon carcinogenesis and for identifying xenobiotics with modifying effects.
Collapse
Affiliation(s)
- Hiroyuki Kohno
- Department of Oncologic Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | |
Collapse
|
22
|
Tobacman J. Toxic considerations related to ingestion of carrageenan. RESOURCE MANAGEMENT 2003. [DOI: 10.1201/9780203634523.ch10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
23
|
Cohen SM, Ito N. A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol 2002; 32:413-44. [PMID: 12389870 DOI: 10.1080/20024091064282] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Carrageenan is a high-molecular-weight, strongly anionic polymer derived from several species of red seaweed that is used for the textural stabilization of foods. Processed Eucheuma Seaweed (PES) is a form of carrageenan with a higher cellulose content. Food-grade carrageenan has a weight average molecular weight greater than 100,000 Da, with a low percentage of smaller fragments. Carrageenan is not degraded to any extent in the gastrointestinal tract and is not absorbed from it in species examined, such as rodents, dogs, and non-human primates. Systemically administered carrageenan has been reported to have a variety of effects, particularly on the immune system, but these are not pertinent to orally administered carrageenan. The substance poligeenan (formerly referred to as degraded carrageenan) is not a food additive. It exhibits toxicological properties at high doses that do not occur with the food additive carrageenan. In-long term bioassays, carrageenan has not been found to be carcinogenic, and there is no credible evidence supporting a carcinogenic effect or a tumor-promoting effect on the colon in rodents. Also, like many dietary fibers, there is significant cecal enlargement in rodents when it is administered at high doses, but this does not appear to be associated with any toxicological consequences to the rodent. Many toxicological studies on carrageenan have involved administration at doses in excess of today's standards for dietary feeding levels in bioassays, and they are orders of magnitude in excess of those to which humans are exposed. Previous reviews of carrageenan and PES by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA) have recommended a group allowable daily intake (ADI) of "not specified". The lack of carcinogenic, genotoxic, or tumor-promoting activity with carrageenan strongly supports continuing such an ADI, and JECFA, during its most recent review in 2001, continued this recommendation. The various toxicological studies related to orally administered food-grade carrageenan are summarized along with a brief discussion of critical factors in intestinal carcinogenesis.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha 68198-3135, USA
| | | |
Collapse
|
24
|
Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109:983-94. [PMID: 11675262 PMCID: PMC1242073 DOI: 10.1289/ehp.01109983] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this article I review the association between exposure to carrageenan and the occurrence of colonic ulcerations and gastrointestinal neoplasms in animal models. Although the International Agency for Research on Cancer in 1982 identified sufficient evidence for the carcinogenicity of degraded carrageenan in animals to regard it as posing a carcinogenic risk to humans, carrageenan is still used widely as a thickener, stabilizer, and texturizer in a variety of processed foods prevalent in the Western diet. I reviewed experimental data pertaining to carrageenan's effects with particular attention to the occurrence of ulcerations and neoplasms in association with exposure to carrageenan. In addition, I reviewed from established sources mechanisms for production of degraded carrageenan from undegraded or native carrageenan and data with regard to carrageenan intake. Review of these data demonstrated that exposure to undegraded as well as to degraded carrageenan was associated with the occurrence of intestinal ulcerations and neoplasms. This association may be attributed to contamination of undegraded carrageenan by components of low molecular weight, spontaneous metabolism of undegraded carrageenan by acid hydrolysis under conditions of normal digestion, or the interactions with intestinal bacteria. Although in 1972, the U.S. Food and Drug Administration considered restricting dietary carrageenan to an average molecular weight > 100,000, this resolution did not prevail, and no subsequent regulation has restricted use. Because of the acknowledged carcinogenic properties of degraded carrageenan in animal models and the cancer-promoting effects of undegraded carrageenan in experimental models, the widespread use of carrageenan in the Western diet should be reconsidered.
Collapse
Affiliation(s)
- J K Tobacman
- College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1081, USA.
| |
Collapse
|
25
|
Williams GM, Mori H, McQueen CA. Structure-activity relationships in the rat hepatocyte DNA-repair test for 300 chemicals. Mutat Res 1989; 221:263-86. [PMID: 2682231 DOI: 10.1016/0165-1110(89)90039-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
312 chemicals/mixtures were tested for genotoxicity in the rat hepatocyte/DNA-repair test. A variety of structure-activity relationships was evident. Of the 309 pure chemicals, 142 were positive. Of these, 43 were judged by IARC to have sufficient or limited evidence of carcinogenicity and none of the remainder was a proven noncarcinogen. Among the 167 negative chemicals, 44 were carcinogens. Some of these are known to be genotoxic in other systems, but based on several lines of evidence, many are considered to be epigenetic carcinogens that lack the ability to react with DNA and rather lead to neoplasia by nongenotoxic mechanisms.
Collapse
|
26
|
Nicklin S, Miller K. Intestinal uptake and immunological effects of carrageenan--current concepts. FOOD ADDITIVES AND CONTAMINANTS 1989; 6:425-36. [PMID: 2676614 DOI: 10.1080/02652038909373801] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carrageenans are a group of high molecular weight sulphated polygalactans which find extensive use in the food industry as thickening, gelling and protein-suspending agents. Although there is no evidence to suggest that the persorption of small amounts of carrageenans across the intestinal barrier poses an acute toxic hazard, they are known to be biologically active in a number of physiological systems and extended oral administration in laboratory animals has been shown to modify both in vivo and in vitro immune competence. Whereas this effect could be attributed to carrageenan having a selective toxic effect on antigen-processing macrophages, additional studies suggest that macrophages can also influence immune responses by the timed release of immunoregulatory mediators. Evidence in support of this comes from in vitro studies which demonstrate that carrageenan-treated macrophages can, depending on conditions and time of administration, release either stimulatory or inhibitory factors. The former is known to be the immunostimulatory agent interleukin 1 (IL-1). The inhibitory factor, which is produced at an early stage following exposure to non-toxic doses of carrageenans, has yet to be formally identified but it is believed to be a prostaglandin because of its specific mode of action and short biological half-life. At present it is impossible to relate these studies to the human situation. Although it is established that carrageenans can cross the intestinal barrier of experimental animals, there is no evidence to suggest that the limited uptake that may occur in man in any way interferes with normal immune competence. Nevertheless, increased exposure may occur in the neonate during weaning, and adults and children following allergic reactions and episodes of gastrointestinal disease. Further studies under such conditions now seem warranted in order to elucidate the possible immunological consequences which may be associated with enhanced uptake of carrageenans in vulnerable groups.
Collapse
Affiliation(s)
- S Nicklin
- Department of Immunotoxicology, British Industrial Biological Research Association, Carshalton, Surrey, UK
| | | |
Collapse
|
27
|
Butterworth BE, Ashby J, Bermudez E, Casciano D, Mirsalis J, Probst G, Williams G. A protocol and guide for the in vitro rat hepatocyte DNA-repair assay. Mutat Res 1987; 189:113-21. [PMID: 3657827 DOI: 10.1016/0165-1218(87)90017-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The in vitro rat-hepatocyte DNA-repair assay is a valuable tool in assessing the genotoxic activity of chemical agents. An advantage of the assay is that the target cells themselves are metabolically competent, so that the patterns of metabolic activation and detoxification closely reflect those in the whole animal. This article provides a typical procedure and guidelines for conducting the rat in vitro hepatocyte DNA-repair assay.
Collapse
Affiliation(s)
- B E Butterworth
- Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709
| | | | | | | | | | | | | |
Collapse
|