1
|
O'Doherty C, Keenan J, Henry M, Meleady P, Sinkunaite I, Clynes M, O'Sullivan F, Horgan K, Murphy R. Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line. Toxicol In Vitro 2020; 65:104773. [PMID: 31981602 DOI: 10.1016/j.tiv.2020.104773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Studies in hepatic systems identify multiple factors involved in the generation of copper resistance. As the intestine is the route of exposure to dietary copper, we wanted to understand how intestinal cells overcome the toxic effects of high copper and what mechanisms of resistance develop. Using the intestinal cell line Caco-2, resistance was developed by serial subculture in 50 μM copper in inorganic (CuSO4) or organic (Cu proteinate) forms. Caco-2 variants exhibited resistance to copper and retained the non-monotonic dose response while displaying stable phenotypes following repeated subculture in the absence of copper. Phenotypic changes on exposure to copper in parental Caco-2 cells included significantly increased total protein yield, ROS, SOD, metallothionein expression, GSH and total glutathione. These phenotypic changes were not replicated in resistant variants on a per cell basis. Quantitative label-free LC-MS/MS proteomic analysis identified 1113 differentially expressed proteins (DEPs) between parental Caco-2 and resistant cells. With some exceptions, most of the DEPs were overexpressed to a low level around 2-fold suggesting resistance was supported by multiple small changes in protein expression. These variants may be a useful tool in studying the toxicity of stress responses in further Cu-related studies.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Indre Sinkunaite
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| |
Collapse
|
2
|
Zuo H, Chen L, Kong M, Yang Y, Lü P, Qiu L, Wang Q, Ma S, Chen K. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:313-323. [PMID: 29414353 DOI: 10.1016/j.envpol.2018.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Accumulation of excess fluoride has a destructive effect on the environment, endangering human health, affecting organism growth and development, and leading to damage to the biological chain, thereby affecting ecological environment balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity; however, fluoride-toxicity mechanisms in insect cells remain unclear. This study explored the toxic impact of sodium fluoride (NaF) on Spodoptera frugiperda 9 (Sf9) insect cells. High concentrations of NaF (10-4 M, 10-3 M and 10-2 M) resulted in cell enlargement, cell membrane blurring and breakage, and release of cellular contents. Dose-response curves indicated that NaF-specific inhibition rates on Sf9-cell activity increased along with increases in NaF concentration, with a half-inhibitory concentration (IC50) for NaF of 5.919 × 10-3 M at 72 h. Compared with controls, the percentages of early and late apoptotic and necrotic cells clearly increased based on observed increases in NaF concentrations. Two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect differentially expressed proteins in Sf9 cells treated with IC50 NaF, identifying 17 proteins, seven of which were upregulated and 10 downregulated. These results demonstrated that Sf9 cells showed signs of NaF-mediated toxicity through alterations in cell morphology, apoptosis rates, and protein expression.
Collapse
Affiliation(s)
- Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821761. [PMID: 26380295 PMCID: PMC4561296 DOI: 10.1155/2015/821761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022]
Abstract
Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.
Collapse
|
4
|
Cho YE, Kim SH, Baek MC. Proteome profiling of tolbutamide-treated rat primary hepatocytes using nano LC-MS/MS and label-free protein quantitation. Electrophoresis 2012; 33:2806-17. [PMID: 22911336 DOI: 10.1002/elps.201200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/10/2012] [Accepted: 05/15/2012] [Indexed: 11/06/2022]
Abstract
Tolbutamide is used as a first line oral antihyperglycemic drug for type 2 diabetes. One side effect of this drug, hepatotoxicity, is well recognized; however, the precise mechanisms underlying tolbutamide-induced hepatotoxicity remain unclear. In this respect, proteomics techniques were used to gain further insight into the mechanistic processes of the hepatotoxicity induced by this drug. In this study, we aimed to identify molecular pathways based on proteins responding to cellular toxicity in tolbutamide-treated primary hepatocytes, using nano UPLC-MS/MS analysis. Rat primary hepatocytes were treated with an IC(20) concentration for 24 h to study the hepatotoxic effects of tolbutamide. For high-throughput label-free quantitation, tryptic-digested peptides of proteins from cell lysates were analyzed using LC-MS/MS and quantitated using the IDEAL-Q software, in which several parameters, such as assisted sequence, elution time, and mass-to-charge ratio were included. We quantified a total of 330 distinct proteins from the tolbutamide-treated hepatocytes and identified 55 upregulated and 82 downregulated proteins with expression changes. Among these differentially expressed proteins, we focused mainly on the 18 upregulated proteins belonging to xenobiotic cytochrome P450 (CYP), drug metabolism/detoxification, oxidative stress/antioxidant response, and cell damage pathway. CYP2D1, CYP2C11, UDP-glucuronosyltransferase 2B (UGT2B), superoxide dismutase 2 (SOD2), 60 kDa heat shock protein (HSPD1), heat shock protein 90 (HSP90), and catalase (CAT) were confirmed by Western blot analysis. In addition, various xenobiotic CYP proteins upregulated in the tolbutamide-treated group, CYP2D1, CYP2C13, and CYP2C11 were confirmed by reverse transcriptase-PCR analysis. Our results offer important new insights into the molecular mechanisms of tolbutamide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Young-Eun Cho
- Department of Molecular Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | |
Collapse
|
5
|
Vandhana S, Lakshmi TSR, Indra D, Deepa PR, Krishnakumar S. Microarray Analysis and Biochemical Correlations of Oxidative Stress Responsive Genes in Retinoblastoma. Curr Eye Res 2012; 37:830-41. [DOI: 10.3109/02713683.2012.678544] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Andersen FA. Annual Review of Cosmetic Ingredient Safety Assessments: 2007-2010. Int J Toxicol 2011; 30:73S-127S. [DOI: 10.1177/1091581811412618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Sellamuthu R, Umbright C, Roberts JR, Chapman R, Young SH, Richardson D, Leonard H, McKinney W, Chen B, Frazer D, Li S, Kashon M, Joseph P. Blood gene expression profiling detects silica exposure and toxicity. Toxicol Sci 2011; 122:253-64. [PMID: 21602193 DOI: 10.1093/toxsci/kfr125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood gene expression profiling was investigated as a minimally invasive surrogate approach to detect silica exposure and resulting pulmonary toxicity. Rats were exposed by inhalation to crystalline silica (15 mg/m³, 6 h/day, 5 days), and pulmonary damage and blood gene expression profiles were determined after latency periods (0-16 weeks). Silica exposure resulted in pulmonary toxicity as evidenced by histological and biochemical changes in the lungs. The number of significantly differentially expressed genes in the blood, identified by microarray analysis, correlated with the severity of silica-induced pulmonary toxicity. Functional analysis of the differentially expressed genes identified activation of inflammatory response as the major biological signal. Induction of pulmonary inflammation, as suggested by the blood gene expression data, was supported by significant increases in the number of macrophages and infiltrating neutrophils as well as the activity of pro-inflammatory chemokines observed in the lungs of the silica-exposed rats. A gene expression signature developed using the blood gene expression data predicted the exposure of rats to lower, minimally toxic and nontoxic concentrations of silica. Taken together, our findings suggest the potential application of peripheral blood gene expression profiling as a minimally invasive surrogate approach to detect pulmonary toxicity induced by silica in the rat. However, further research is required to determine the potential application of our findings specifically to monitor human exposure to silica and the resulting pulmonary effects.
