1
|
Maia RF, Vaziri AS, Shahbazi MA, Santos HA. Artificial cells and biomimicry cells: A rising star in the fight against cancer. Mater Today Bio 2025; 32:101723. [PMID: 40242485 PMCID: PMC12000744 DOI: 10.1016/j.mtbio.2025.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Biomimetic Artificial Cells (ACs) are engineered systems that mimic the properties and functions of natural cells, offering significant potential for biomedical applications. The performance and applicability of these synthetic constructs depend on the choice of materials and fabrication methods. Our review delves into the materials, fabrication techniques, and diverse applications of ACs, emphasizing their transformative impact on the field of cancer therapy as smart vehicles for drug delivery, immune system stimulation, cancer cell targeting to minimize off-target effects and maximizing therapeutic efficacy as well as in vitro models for cancer research. By providing a comprehensive overview, we aim to elucidate how these synthetic cells can move the field forward, offering innovative solutions to longstanding challenges in cancer treatment and opening new frontiers in less toxic treatment options.
Collapse
Affiliation(s)
- Renata Faria Maia
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Asma Sadat Vaziri
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), The University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| |
Collapse
|
2
|
Valinezhadi N, Dehghan G, Yaghoubzad-Maleki M, Mohammadi M, Alizadeh AA, Hamishehkar H. Liposome-assisted combination chemotherapy improves the anti-proliferation and anti-angiogenesis response of cisplatin in breast cancer; experimental and computational study. J Chemother 2025:1-18. [PMID: 40231813 DOI: 10.1080/1120009x.2025.2484078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
AbstractCombination chemotherapy using liposomes offers a promising approach to overcome chemotherapy resistance and minimize side effects in breast cancer treatment. This study explores the synergistic effects of all-trans-retinoic acid (ATRA) and cinnamaldehyde (CA) combined with cisplatin (CPT) in MDA-MB-231 breast cancer cells. The liposomal formulation, CPT_ATRA_CA, significantly reduced cell proliferation to 25.9 ± 2.8% compared to controls and effectively inhibited angiogenesis. Additionally, it induced apoptosis, as demonstrated by flow cytometry, DAPI staining, and an elevated Bax/Bcl-2 gene expression ratio. Computational analysis via molecular docking and molecular dynamics simulation revealed that ATRA exhibited the highest binding affinity for angiogenin (ANG) with a binding energy of -106.072 kcal/mol. Experimental results, corroborated by computational data, highlight the potent anti-tumor effects of this drug trio. These findings suggest that liposomal delivery of ATRA, CA, and CPT could enhance therapeutic outcomes in breast cancer by targeting multiple pathways synergistically.
Collapse
Affiliation(s)
- Nasim Valinezhadi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
4
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Guan Y, Ning Y, Xu Z, Zhou C, Zhao Z. Chondroitin sulfate and chitosan-coated liposomes as a novel delivery system for betanin: Preparation, characterization and in vitro digestion behavior. Int J Biol Macromol 2024; 254:128001. [PMID: 37949274 DOI: 10.1016/j.ijbiomac.2023.128001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Betanin, a water-soluble pigment known for its high bioactivity, is hindered by pH and temperature sensitivity, weak ionic strength, and low bioavailability. In this study, nanoliposome (NPS), chitosan-coated NPS (CNPS), and chondroitin sulfate-chitosan bilayer-modified nanoliposomes (SCNPS) were prepared based on a layer-by-layer electrostatic interaction method for betanin encapsulation. The increase of polymer layers from NPS to SCNPS led to a monotonic increment from 223.57 to 522.33 nm in size, from -27.73 to 16.70 mV in negative charge and from 0.22 to 0.35 in polydispersity index. The chemical stability against pH (ranging from 2 to 10), ionic type (KCl, CaCl2, ALCl3) and ionic strength (100, 500 mM) significantly impacted the appearance and particle size of the double-layered nanoliposome. In vitro digestion experiment showed that SCNPS displayed higher stability and slower betanin release compared to NPS and CNPS. This study demonstrates that betanin can be efficiently encapsulated by SCNPS with improved stability and bioavailability.
