1
|
Nuzzo JL, Pinto MD, Kirk BJC, Nosaka K. Resistance Exercise Minimal Dose Strategies for Increasing Muscle Strength in the General Population: an Overview. Sports Med 2024; 54:1139-1162. [PMID: 38509414 PMCID: PMC11127831 DOI: 10.1007/s40279-024-02009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Many individuals do not participate in resistance exercise, with perceived lack of time being a key barrier. Minimal dose strategies, which generally reduce weekly exercise volumes to less than recommended guidelines, might improve muscle strength with minimal time investment. However, minimal dose strategies and their effects on muscle strength are still unclear. Here our aims are to define and characterize minimal dose resistance exercise strategies and summarize their effects on muscle strength in individuals who are not currently engaged in resistance exercise. The minimal dose strategies overviewed were: "Weekend Warrior," single-set resistance exercise, resistance exercise "snacking," practicing the strength test, and eccentric minimal doses. "Weekend Warrior," which minimizes training frequency, is resistance exercise performed in one weekly session. Single-set resistance exercise, which minimizes set number and session duration, is one set of multiple exercises performed multiple times per week. "Snacks," which minimize exercise number and session duration, are brief bouts (few minutes) of resistance exercise performed once or more daily. Practicing the strength test, which minimizes repetition number and session duration, is one maximal repetition performed in one or more sets, multiple days per week. Eccentric minimal doses, which eliminate or minimize concentric phase muscle actions, are low weekly volumes of submaximal or maximal eccentric-only repetitions. All approaches increase muscle strength, and some approaches improve other outcomes of health and fitness. "Weekend Warrior" and single-set resistance exercise are the approaches most strongly supported by current research, while snacking and eccentric minimal doses are emerging concepts with promising results. Public health programs can promote small volumes of resistance exercise as being better for muscle strength than no resistance exercise at all.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Benjamin J C Kirk
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
2
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
3
|
Enes A, Leonel DF, Oneda G, Alves RC, Zandoná-Schmidt BA, Ferreira LHB, Prestes J, McAnulty SR, Souza-Junior TP. Muscular Adaptations and Psychophysiological Responses in Resistance Training Systems. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:982-989. [PMID: 35998251 DOI: 10.1080/02701367.2022.2096843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Purpose: We investigated the effect of drop-set (DS) and rest-pause (RP) systems compared to traditional (TRAD) resistance training on muscular adaptations and psychophysiological responses. Methods: Twenty-seven trained men (age: 23.4 ± 3.4 years; resistance training experience: 5.1 ± 1.7 years) were assigned to experimental groups (DS: n = 9, 3 × 10 repetitions at 75% with 6 additional repetitions at 55% 1RM; RP: n = 9, 3 × 16 repetitions at 75% 1RM; TRAD: n = 9, 4 × 12 repetitions at 70% 1RM) and performed lower-limb training sessions twice a week for 8 weeks. Maximum dynamic strength (1RM) and localized muscular endurance (LME) tests were performed in 45° leg press at baseline and post intervention. Session-RPE was assessed 15 min after the end of each training session. Results: A significant time vs. group interaction was observed for 1RM (p = .012) and LME (p < .0001). Post hoc comparisons revealed that RP elicited greater gains in muscular strength than DS (p = .044) but not TRAD (p = .116); and DS elicited greater LME than RP (p < .001) and TRAD (p = .001). No statistical differences were observed in Session-RPE and training strain between conditions; however, RP promoted higher training monotony (p = .036) than DS and TRAD. Conclusions: The DS and RP systems have a potential role in training programs aiming to promote muscle strength and localized muscular endurance adaptations, respectively. However, RP may promote higher training monotony than DS and TRAD, even though the other psychophysiological responses are similar.
Collapse
Affiliation(s)
| | - Danilo Fonseca Leonel
- Federal University of Paraná (UFPR)
- Federal University of Jequitinhonha and Mucuri Valleys (UFVJM)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sødal LK, Kristiansen E, Larsen S, van den Tillaar R. Effects of Drop Sets on Skeletal Muscle Hypertrophy: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:66. [PMID: 37523092 PMCID: PMC10390395 DOI: 10.1186/s40798-023-00620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND One of the most popular time-efficient training methods when training for muscle hypertrophy is drop sets, which is performed by taking sets to concentric muscle failure at a given load, then making a drop by reducing the load and immediately taking the next set to concentric or voluntary muscle failure. The purpose of this systematic review and meta-analysis was to compare the effects of drop sets over traditional sets on skeletal muscle hypertrophy. METHODS This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The SPORTDiscus and MEDLINE/PubMed databases were searched on April 9, 2022, for all studies investigating the effects of the drop set training method on muscle hypertrophy that meets the predefined inclusion criteria. Comprehensive Meta-Analysis Version 3 (Biostat Inc., Englewood Cliffs, NJ, USA) was used to run the statistical analysis. Publication bias was assessed through visual inspection of the funnel plots for asymmetry and statistically by Egger's regression test with an alpha level of 0.10. RESULTS Six studies met the predefined inclusion criteria. The number of participants in the studies was 142 (28 women and 114 men) with an age range of 19.2-27 years. The average sample size was 23.6 ± 10.9 (range 9-41). Five studies were included in the quantitative synthesis. Meta-analysis showed that both the drop set and traditional training groups increased significantly from pre- to post-test regarding muscle hypertrophy (drop set standardized mean difference: 0.555, 95% CI 0.357-0.921, p < 0.0001; traditional set standardized mean difference: 0.437, 95% CI 0.266-0.608, p < 0.0001). No significant between-group difference was found (standardized mean difference: 0.155, 95% CI - 0.199 to - 0.509, p = 0.392). CONCLUSIONS The results of this systematic review and meta-analysis indicate that drop sets present an efficient strategy for maximizing hypertrophy in those with limited time for training. There was no significant difference in hypertrophy measurements between the drop set and traditional training groups, but some of the drop set modalities took half to one-third of the time compared with traditional training.