Collapse
Affiliation(s)
- Rajendran Sellamuthu
- Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Radler U, Stangl H, Lechner S, Lienbacher G, Krepp R, Zeller E, Brachinger M, Eller-Berndl D, Fischer A, Anzur C, Schoerg G, Mascher D, Laschan C, Anderwald C, Lohninger A. A combination of (ω-3) polyunsaturated fatty acids, polyphenols and L-carnitine reduces the plasma lipid levels and increases the expression of genes involved in fatty acid oxidation in human peripheral blood mononuclear cells and HepG2 cells. ANNALS OF NUTRITION AND METABOLISM 2011; 58:133-40. [PMID: 21540583 DOI: 10.1159/000327150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 03/07/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hyperlipidemia and obesity are associated with metabolic syndrome and increased risk in developing diabetes and cardiovascular disease. Nutritional supplements, e.g. L-carnitine and polyunsaturated fatty acids (PUFAs), exert lipid-lowering effects. Hence, the hypothesis that dietetic intervention reduces plasma lipid levels and metabolic enzymes in overweight hyperlipidemic subjects was tested. SUBJECTS AND METHODS In a prospective placebo-controlled double-blind study in 22 moderately hyperlipidemic obese humans consuming low-fat yoghurt enriched with a combination of low-dose PUFAs, polyphenols and L-carnitine (PPC) twice a day for 12 weeks were compared to 20 matching participants ingesting low-fat yoghurt. The effects on plasma lipids and expression of enzymes involved in regulation of fatty acid oxidation in peripheral blood mononuclear cells (PBMCs) and HepG2 cells were evaluated. RESULTS PPC consumption led to significantly reduced plasma free fatty acid (-29%) and triglyceride (-24%) concentrations (each p < 0.05). PPC application increased significantly peroxisome proliferator-activated receptor α (PPARα) mRNA abundances and those of PPARα target genes (carnitine palmitoyltransferases-1, CPT1A and CPT1B, carnitine acetyltransferase and organic cation transporter 2; each p < 0.05) in PBMCs. In controls, plasma lipid levels and PBMC gene expression did not change. These findings were substantiated by the results of cell culture experiments in HepG2 cells. CONCLUSION Supplementation of PPC had marked lipid-lowering effects and PBMC gene expression profiles seemed to reflect nutrition-related metabolic changes.
Collapse
Affiliation(s)
- Ulla Radler
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ettlin RA, Kuroda J, Plassmann S, Prentice DE. Successful drug development despite adverse preclinical findings part 1: processes to address issues and most important findings. J Toxicol Pathol 2010; 23:189-211. [PMID: 22272031 PMCID: PMC3234634 DOI: 10.1293/tox.23.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023] Open
Abstract
Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.
Collapse
Affiliation(s)
- Robert A. Ettlin
- Ettlin Consulting Ltd., 14 Mittelweg, 4142 Muenchenstein,
Switzerland
| | - Junji Kuroda
- KISSEI Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino,
Nagano 399-8305, Japan
| | - Stephanie Plassmann
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| | - David E. Prentice
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| |
Collapse
|
10
|
Sayed-Ahmed MM, Al-Shabanah OA, Hafez MM, Aleisa AM, Al-Rejaie SS. Inhibition of gene expression of heart fatty acid binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model. Eur J Pharmacol 2010; 640:143-9. [DOI: 10.1016/j.ejphar.2010.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 11/17/2022]
|
11
|
Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, Lipshultz SE, Retief J, Sistare FD, Herman EH. Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol 2010; 66:303-14. [PMID: 19915844 DOI: 10.1007/s00280-009-1164-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE The antineoplastic anthracycline doxorubicin can induce a dose-dependent cardiomyopathy that limits the total cumulative dose prescribed to cancer patients. In both preclinical and clinical studies, pretreatment with dexrazoxane, an intracellular iron chelator, partially protects against anthracycline-induced cardiomyopathy. To identify potential additional cardioprotective treatment strategies, we investigated early doxorubicin-induced changes in cardiac gene expression. METHODS Spontaneously hypertensive male rats (n = 47) received weekly intravenous injections of doxorubicin (3 mg/kg) or saline 30 min after pretreatment with dexrazoxane (50 mg/kg) or saline by intraperitoneal injection. Cardiac samples were analyzed 24 h after the first (n = 20), second (n = 13), or third (n = 14) intravenous injection on days 1, 8, or 15 of the study, respectively. RESULTS Rats receiving three doses of doxorubicin had minimal myocardial alterations that were attenuated by dexrazoxane. Cardiac expression levels of genes associated with the Nrf2-mediated stress response were increased after a single dose of doxorubicin, but not affected by cardioprotectant pretreatment. In contrast, an early repressive effect of doxorubicin on transcript levels of genes associated with mitochondrial function was attenuated by dexrazoxane pretreatment. Dexrazoxane had little effect on gene expression by itself. CONCLUSIONS Genomic analysis provided further evidence that mitochondria are the primary target of doxorubicin-induced oxidative damage that leads to cardiomyopathy and the primary site of cardioprotective action by dexrazoxane. Additional strategies that prevent the formation of oxygen radicals by doxorubicin in mitochondria may provide increased cardioprotection.