Collapse
Affiliation(s)
- Yuan Guan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Ning
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengming Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuang Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
6
|
Zhang M, Zhuang X, Li S, Wang Y, Zhang X, Li J, Wu D. Designed Fabrication of Phloretin-Loaded Propylene Glycol Binary Ethosomes: Stability, Skin Permeability and Antioxidant Activity. Molecules 2023; 29:66. [PMID: 38202649 PMCID: PMC10780158 DOI: 10.3390/molecules29010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Binary ethosome vesicles have been developed as flexible lipid vesicles for the enhanced physicochemical stability and skin delivery of drugs. This work aimed to prepare phloretin-loaded propylene glycol ethosomes (PHL-PGEs) to improve their stability, skin permeability and antioxidant activity. PHL-PGEs were prepared via the ethanol injection method and optimized using different weight ratios of ethanol to propylene glycol (PG). When the ethanol/PG mass ratio changed from 10:0 to 0:10, the encapsulation efficiency and stability of ethosomes increased. At a PHL concentration of 1mg/mL, the EE% was 89.42 ± 2.42 and the DL% was 4.21 ± 0.04, which exhibited their highest values. The encapsulation of the PHL in the PHL-PGEs was strengthened via XRD analysis and FTIR analysis. The results of the in vitro percutaneous permeability test demonstrated that the combined use of ethanol and PG exhibited a notable enhancement in skin permeability, and the skin retention of PHL-PGEs was 1.06 times that of PHL-ethosomes (PHL-Es) and 2.24 times that of the PHL solution. An in vitro antioxidant activity study indicated that solubility and antioxidant activity was potentiated via the nanoencapsulation of phloretin. Therefore, these results confirm the potential of this nanocarrier to enhance physicochemical stability, skin permeability and antioxidant activity.
Collapse
Affiliation(s)
- Meng Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Xue Zhuang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
| | - Siqi Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
| | - Yansong Wang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (M.Z.); (X.Z.); (S.L.); (Y.W.); (J.L.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
7
|
Karim N, Liu S, Rashwan AK, Xie J, Mo J, Osman AI, Rooney DW, Chen W. Green synthesis of nanolipo-fibersomes using Nutriose® FB 06 for delphinidin-3-O-sambubioside delivery: Characterization, physicochemical properties, and application. Int J Biol Macromol 2023; 247:125839. [PMID: 37454997 DOI: 10.1016/j.ijbiomac.2023.125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Anthocyanins are potential bioactive compounds with less bioavailability due to instability in physicochemical and physiological harsh environments. This study synthesized a "nanolipo-fibersomes (NLFS)" using Lipoid® S75 and Nutriose® FB 06 (dextrinization of wheat starch) through a self-assembly technique with probe sonication. We aimed to encapsulate delphinidin-3-O-sambubioside (D3S) successfully and evaluate physicochemical and controlled release properties with improved antioxidant activity on palmitic acid (PA)-induced colonic cells (Caco-2 cells). D3S-loaded nanolipo-fibersomes (D3S-NLFS) were nanosized (<150 nm), spherical shaped, and homogenously dispersed in solution with promising encapsulation efficiency (~ 89.31 to 97.31 %). Particles formation was further verified by FTIR. NLFS were well-stable in thermal, storage, and gastrointestinal mimic environments. NLFS exhibited better-controlled release and mucoadhesive properties compared to nanoliposomes (NL). The NLFS showed better cellular uptake than NL, which was correlated to higher mucoadhesive properties. Furthermore, D3S-NLFS exhibited promising protective effects against PA-induced cytotoxicity, O2•- radicals generation, mitochondrial dysfunctions, and GSH depletion, while the free D3S was ineffective. Among D3S-loaded nanoparticles, D3S-NLFS 3 was the most efficient nanocarrier followed by D3S-NLFS 2, D3S-NLFS 1, and D3S-NL, respectively. The above data suggest that nanolipo-fibersomes can be considered as promising nanovesicles for improving colonic delivery of hydrophilic compounds with controlled release properties and greater antioxidant activity.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
8
|
Pereira L, Ferreira FC, Pires F, Portugal CAM. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules-An Insight into the Release Kinetics. MEMBRANES 2023; 13:674. [PMID: 37505040 PMCID: PMC10385637 DOI: 10.3390/membranes13070674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e., DPPC:FA liposomes, into gelatin hydrogel membranes containing dispersed iron oxide nanoparticles (MNPs), i.e., magnetic-responsive gelatin. The FA release mechanisms and kinetics from magnetic-responsive liposomal gelatin were studied and compared with those obtained with conventional drug delivery systems, e.g., free liposomal suspensions and hydrogel matrices, to access the effect of liposome entrapment and magnetic field on FA delivery. FA release from liposomal gelatin membranes was well described by the Korsmeyer-Peppas model, indicating that FA release occurred under a controlled diffusional regime, with or without magnetic stimulation. DPPC:FA liposomal gelatin systems provided smoother controlled FA release, relative to that obtained with the liposome suspensions and with the hydrogel platforms, suggesting the promising application of liposomal hydrogel systems in longer-term therapeutics. The magnetic field, with low intensity (0.08 T), was found to stimulate the FA release from magnetic-responsive liposomal gelatin systems, increasing the release rates while shifting the FA release to a quasi-Fickian mechanism. The magnetic-responsive liposomal hydrogels developed in this work offer the possibility to magnetically activate drug release from these liposomal platforms based on a non-thermal related delivery strategy, paving the way for the development of novel and more efficient applications of MLVs and liposomal delivery systems in biomedicine.
