1
|
Yin K, Wu R. Systematic Investigation of Dose-Dependent Protein Thermal Stability Changes to Uncover the Mechanisms of the Pleiotropic Effects of Metformin. ACS Pharmacol Transl Sci 2024; 7:467-477. [PMID: 38357277 PMCID: PMC10863438 DOI: 10.1021/acsptsci.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024]
Abstract
Metformin is a widely used drug to treat type II diabetes. Beyond lowering blood sugar, it has been reported to have pleiotropic effects such as suppressing cancer growth and attenuating cell oxidative stress and inflammation. However, the underlying mechanisms of these effects remain to be explored. Here, we systematically study the thermal stability changes of proteins in liver cells (HepG2) induced by a wide dosage range of metformin by using the proteome integral solubility alteration (PISA) assay. The current results demonstrate that, besides the most accepted target of metformin (complex I), low concentrations of metformin (such as 0.2 μM) stabilize the complex IV subunits, suggesting its important role in the sugar-lowering effect. Low-dose metformin also results in stability alterations of ribosomal proteins, correlating with its inhibitive effect on cell proliferation. We further find that low-concentration metformin impacts mitochondrial cargo and vesicle transport, while high-concentration metformin affects cell redox responses and cell membrane protein sorting. This study provides mechanistic insights into the molecular mechanisms of lowering blood sugar and the pleiotropic effects of metformin.
Collapse
Affiliation(s)
- Kejun Yin
- School of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, A. Eid R, Alqahtani SM, Abd Ellatif M, Al-Ani B, Albawardi A. Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression. Biomedicines 2023; 11:biomedicines11020361. [PMID: 36830898 PMCID: PMC9953164 DOI: 10.3390/biomedicines11020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Surgery, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
3
|
Al-Hashem F. Metformin Ameliorates Infiltration of Inflammatory Cells and Pancreatic Injury Biomarkers Induced by L-Arginine. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1038.1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Dallak M, Dawood AF, Haidara MA, Abdel Kader DH, Eid RA, Kamar SS, Shams Eldeen AM, Al-Ani B. Suppression of glomerular damage and apoptosis and biomarkers of acute kidney injury induced by acetaminophen toxicity using a combination of resveratrol and quercetin. Drug Chem Toxicol 2022; 45:1-7. [PMID: 32013615 DOI: 10.1080/01480545.2020.1722156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Acute renal failure induced by a toxic dose of acetaminophen (also known as paracetamol, or APAP) is common in both humans and experimental animal models. Glomerular ultrastructural alterations induced by APAP overdose associated with the suppression of biomarkers of kidney injury have not been investigated before. Also, we investigated whether the combined polyphenolic antioxidants and anti-inflammatory compounds, resveratrol (RES) and quercetin (QUR) can protect against APAP-induced nephrotoxicity. Rats either received a single dose of APAP (2 g/kg) before being sacrificed after 24 hours or were pretreated for 7 days with combined doses of RES (30 mg/kg) and QUR (50 mg/kg) before being given a single dose of APAP and then sacrificed 24 hours post APAP ingestion. APAP significantly (p < 0.05) increased blood levels of urea, creatinine, malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), which were effectively reduced by RES + QUR. In addition, APAP overdose induced the tissue expression of the apoptotic biomarker, p53, and caused profound kidney damage as demonstrated by substantial alterations to the glomerular basement membrane, podocytes, endothelial cells, widening of Bowman's space, and vacuolation of the cells lining the parietal layer, which were substantially protected by RES + QUR. Furthermore, a significant (p < 0.0001) positive correlation was observed between either glomerular basement membrane or podocyte foot processes and these parameters, urea, creatinine, MDA, and TNF-α. Thus, we conclude that APAP induces alterations to the glomerulus ultrastructure, which is protected by resveratrol plus quercetin, which also reduces blood levels of urea and creatinine, and biomarkers of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mohammad Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina H Abdel Kader
- Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa S Kamar
- Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Asmaa M Shams Eldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Mostafa F, Abdel-Moneim A, Abdul-Hamid M, Galaly SR, Mohamed HM. Polydatin and polydatin-loaded chitosan nanoparticles attenuate diabetic cardiomyopathy in rats. J Mol Histol 2021; 52:135-152. [PMID: 33389430 DOI: 10.1007/s10735-020-09930-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Hyperglycemia is associated with impairment of heart function. The current study aimed to investigate the ameliorative effect of polydatin-loaded chitosan nanoparticles (PD-CSNPs), polydatin (PD) and metformin (MET) on diabetic cardiomyopathy in rats. Rats divided into six groups; normal-control, diabetic-control, diabetic + CSNPs (diabetic rats treated with 50 mg/kg blank chitosan nanoparticles), diabetic + PD-CSNPs (diabetic rats treated with PD-CSNPs equivalent to 50 mg/kg of polydatin), diabetic + PD (diabetic rats given 50 mg/kg polydatin), diabetic + MET (diabetic rats given 100 mg/kg metformin), orally and daily for 4 weeks. Treatment of diabetic rats with PD-CSNPs, PD and MET showed a significant reduction in the values of glucose and glycosylated hemoglobin with improvement in heart function biomarkers through decreasing serum creatine kinase and creatine kinase myocardial band activities compared to diabetic control. The treatment agents also suppressed the elevated lipid peroxidation product, increased values of glutathione content, superoxide dismutase, superoxide peroxidase, and catalase activities in the heart of diabetic treated rats. Furthermore, PD-CSNPs, PD and MET decreased heart tissue levels of a pro-inflammatory cytokine; tumor necrosis factor-alpha and nuclear factor-kappa β, upregulation of heart gene expressions; nuclear factor erythroid 2-related factor 2 and heme oxygenase-1. Histological and ultrastructural examinations revealed the ameliorative effect of PD-CSNPs, PD and MET against the harmful of diabetic cardiomyopathy by reducing the cardiac fibers, necrotic cardiac myocytes, inflammatory cell infiltration, and the arrangement of the myofibrils and intercalated discs. In conclusion, the new formula of PD-CSNPs was more effective than PD and MET in amelioration the diabetic cardiomyopathy through its antioxidant, anti-inflammatory and prolonged-release properties.
Collapse
Affiliation(s)
- Fatma Mostafa
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Zoology Department, Beni-Suef University, Salah Salem St, Beni-Suef, 62511, Egypt.
| | - Manal Abdul-Hamid
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Sanaa R Galaly
- Histology and Cytology Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa M Mohamed
- Genetic and Molecular Genetic Division, Faculty of Science, Zoology Department, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Alderawi A, Caramori G, Baker EH, Hitchings AW, Rahman I, Rossios C, Adcock I, Cassolari P, Papi A, Ortega VE, Curtis JL, Dunmore S, Kirkham P. FN3K expression in COPD: a potential comorbidity factor for cardiovascular disease. BMJ Open Respir Res 2020; 7:e000714. [PMID: 33208304 PMCID: PMC7677354 DOI: 10.1136/bmjresp-2020-000714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Cigarette smoking and oxidative stress are common risk factors for the multi-morbidities associated with chronic obstructive pulmonary disease (COPD). Elevated levels of advanced glycation endproducts (AGE) increase the risk of cardiovascular disease (CVD) comorbidity and mortality. The enzyme fructosamine-3-kinase (FN3K) reduces this risk by lowering AGE levels. METHODS The distribution and expression of FN3K protein in lung tissues from stable COPD and control subjects, as well as an animal model of COPD, was assessed by immunohistochemistry. Serum FN3K protein and AGE levels were assessed by ELISA in patients with COPD exacerbations receiving metformin. Genetic variants within the FN3K and FN3K-RP genes were evaluated for associations with cardiorespiratory function in the Subpopulations and Intermediate Outcome Measures in COPD Study cohort. RESULTS This pilot study demonstrates that FN3K expression in the blood and human lung epithelium is distributed at either high or low levels irrespective of disease status. The percentage of lung epithelial cells expressing FN3K was higher in control smokers with normal lung function, but this induction was not observed in COPD patients nor in a smoking model of COPD. The top five nominal FN3K polymorphisms with possible association to decreased cardiorespiratory function (p<0.008-0.02), all failed to reach the threshold (p<0.0028) to be considered highly significant following multi-comparison analysis. Metformin enhanced systemic levels of FN3K in COPD subjects independent of their high-expression or low-expression status. DISCUSSION The data highlight that low and high FN3K expressors exist within our study cohort and metformin induces FN3K levels, highlighting a potential mechanism to reduce the risk of CVD comorbidity and mortality.
Collapse
Affiliation(s)
- Amr Alderawi
- Department of Biomedical Sciences and Physiology, University of Wolverhampton, Wolverhampton, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Emma H Baker
- Basic Medical Sciences, St Georges, University of London, London, UK
| | | | - Irfan Rahman
- Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Christos Rossios
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Ian Adcock
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Paolo Cassolari
- Clinical and Experimental Medicine, Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Alberto Papi
- Clinical and Experimental Medicine, Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Victor E Ortega
- Internal Medicine, Wake Forest Health Sciences, Winston-Salem, North Carolina, USA
| | - Jeffrey L Curtis
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Simon Dunmore
- Department of Biomedical Sciences and Physiology, University of Wolverhampton, Wolverhampton, UK
| | - Paul Kirkham
- Department of Biomedical Sciences and Physiology, University of Wolverhampton, Wolverhampton, UK
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| |
Collapse
|