Collapse
Affiliation(s)
- Karol L Thompson
- Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yin J, Wang G, Xiao J, Ma F, Zhang H, Sun Y, Diao Y, Huang J, Guo Q, Liu D. Identification of genes involved in stem rust resistance from wheat mutant D51 with the cDNA-AFLP technique. Mol Biol Rep 2010; 37:1111-7. [PMID: 19821052 DOI: 10.1007/s11033-009-9870-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 09/29/2009] [Indexed: 01/20/2023]
Abstract
Wheat (Triticum aestivum L.) stem rust caused by Puccinia graminis f. sp. tritici is one of the main diseases of wheat worldwide. Wheat mutant line D51, which was derived from the highly susceptible cultivar L6239, shows resistance to the prevailing races 21C3CPH, 21C3CKH, and 21C3CTR of P. graminis f. sp. tritici in China. In this study, we used the cDNA-AFLP technology to identify the genes that are likely involved in the stem rust resistance. EcoRI/MseI selective primers were used to generate approximately 1920 DNA fragments. Seventy five differentially transcribed fragments (3.91%) were identified by comparing the samples of 21C3CPH infected D51 with infected L6239 or uninfected D51. Eleven amplified cDNA fragments were sequenced. Eight showed significant similarity to known genes, including TaLr1 (leaf rust resistance gene), wlm24 (wheat powdery mildew resistance gene), stress response genes and ESTs of environment stress of tall fescue. These identified genes are involved in plant defense response and stem rust resistance and need further research to determine their usefulness in breeding new resistance cultivars.
Collapse
Affiliation(s)
- Jing Yin
- College of Life Science, Northeast Forestry University, 150040 Harbin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Margulies KB, Bednarik DP, Dries DL. Genomics, transcriptional profiling, and heart failure. J Am Coll Cardiol 2009; 53:1752-9. [PMID: 19422981 DOI: 10.1016/j.jacc.2008.12.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/22/2008] [Accepted: 12/15/2008] [Indexed: 01/28/2023]
Abstract
Associated with technological progress in deoxyribonucleic acid and messenger ribonucleic acid profiling, advances in basic biology have led to a more complete and sophisticated understanding of interactions among genes, environment, and affected tissues in the setting of complex and heterogeneous conditions such as heart failure (HF). Ongoing identification of mutations causing hereditary hypertrophic and dilated cardiomyopathies has provided both pathophysiological insights and clinically applicable diagnostics for these relatively rare conditions. Genotyping clinical trial participants and genome-wide association studies have accelerated the identification of much more common disease- and treatment-modifying genes that explain patient-to-patient differences that have long been recognized by practicing clinicians. At the same time, increasingly detailed characterization of gene expression within diseased tissues and circulating cells from animal models and patients are providing new insights into the pathophysiology of HF that permit identification of novel diagnostic and therapeutic targets. In this rapidly evolving field, there is already ample support for the concept that genetic and expression profiling can enhance diagnostic sensitivity and specificity while providing a rational basis for prioritizing alternative therapeutic options for patients with cardiomyopathies and HF. Although the extensive characterizations provided by genomic and transcriptional profiling will increasingly challenge clinicians' abilities to utilize complex and diverse information, advances in clinical information technology and user interfaces will permit greater individualization of prevention and treatment strategies to address the HF epidemic.
Collapse
Affiliation(s)
- Kenneth B Margulies
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
14
|
Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol 2008; 105:515-24. [PMID: 19018560 DOI: 10.1007/s00421-008-0928-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 01/08/2023]
Abstract
Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.
Collapse
|
15
|
Crosby LM, Simmons JE, Ward WO, Moore TM, Morgan KT, Deangelo AB. Integrated disinfection by-products (DBP) mixtures research: gene expression alterations in primary rat hepatocyte cultures exposed to DBP mixtures formed by chlorination and ozonation/postchlorination. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1195-1215. [PMID: 18636392 DOI: 10.1080/15287390802182581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Large-scale differential gene expression analysis was used to examine the biological effects of disinfected surface waters on cultured rat hepatocytes. Source water from East Fork Lake (Harsha Lake), a reservoir on the Little Miami River in Ohio, was spiked with iodide and bromide and disinfected by chlorination or ozonation/postchlorination. The chlorinated and ozonated/postchlorinated waters were concentrated, respectively, 136- and 124-fold (full strength) by reverse-osmosis membrane techniques. Volatile disinfection by-products (DBP) lost during concentration were restored to the extent possible. Primary rat hepatocytes were exposed to either full-strength or 1:10 or 1:20 dilutions of the concentrates for 24 h and assayed for cytotoxicity and gene expression alterations. The full-strength concentrates were cytotoxic, whereas the diluted samples exhibited no detectable cytotoxicity. Differential gene expression analysis provided evidence for the underlying causes of the severe cytotoxicity observed in rat hepatocytes treated with the full-strength ozonation/postchlorination concentrate (e.g., cell cycle arrest, metabolic stasis, oxidative stress). Many gene expression responses were shared among the hepatocyte cultures treated with dilutions of the ozonation/ postchlorination and chlorination concentrates. The shift in the character of the response between the full-strength concentrates and the diluted samples indicated a threshold for toxicity. A small subset of gene expression changes was identified that was observed in the response of hepatocytes to peroxisome proliferators, phthalate esters, and haloacetic acids, suggesting a peroxisome proliferative response.