Collapse
Affiliation(s)
- Luís Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipa Pires
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla A M Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Mou Y, Zhang P, Lai WF, Zhang D. Design and applications of liposome-in-gel as carriers for cancer therapy. Drug Deliv 2022; 29:3245-3255. [PMID: 36310364 DOI: 10.1080/10717544.2022.2139021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cancer has long been a hot research topic, and recent years have witnessed the incidence of cancer trending toward younger individuals with great socioeconomic burden. Even with surgery, therapeutic agents serve as the mainstay to combat cancer in the clinic. Intensive research on nanomaterials can overcome the shortcomings of conventional drug delivery approaches, such as the lack of selectivity for targeted regions, poor stability against degradation, and uncontrolled drug release behavior. Over the years, different types of drug carriers have been developed for cancer therapy. One of these is liposome-in-gel (LP-Gel), which has combined the merits of both liposomes and hydrogels, and has emerged as a versatile carrier for cancer therapy. LP-Gel hybrids have addressed the lack of stability of conventional liposomes against pH and ionic strength while displaying higher efficiency of delivery hydrophilic drugs as compared to conventional gels. They can be classified into three types according to their assembled structure, are characterized by their nontoxicity, biodegradability, and flexibility for clinical use, and can be mainly categorized based on their controlled release, transmucosal delivery, and transdermal delivery properties for anticancer therapy. This review covers the recent progress on the applications of LP-Gel hybrids for anticancer therapy.
Collapse
Affiliation(s)
- Yixuan Mou
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
10
|
Nguyen TTT, Haam S, Park JS, Lee SW. Cysteine-Encapsulated Liposome for Investigating Biomolecular Interactions at Lipid Membranes. Int J Mol Sci 2022; 23:ijms231810566. [PMID: 36142476 PMCID: PMC9500635 DOI: 10.3390/ijms231810566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The development of a strategy to investigate interfacial phenomena at lipid membranes is practically useful because most essential biomolecular interactions occur at cell membranes. In this study, a colorimetric method based on cysteine-encapsulated liposomes was examined using gold nanoparticles as a probe to provide a platform to report an enzymatic activity at lipid membranes. The cysteine-encapsulated liposomes were prepared with varying ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol through the hydration of lipid films and extrusions in the presence of cysteine. The size, composition, and stability of resulting liposomes were analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) spectroscopy, and UV-vis spectrophotometry. The results showed that the increased cholesterol content improved the stability of liposomes, and the liposomes were formulated with 60 mol % cholesterol for the subsequent experiments. Triton X-100 was tested to disrupt the lipid membranes to release the encapsulated cysteine from the liposomes. Cysteine can induce the aggregation of gold nanoparticles accompanying a color change, and the colorimetric response of gold nanoparticles to the released cysteine was investigated in various media. Except in buffer solutions at around pH 5, the cysteine-encapsulated liposomes showed the color change of gold nanoparticles only after being incubated with Triton X-100. Finally, the cysteine-encapsulated liposomal platform was tested to report the enzymatic activity of phospholipase A2 that hydrolyzes phospholipids in the membrane. The hydrolysis of phospholipids triggered the release of cysteine from the liposomes, and the released cysteine was successfully detected by monitoring the distinct red-to-blue color change of gold nanoparticles. The presence of phospholipase A2 was also confirmed by the appearance of a peak around 690 nm in the UV-vis spectra, which is caused by the cysteine-induced aggregation of gold nanoparticles. The results demonstrated that the cysteine-encapsulated liposome has the potential to be used to investigate biological interactions occurring at lipid membranes.