Collapse
Affiliation(s)
- Lynn M Crosby
- U.S. Environmental Protection Agency/University of North Carolina-Chapel Hill Cooperative Training Program, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wallace KB. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 2007; 7:101-7. [PMID: 17652813 DOI: 10.1007/s12012-007-0008-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
Adriamycin (doxorubicin) is a potent and broad-spectrum antineoplastic agent, the clinical utility of which is limited by the development of a cumulative and irreversible cardiomyopathy. Although the drug affects numerous structures in different cell types, the mitochondrion appears to a principal subcellular target for the development of cardiomyopathy. This review describes evidence demonstrating that adriamycin redox cycles on complex I of the mitochondrial electron transport chain to liberate highly reactive free radical species of molecular oxygen. The primary effect of adriamycin on mitochondrial performance is the interference with oxidative phosphorylation and inhibition of ATP synthesis. Free radicals liberated from adriamycin redox cycling are thought to be responsible for many of the secondary effects of adriamycin, including lipid peroxidation, the oxidation of both proteins and DNA, and the depletion of glutathione and pyridine nucleotide reducing equivalents in the cell. It is this altered redox status that is believed to cause assorted changes in intracellular regulation, including the induction of the mitochondrial permeability transition and complete loss of mitochondrial integrity and function. Associated with this is the interference with mitochondrial-mediated cell calcium signaling, which is implicated as essential to the capacity of mitochondria to participate in bioenergetic regulation in response to external signals reflecting changes in metabolic demand. If taken to an extreme, this loss of mitochondrial plasticity may manifest in the liberation of signals mediating either oncotic or necrotic cell death, further perpetuating the cardiac failure associated with adriamycin-induced mitochondrial cardiomyopathy.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biochemistry & Molecular Biology, University of Minnesota School of Medicine, Duluth, MN 55812, USA.
| |
Collapse
|
17
|
Daosukho C, Chen Y, Noel T, Sompol P, Nithipongvanitch R, Velez JM, Oberley TD, Clair DKS. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 2007; 42:1818-25. [PMID: 17512461 PMCID: PMC2151922 DOI: 10.1016/j.freeradbiomed.2007.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 11/28/2022]
Abstract
Cardiac injury is a major complication for oxidative-stress-generating anticancer agents exemplified by Adriamycin (ADR). Recently, several histone deacetylase inhibitors (HDACIs) including phenylbutyrate (PBA) have shown promise in the treatment of cancer with little known toxicity to normal tissues. PBA has been shown to protect against oxidative stress in normal tissues. Here, we examined whether PBA might protect heart against ADR toxicity in a mouse model. The mice were i.p. injected with ADR (20 mg/kg). PBA (400 mg/kg/day) was i.p. injected 1 day before and daily after the ADR injection for 2 days. We found that PBA significantly decreased the ADR-associated elevation of serum lactate dehydrogenase and creatine kinase activities and diminished ADR-induced ultrastructural damages of cardiac tissue by more than 70%. Importantly, PBA completely rescued ADR-caused reduction of cardiac functions exemplified by ejection fraction and fraction shortening, and increased cardiac manganese superoxide dismutase (MnSOD) protein and activity. Our results reveal a previously unrecognized role of HDACIs in protecting against ADR-induced cardiac injury and suggest that PBA may exert its cardioprotective effect, in part, by the increase of MnSOD. Thus, combining HDACIs with ADR could add a new mechanism to fight cancer while simultaneously decrease ADR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chotiros Daosukho
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
- Faculty of Medical Technology, Mahidol University, Bangkok, Thailand 10700
| | - Yumin Chen
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Teresa Noel
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Pradoldej Sompol
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Joyce M. Velez
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| | - Terry D. Oberley
- Department of Pathology, University of Wisconsin, Madison, WI 53705, USA
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Outomuro D, Grana DR, Azzato F, Milei J. Adriamycin-induced myocardial toxicity: New solutions for an old problem? Int J Cardiol 2007; 117:6-15. [PMID: 16863672 DOI: 10.1016/j.ijcard.2006.05.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/28/2006] [Accepted: 05/18/2006] [Indexed: 11/19/2022]
Abstract
Adriamycin is a potent and broad-spectrum antineoplastic agent that plays a major role in cancer chemotherapy. Unfortunately, its use has been hampered by conventional toxicities and cardiotoxicity manifested by congestive cardiomyopathy. Adriamycin is particularly toxic to heart tissue and constitutes a major cause of morbidity and mortality due to its complex pathogenesis. In this review, the different forms of cardiotoxicity produced by adriamycin as well as the biochemical changes induced by this drug are summarized. Secondly, the current hypotheses proposed to explain adriamycin-induced myocardial damage (the iron and free-radical hypothesis, the metabolic hypothesis, the "unifying hypothesis" and apoptosis) and the attempts to reduce adriamycin-induced myocardial toxicity are discussed (e.g. dose limitation, close cardiac monitoring, alteration of dosage schedules, development of new anthracycline analogs, and the administration of protective agents and liposomal encapsulation). Finally, we summarized our own experimental and clinical experience in ameliorating and or preventing adriamycin-induced cardiotoxicity and the latest attempts to prevent and/or monitor cardiac function. According to this, a combination of usual doses of calcium antagonist drugs plus vitamins A and E seems advisable.
Collapse
Affiliation(s)
- Delia Outomuro
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires-Conicet, Argentina
| | | | | | | |
Collapse
|
19
|
Han SS, Peng L, Chung ST, DuBois W, Maeng SH, Shaffer AL, Sporn MB, Janz S. CDDO-Imidazolide inhibits growth and survival of c-Myc-induced mouse B cell and plasma cell neoplasms. Mol Cancer 2006; 5:22. [PMID: 16759389 PMCID: PMC1553469 DOI: 10.1186/1476-4598-5-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 06/07/2006] [Indexed: 11/23/2022] Open
Abstract
Background Gene-targeted iMycEμ mice that carry a His6-tagged mouse Myc(c-myc)cDNA, MycHis, just 5' of the immunoglobulin heavy-chain enhancer, Eμ, are prone to B cell and plasma cell neoplasms, such as lymphoblastic B-cell lymphoma (LBL) and plasmacytoma (PCT). Cell lines derived from Myc-induced neoplasms of this sort may provide a good model system for the design and testing of new approaches to prevent and treat MYC-driven B cell and plasma cell neoplasms in human beings. To test this hypothesis, we used the LBL-derived cell line, iMycEμ-1, and the newly established PCT-derived cell line, iMycEμ-2, to evaluate the growth inhibitory and death inducing potency of the cancer drug candidate, CDDO-imidazolide (CDDO-Im). Methods Morphological features and surface marker expression of iMycEμ-2 cells were evaluated using cytological methods and FACS, respectively. mRNA expression levels of the inserted MycHis and normal Myc genes were determined by allele-specific RT-PCR and qPCR. Myc protein was detected by immunoblotting. Cell cycle progression and apoptosis were analyzed by FACS. The expression of 384 "pathway" genes was assessed with the help of Superarray© cDNA macroarrays and verified, in part, by RT-PCR. Results Sub-micromolar concentrations of CDDO-Im caused growth arrest and apoptosis in iMycEμ-1 and iMycEμ-2 cells. CDDO-Im-dependent growth inhibition and apoptosis were associated in both cell lines with the up-regulation of 30 genes involved in apoptosis, cell cycling, NFκB signaling, and stress and toxicity responses. Strongly induced (≥10 fold) were genes encoding caspase 14, heme oxygenase 1 (Hmox1), flavin-containing monooxygenase 4 (Fmo4), and three members of the cytochrome P450 subfamily 2 of mixed-function oxygenases (Cyp2a4, Cyp2b9, Cyp2c29). CDDO-Im-dependent gene induction coincided with a decrease in Myc protein. Conclusion Growth arrest and killing of neoplastic mouse B cells and plasma cells by CDDO-Im, a closely related derivative of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid, appears to be caused, in part, by drug-induced stress responses and reduction of Myc.
Collapse
Affiliation(s)
- Seong-Su Han
- Laboratory of Genetics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Markey Cancer Center, Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Liangping Peng
- Laboratory of Genetics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Seung-Tae Chung
- Laboratory of Genetics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wendy DuBois
- Laboratory of Genetics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sung-Ho Maeng
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Michael B Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Siegfried Janz
- Laboratory of Genetics, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
20
|
Li Y, Elashoff D, Oh M, Sinha U, St John MAR, Zhou X, Abemayor E, Wong DT. Serum Circulating Human mRNA Profiling and Its Utility for Oral Cancer Detection. J Clin Oncol 2006; 24:1754-60. [PMID: 16505414 DOI: 10.1200/jco.2005.03.7598] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeThe purpose of this study is to explore the presence of informative RNA biomarkers from human serum transcriptome, and evaluate the serum transcriptome diagnostics for disease detection. Oral squamous cell carcinoma (OSCC) was selected as the proof-of-concept disease.Patients and MethodsBlood samples were collected from patients (n = 32) with primary T1/T2 OSCC and matched healthy patients (n = 35). Circulating RNA was isolated from serum and linearly amplified using T7 polymerase. Microarrays were applied for profiling transcriptome in serum from 10 cancer patients and controls. The differential gene expression was analyzed by combining the present calls, t tests, and fold-change statistics. Quantitative polymerase chain reaction (PCR) was used to validate the selected candidate RNA markers identified by microarray. Receiver operating characteristic curve and classification models were exploited to evaluate the diagnostic power of these markers for OSCC.ResultsHuman serum circulating mRNAs were presented by reverse transcriptase PCR. Microarray identified 2,623 ± 868 probes assigned present calls in OSCC (n = 10) versus 1,792 ± 165 in healthy patients (n = 10), indicating a higher complexity of serum transciptome in OSCC patients (P = .002, Wilcoxon test). Three hundred thirty-five serum RNAs exhibited significantly differential expression level between the two groups (P < .05, t test; fold ≥ 2). Five cancer-related gene transcripts were consistently validated by quantitative PCR on serum from OSCC patients (n = 32) and controls (n = 35). The best combination of biomarkers yielded a receiver operating characteristic curve value of 88%, sensitivity (91%), and specificity (71%) in distinguishing OSCC.ConclusionThe utility of serum transcriptome diagnostics is successfully demonstrated for OSCC detection. This novel concept could be developed as an adjunctive tool for disease diagnosis.
Collapse
Affiliation(s)
- Yang Li
- School of Dentistry and Dental Research Institute, Division of Head & Neck Surgery/Otolaryngology, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Corvi R, Ahr HJ, Albertini S, Blakey DH, Clerici L, Coecke S, Douglas GR, Gribaldo L, Groten JP, Haase B, Hamernik K, Hartung T, Inoue T, Indans I, Maurici D, Orphanides G, Rembges D, Sansone SA, Snape JR, Toda E, Tong W, van Delft JH, Weis B, Schechtman LM. Meeting report: Validation of toxicogenomics-based test systems: ECVAM-ICCVAM/NICEATM considerations for regulatory use. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:420-9. [PMID: 16507466 PMCID: PMC1392237 DOI: 10.1289/ehp.8247] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 08/17/2005] [Indexed: 05/06/2023]
Abstract
This is the report of the first workshop "Validation of Toxicogenomics-Based Test Systems" held 11-12 December 2003 in Ispra, Italy. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and organized jointly by ECVAM, the U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), and the National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM). The primary aim of the workshop was for participants to discuss and define principles applicable to the validation of toxicogenomics platforms as well as validation of specific toxicologic test methods that incorporate toxicogenomics technologies. The workshop was viewed as an opportunity for initiating a dialogue between technologic experts, regulators, and the principal validation bodies and for identifying those factors to which the validation process would be applicable. It was felt that to do so now, as the technology is evolving and associated challenges are identified, would be a basis for the future validation of the technology when it reaches the appropriate stage. Because of the complexity of the issue, different aspects of the validation of toxicogenomics-based test methods were covered. The three focus areas include a) biologic validation of toxicogenomics-based test methods for regulatory decision making, b) technical and bioinformatics aspects related to validation, and c) validation issues as they relate to regulatory acceptance and use of toxicogenomics-based test methods. In this report we summarize the discussions and describe in detail the recommendations for future direction and priorities.