Collapse
Affiliation(s)
- Trang Thi Thuy Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Joon-Seo Park
- Department of Chemistry, Eastern University, St. Davids, PA 19087, USA
- Correspondence: (J.-S.P.); (S.-W.L.)
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Korea
- Correspondence: (J.-S.P.); (S.-W.L.)
| |
Collapse
|
11
|
Inulin-Modified Liposomes as a Novel Delivery System for Cinnamaldehyde. Foods 2022; 11:foods11101467. [PMID: 35627037 PMCID: PMC9140198 DOI: 10.3390/foods11101467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
Cinnamaldehyde as an antioxidant was encapsulated in inulin-modified nanoliposomes in order to improve its physical and antioxidant stability. The microstructure, particle size and volume distribution of cinnamaldehyde liposomes were characterized by atomic force microscopy (AFM) and dynamic light scattering (DLS). The particle size and polydispersion index (PDI) values of the inulin modified liposomes were 72.52 ± 0.71 nm and 0.223 ± 0.031, respectively. The results showed that the liposomes after surface modification with inulin remained spherical. Raman and Fourier transform infrared (FTIR) spectra analysis showed that hydrogen bonds were formed between the inulin and the liposome membrane. Inulin binding also restricted the freedom of movement of lipid molecules and enhanced the order of the hydrophobic core of the membrane and the polar headgroup region in lipid molecules. Therefore, the addition of different concentrations of inulin influenced the permeability of the liposome bilayer membrane. However, when inulin was excessive, the capacity of the bilayer membrane to load the cinnamaldehyde was reduced, and the stability of the system was reduced. Additionally, the encapsulation efficiency (EE) and retention rate (RR) of cinnamaldehyde from inulin-modified liposomes during storage were determined. The EE value of the inulin modified liposomes was 70.71 ± 0.53%. The liposomes with 1.5% inulin concentration had the highest retention rate (RR) and the smallest particle size during storage at 4 °C. The addition of inulin also enhanced the thermal stability of the liposomes. Based on the results, the surface modification improved the oxidation stability of liposomes, especially the DPPH scavenging ability. In conclusion, these results might help to develop inulin as a potential candidate for the effective modification of the surface of liposomes and provide data and conclusions for it.
Collapse
|
12
|
Mokdad R, Seguin C, Fournel S, Frisch B, Heurtault B, Hadjsadok A. Anti-inflammatory effects of free and liposome-encapsulated Algerian thermal waters in RAW 264.7 macrophages. Int J Pharm 2022; 614:121452. [PMID: 35007687 DOI: 10.1016/j.ijpharm.2022.121452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
The main objectives of this work were to formulate liposomes encapsulating highly mineralized thermal waters (TWs) and to study anti-inflammatory effect of free and encapsulated thermal waters on RAW 264.7 macrophage cells stimulated with lipopolysaccharide (LPS). TWs-loaded conventional and deformable liposomes (TWs-Lip and TWs-DLip) were prepared by sonication and extrusion, respectively. They were considered for their vesicle size, zeta potential, entrapment efficiency, physical stability and in vitro anti-inflammatory effect. Formulated liposome suspensions have a low polydispersity and nanometric size range with zeta potential values close to zero. The vesicle size was stable for 30 days. Entrapment efficiency of TWs was above 90% in conventional liposomes and 70% in deformable liposomes. Pretreatment of LPS-stimulated murine macrophages, with free and liposome-encapsulated TWs, resulted in a significant reduction in nitric oxide (NO) production and modulated tumor necrosis factor-α (TNF-α) production suggesting an anti-inflammatory effect which was even more striking with TWs-Lip and TWs-DLip. Liposome formulations may offer a suitable approach for transdermal delivery of TWs, indicated in inflammatory skin diseases.
Collapse
Affiliation(s)
- Romaissaa Mokdad
- Laboratoire de l'analyse fonctionnelle des procédés chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida 1, 270 route de Soumaa, 09000 Blida, Algeria; 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Cendrine Seguin
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Sylvie Fournel
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Benoît Frisch
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Béatrice Heurtault
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Abdelkader Hadjsadok
- Laboratoire de l'analyse fonctionnelle des procédés chimiques, Département de génie des procédés, Faculté de Technologie, Université de Blida 1, 270 route de Soumaa, 09000 Blida, Algeria
| |
Collapse
|
13
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
14
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|