Collapse
Affiliation(s)
- Raffaella Corvi
- European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, Joint Research Centre of the European Commission, Ispra, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bjørnstad A, Larsen BK, Skadsheim A, Jones MB, Andersen OK. The potential of ecotoxicoproteomics in environmental monitoring: biomarker profiling in mussel plasma using ProteinChip array technology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:77-96. [PMID: 16291563 DOI: 10.1080/15287390500259277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
New global technologies, allowing simultaneous analysis of thousands of genes, proteins, and metabolites (so-called "omics" technologies), are being adopted rapidly by industry, academia, and regulatory agencies. This study evaluated the potential of proteomics in ecotoxicological research (i.e., ecotoxicoproteomics). Filter-feeding mussels (Mytilus edulis) were exposed continuously for 3 wk to oil, or oil spiked with alkylphenols and extra polycyclic aromatic hydrocarbons. The influence of chronic exposure on mussel plasma protein expression was investigated utilizing ProteinChip array technology in combination with surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI TOF MS). Results indicated that exposure to spiked oil had a more significant effect on protein expression in mussels than oil alone. In total, 83 mass peaks (intact or modified proteins/peptides) were significantly altered by spiked oil, while 49 were altered by oil. In exposed organisms, the majority of peaks were upregulated compared to controls (i.e., 69% in oil and 71% in spiked oil). Some peaks (32 in total) were affected by both treatments; however, the degree of response was higher in the spiked oil group for 25 of the 32 commonly affected features. Additionally, certain peaks revealed exposure- or gender-specific responses. Multivariate analysis with regression tree-based methods detected protein patterns associated with exposure that correctly classified masked samples with 90-95% accuracy. Similarly, 92% of females and 85% of males were correctly classified (independent of exposure). Results indicate that proteomics have the potential to make a valuable contribution to environmental monitoring and risk assessment.
Collapse
|
23
|
Waldner R, Laschan C, Lohninger A, Gessner M, Tüchler H, Huemer M, Spiegel W, Karlic H. Effects of doxorubicin-containing chemotherapy and a combination with l-carnitine on oxidative metabolism in patients with non-Hodgkin lymphoma. J Cancer Res Clin Oncol 2005; 132:121-8. [PMID: 16283381 DOI: 10.1007/s00432-005-0054-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Chemotherapy regimens based on anthracycline (doxorubicin) are well established in lymphoma therapy. The purpose of this study was to examine the effects of L-carnitine with a view to reducing cytotoxic side-effects. METHODS 20 patients were scheduled to receive 3 g L-carnitine before each chemotherapy cycle, followed by 1 g L-carnitine/day during the following 21 days, while 20 patients received a placebo (randomized controlled trial). The plasma lipid profile and relative mRNA levels of key enzymes of oxidative metabolism (carnitine acyltransferases) were measured at three points of time. In addition to the clinical parameters we used the mRNA of white blood cells to evaluate the toxic effects on cardiomyocytes. RESULTS In the present study no cardiotoxicity of anthracycline therapy was detected. Carnitine treated patients showed a rise in plasma carnitine which led to an increase of relative mRNA levels from CPT1A (liver isoform of carnitine palmitoyltransferase) and OCTN2 (carnitine transporter). Following chemotherapy, an activation of carnitine acyltransferases was associated with a stimulation of OCTN2 in both groups. CONCLUSION Biochemical and molecular analyses indicated a stimulation of oxidative metabolism in white blood cells through carnitine uptake.
Collapse
Affiliation(s)
- Raimund Waldner
- 3rd Department of Medicine, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu Y, Rozenfeld S, Defferrard A, Ruggiero K, Udall JA, Kim H, Llewellyn DJ, Dennis ES. Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling. Mol Genet Genomics 2005; 274:477-93. [PMID: 16208490 DOI: 10.1007/s00438-005-0049-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Fibres of cotton (Gossypium hirsutum L.) are single elongated epidermal cells that start to develop on the outer surface of cotton ovules on the day of anthesis. Little is known about the control of fibre initiation and development. As a first step towards discovering important genes involved in fibre initiation and development using a genomics approach, we report technical advances aimed at reducing redundancy and increasing coverage for anonymous cDNA microarrays in this study. Cotton ovule cDNA libraries (both normalised and un-normalised) from around the time of fibre initial formation have been prepared and partially characterised by sequencing. Re-association-based normalisation partially reduced library redundancy and increased representation of novel sequences. However, another library generated from in vitro cultured cotton ovules treated with the protein synthesis inhibitor, cycloheximide, showed a significantly altered gene representation including a greater proportion of protein phosphorylation genes, transport genes and transcription factors and a much reduced proportion of protein synthesis genes than were identified in the conventional types of libraries. Over 10,000 expressed sequence tag (EST) clones randomly selected from the three libraries were printed on microarray slides and used to assess gene expression in tissue cultured ovules with and without cycloheximide treatment. The microarray results showed that cycloheximide had a dramatic effect in modifying the pattern of the gene expression in cultured ovules, affecting the same types of genes identified in the preliminary analysis on relative EST abundance in the different ovule cDNA libraries. Cycloheximide clearly provided a simple and useful method for enriching novel gene sequences for genomic studies.
Collapse
Affiliation(s)
- Yingru Wu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
26
|
Zeibig J, Karlic H, Lohninger A, Damsgaard R, Dumsgaard R, Smekal G. Do blood cells mimic gene expression profile alterations known to occur in muscular adaptation to endurance training ? Eur J Appl Physiol 2005; 95:96-104. [PMID: 15815935 DOI: 10.1007/s00421-005-1334-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2004] [Indexed: 10/25/2022]
Abstract
Exercise is known to upregulate mRNA synthesis for carnitine palmitoyl transferase1 (CPT1) and possibly also other mitochondrial carnitine acyltransferases in muscle tissue. The aim of this study was to test whether such an adaptation of oxidative metabolism in skeletal muscle is a systemic process and consequently, also affects other cells. Messenger RNA levels of five genes [carnitine palmitoyl transferases 1 and 2 (CPT1 and CPT2), carnitine acetyltransferase (CRAT), carnitine palmitoyltransferase 2 (CPT2), microsomal carnitine palmitoyltransferase (GRP58) and organic cation transporter (OCTN2)] were determined with quantitative real time polymerase chain reaction (PCR) in blood cells and in muscle biopsy samples from six cross country skiers before and 6 months after a high volume/low intensity exercise training, when training had elicited a significantly slower rate of lactate accumulation. Quantitative real time PCR showed that levels of mRNA in blood cells correlated significantly (CPT1B: P< 0.001) with those in muscle tissue from the same donors. After 6-months training, there was a 15-fold upregulation of CPT1B mRNA, a six to ninefold increase of CRAT mRNA, of CPT2 mRNA, GRP58 mRNA, and of OCTN2 mRNA. The observation of a concordant stimulation of CPT1, CPT2, CRAT, GRP58 and OCTN2 transcription in blood cells and muscle tissue after 6-month-endurance training leads the hypothesis of a common stimulation mechanism other than direct mechanical stress or local chemical environment, but rather humoral factors.
Collapse
Affiliation(s)
- J Zeibig
- Department of Medical Chemistry, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Studies in athletes have shown that carnitine supplementation may foster exercise performance. As reported in the majority of studies, an increase in maximal oxygen consumption and a lowering of the respiratory quotient indicate that dietary carnitine has the potential to stimulate lipid metabolism. Treatment with L-carnitine also has been shown to induce a significant postexercise decrease in plasma lactate, which is formed and used continuously under fully aerobic conditions. Data from preliminary studies have indicated that L-carnitine supplementation can attenuate the deleterious effects of hypoxic training and speed up recovery from exercise stress. Recent data have indicated that L-carnitine plays a decisive role in the prevention of cellular damage and favorably affects recovery from exercise stress. Uptake of L-carnitine by blood cells may induce at least three mechanisms: 1) stimulation of hematopoiesis, 2) a dose-dependent inhibition of collagen-induced platelet aggregation, and 3) the prevention of programmed cell death in immune cells. As recently shown, carnitine has direct effects in regulation of gene expression (i.e., carnitine-acyltransferases) and may also exert effects via modulating intracellular fatty acid concentration. Thus there is evidence for a beneficial effect of L-carnitine supplementation in training, competition, and recovery from strenuous exercise and in regenerative athletics.
Collapse
Affiliation(s)
- Heidrun Karlic
- Ludwig Boltzmann Institute for Leukemia Research and Hematology, Vienna, Austria.
| | | |
Collapse
|
28
|
Matoba S, Hwang PM, Nguyen T, Shizukuda Y. Evaluation of pulsed Doppler tissue velocity imaging for assessing systolic function of murine global heart failure. J Am Soc Echocardiogr 2005; 18:148-54. [PMID: 15682052 DOI: 10.1016/j.echo.2004.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The feasibility of Doppler tissue imaging (DTI) for assessing global systolic function has not been determined in small animals, particularly at near-conscious heart rates. Therefore, we compared DTI measurements with conventional M-mode-derived fractional shortening in murine global left ventricular systolic dysfunction induced by intraperitoneal doxorubicin (Dox) injection. In all, 13 female C57BL mice received 20 mg/kg of Dox and 12 mice received saline injection (controls). DTI signals were obtained from the inferior wall through parasternal short-axis views. The heart rate was kept at near-conscious level throughout DTI measurements (approximately 500/min). Left ventricular systolic dysfunction was detectable by measurements of fractional shortening from 4 to 14 days after Dox administration. Among DTI measurements, peak systolic velocity and time to peak systolic velocity decreased from 4 to 14 days after Dox injection. Our results indicate that these new DTI measurements appear feasible to assess global left ventricular systolic dysfunction in mice.
Collapse
Affiliation(s)
- Satoaki Matoba
- Cardiovascular Branch, National Heart, Lung, and Blood Institute/NIH, Building 10/7B15, 10 Center Drive, MSC-1650, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Almon RR, DuBois DC, Piel WH, Jusko WJ. The genomic response of skeletal muscle to methylprednisolone using microarrays: tailoring data mining to the structure of the pharmacogenomic time series. Pharmacogenomics 2004; 5:525-52. [PMID: 15212590 PMCID: PMC2607486 DOI: 10.1517/14622416.5.5.525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA, Tel: +1 716 645 2363, ext. 114; Fax: +1 716 645 2975; E-mail:
- Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA
| | - Debra C DuBois
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA, Tel: +1 716 645 2363, ext. 114; Fax: +1 716 645 2975; E-mail:
- Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA
| | - William H Piel
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA, Tel: +1 716 645 2363, ext. 114; Fax: +1 716 645 2975; E-mail:
| | - William J Jusko
- Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
30
|
Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD. Gene expression profiling in chronic copper overload reveals upregulation ofPrnpandApp. Physiol Genomics 2004; 20:45-54. [PMID: 15467011 DOI: 10.1152/physiolgenomics.00196.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The level at which copper becomes toxic is not clear. Several studies have indicated that copper causes oxidative stress; however, most have tested very high levels of copper exposure. We currently have only a limited understanding of the protective systems that operate in cells chronically exposed to copper. Additionally, the limits of homeostatic regulation are not known, making it difficult to define the milder effects of copper excess. Furthermore, a robust assay to facilitate the diagnosis of copper excess and to distinguish mild, moderate, and severe copper overload is needed. To address these issues, we have investigated the effects on steady-state gene expression of chronic copper overload in a cell culture model system using cDNA microarrays. For this study we utilized cells from genetic models of copper overload: fibroblast cells from two mouse mutants, C57BL/6- Atp7aMobrand C57BL/6- Atp7aModap. These cell lines accumulate copper to abnormally high levels in normal culture media due to a defect in copper export from the cell. We identified 12 differentially expressed genes in common using our outlier identification methods. Surprisingly, our results show no evidence of oxidative stress in the copper-loaded cells. In addition, candidate components perhaps responsible for a copper-specific homeostatic response are identified. The genes that encode for the prion protein and the amyloid-β precursor protein, two known copper-binding proteins, are upregulated in both cell lines.
Collapse
Affiliation(s)
- Angela D Armendariz
- Department of Nutritional Science and Toxicology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
31
|
Morgan KT, Pino M, Crosby LM, Wang M, Elston TC, Jayyosi Z, Bonnefoi M, Boorman G. Complementary roles for toxicologic pathology and mathematics in toxicogenomics, with special reference to data interpretation and oscillatory dynamics. Toxicol Pathol 2004; 32 Suppl 1:13-25. [PMID: 15209399 DOI: 10.1080/01926230490424789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Toxicogenomics is an emerging multidisciplinary science that will profoundly impact the practice of toxicology. New generations of biologists, using evolving toxicogenomics tools, will generate massive data sets in need of interpretation. Mathematical tools are necessary to cluster and otherwise find meaningful structure in such data. The linking of this structure to gene functions and disease processes, and finally the generation of useful data interpretation remains a significant challenge. The training and background of pathologists make them ideally suited to contribute to the field of toxicogenomics, from experimental design to data interpretation. Toxicologic pathology, a discipline based on pattern recognition, requires familiarity with the dynamics of disease processes and interactions between organs, tissues, and cell populations. Optimal involvement of toxicologic pathologists in toxicogenomics requires that they communicate effectively with the many other scientists critical for the effective application of this complex discipline to societal problems. As noted by Petricoin III et al (Nature Genetics 32, 474-479, 2002), cooperation among regulators, sponsors and experts will be essential for realizing the potential of microarrays for public health. Following a brief introduction to the role of mathematics in toxicogenomics, "data interpretation" from the perspective of a pathologist is briefly discussed. Based on oscillatory behavior in the liver, the importance of an understanding of mathematics is addressed, and an approach to learning mathematics "later in life" is provided. An understanding of pathology by mathematicians involved in toxicogenomics is equally critical, as both mathematics and pathology are essential for transforming toxicogenomics data sets into useful knowledge.
Collapse
|
32
|
Parfett CL. Combined effects of tumor promoters and serum on proliferin mRNA induction: a biomarker sensitive to saccharin, 2,3,7,8-TCDD, and other compounds at minimal concentrations promoting C3H/10T1/2 cell transformation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:1943-1966. [PMID: 14514435 DOI: 10.1080/713853957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Increases in proliferin (PLF) gene family mRNA abundance and promotional effects in cell transformation assays are paired responses that follow exposures to diverse chemical and physical agents in the C3H/10T1/2 in vitro model of multi-stage carcinogenesis. This study measured PLF mRNA abundance changes over 1 to 3 d in response to several types of promoters that were previously unassessed for this effect. Saccharin is a known promoter of cell transformation in C3H/10T1/2 cell cultures, but unlike 12-O-tetradecanoylphorbol 13-acetate (TPA) or mezerein, PLF mRNA abundance increases were inconsistently detected following simple addition of saccharin to the culture medium. Consistent effects occurred when pretreatments with promoting concentrations of saccharin or sodium saccharin (1-13 mM) were combined with subsequent additions of serum or complete medium changes. When added at or near their lowest observed effect levels (LOELs) for transformation, other promoters of 10T1/2 cells such as formaldehyde (50-100 microM), diethylstilbesterol (DES) (0.5-30 microM), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) (4-40 pM) were shown to be inducers of both basal and serum-induced PLF mRNA levels. Acetaldehyde (300-900 microM) was comparable to formaldehyde as an inducer. In contrast to these various promoters, pretreatment with phenobarbital or methanol, both non-promoters in these cells, did not affect serum-induced PLF mRNA levels at concentrations up to 3 mM and 2 M, respectively. The published values for the LOELs of 17 promoters of cell transformation and the LOELs determined to date for PLF mRNA induction were highly correlated over a 1 billion - fold concentration range. The response of PLF mRNA is a short-term marker sensitive to the active concentration ranges of diverse chemical agents with promotional activity in C3H/10T1/2 cell transformation system.
Collapse
Affiliation(s)
- Craig L Parfett
- Mutagenesis Section, Healthy Environments and Consumer Safety Branch, Health Canada, Environmental Health Centre, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Morgan KT, Casey W, Easton M, Creech D, Ni H, Yoon L, Anderson S, Qualls CW, Crosby LM, MacPherson A, Bloomfield P, Elston TC. Frequent sampling reveals dynamic responses by the transcriptome to routine media replacement in HepG2 cells. Toxicol Pathol 2003; 31:448-61. [PMID: 12851109 DOI: 10.1080/01926230390213784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cultured cell lines are employed extensively for biological research. Large-scale differential gene expression (LSDGE) is being used to study mechanisms of toxicity in such cultures. 'Normal' gene expression dynamics could have a major impact on the design and interpretation of these studies. In order to provide understanding of such dynamics, we investigated LSDGE responses to media replacement in human hepatoblastoma cells (HepG2) using 5-minute sampling frequencies for 6 hours post routine media replacement. Each mRNA transcript was found to exhibit a characteristic 'operating range' based on signal intensity. Following media replacement, which replenishes nutrients (eg, glucose and glutamate) and removes excretory products (eg, lactate), a complex set of gene expression changes was observed. Some transcripts appeared to switch on from a quiescent state to a very active one (eg, CYP1A1), others exhibited 'clocklike' oscillations (eg, asparagine synthetase), or a synchronous burst (chirp) of expression up regulation (eg, timeless). Mathematical analysis (Fourier Transform, Singular Value Decomposition, Wavelets, Phase Analysis) of oscillating expression patterns identified cycle lengths ranging from 11.8 to 210 minutes. There were prominent 36.5- and 17.4-minute cycles, for subsets of genes, and transcript-specific differences in phase angle with respect to these cycles. The functional consequences of these novel observations remain to be determined. It is clear that dense time-course studies provide a valuable approach to the investigation of physiological responses to nutrients, toxicants, and other environmental variables. This research also highlights the need for an understanding of biological dynamics when using cell culture systems. An Excel data file representing individual transcripts from the respective Clontech cDNA arrays referred to in this article is available at http://taylorandfrancis.metapress.com/openurl.asp?genre=journal&issn=0192-6233. Rows represent data for individual transcripts and columns represent the time-points from 0 to 360 minutes. To access this file, click on the issue link for 31(4), then select this article. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org.
Collapse
Affiliation(s)
- Kevin T Morgan
- GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003; 4:277-84. [PMID: 18629117 PMCID: PMC2447404 DOI: 10.1002/cfg.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|