Collapse
Affiliation(s)
| | - Eirik Kristiansen
- Department of Sport Sciences and Physical Education, Nord University, Levanger, Norway
| | - Stian Larsen
- Department of Sport Sciences and Physical Education, Nord University, Levanger, Norway
| | | |
Collapse
|
5
|
Nuzzo JL, Pinto MD, Nosaka K. Connective Adaptive Resistance Exercise (CARE) Machines for Accentuated Eccentric and Eccentric-Only Exercise: Introduction to an Emerging Concept. Sports Med 2023; 53:1287-1300. [PMID: 37097413 PMCID: PMC10127187 DOI: 10.1007/s40279-023-01842-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Eccentric resistance exercise emphasizes active muscle lengthening against resistance. In the past 15 years, researchers and practitioners have expressed considerable interest in accentuated eccentric (i.e., eccentric overload) and eccentric-only resistance exercise as strategies for enhancing performance and preventing and rehabilitating injuries. However, delivery of eccentric resistance exercise has been challenging because of equipment limitations. Previously, we briefly introduced the concept of connected adaptive resistance exercise (CARE)-the integration of software and hardware to provide a resistance that adjusts in real time and in response to the individual's volitional force within and between repetitions. The aim of the current paper is to expand this discussion and explain the potential for CARE technology to improve the delivery of eccentric resistance exercise in various settings. First, we overview existing resistance exercise equipment and highlight its limitations for delivering eccentric resistance exercise. Second, we describe CARE and explain how it can accomplish accentuated eccentric and eccentric-only resistance exercise in a new way. We supplement this discussion with preliminary data collected with CARE technology in laboratory and non-laboratory environments. Finally, we discuss the potential for CARE technology to deliver eccentric resistance exercise for various purposes, e.g., research studies, rehabilitation programs, and home-based or telehealth interventions. Overall, CARE technology appears to permit completion of eccentric resistance exercise feasibly in both laboratory and non-laboratory environments and thus has implications for researchers and practitioners in the fields of sports medicine, physiotherapy, exercise physiology, and strength and conditioning. Nevertheless, formal investigations into the impact of CARE technology on participation in eccentric resistance exercise and clinical outcomes are still required.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
6
|
Muscle strength and activity in men and women performing maximal effort biceps curl exercise on a new machine that automates eccentric overload and drop setting. Eur J Appl Physiol 2023; 123:1381-1396. [PMID: 36856799 DOI: 10.1007/s00421-023-05157-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Connected adaptive resistance exercise (CARE) machines are new equipment purported to adjust resistances within and between repetitions to make eccentric (ECC) overload and drop sets more feasible. Here, we examined muscle strength, endurance, electromyographic activity (EMG), and perceptions of fatigue during unilateral bicep curl exercise with a CARE machine and dumbbells. We also tested for sex differences in muscle fatigability. METHODS Twelve men and nine women attempted 25 consecutive coupled maximal ECC-concentric (CON) repetitions (ECCmax-CONmax) on a CARE machine. Participants also completed a CON one repetition maximum (1RM) and repetitions-to-failure tests with 60 and 80% 1RM dumbbells. RESULTS Maximal strength on the CARE machine was greater during the ECC than CON phase, illustrating ECC overload (men: 27.1 ± 6.8, 14.7 ± 2.0 kg; women: 16.7 ± 4.7, 7.6 ± 1.4 kg). These maximal resistances demanded large neural drive. Biceps brachii EMG amplitude relative to CON dumbbell 1RM EMG was 140.1 ± 40.2% (ECC) and 96.7 ± 25.0% (CON) for men and 165.1 ± 61.1% (ECC) and 89.4 ± 20.4% (CON) for women. The machine's drop setting algorithm permitted 25 consecutive maximal effort repetitions without stopping. By comparison, participants completed fewer repetitions-to-failure with the submaximal dumbbells (e.g., 60%1RM-men: 12.3 ± 4.4; women: 15.6 ± 4.7 repetitions). By the 25th CARE repetition, participants reported heightened biceps fatigue (~ 8 of 10) and exhibited large decreases in ECC strength (men: 63.5 ± 11.6%; women: 44.1 ± 8.0%), CON strength (men: 77.5 ± 6.5%; women: 62.5 ± 12.8%), ECC EMG (men: 38.6 ± 20.4%; women: 26.2 ± 18.3%), and CON EMG (men: 36.8 ± 20.4%; women: 23.1 ± 18.4%). CONCLUSION ECC overload and drop sets occurred automatically and feasibly with CARE technology and caused greater strength and EMG loss in men than women.
Collapse
|
7
|
Twelve Weeks Rest–Pause and Traditional Resistance Training: Effects on Myokines and Performance Adaptations among Recreationally Trained Men. STRESSES 2023. [DOI: 10.3390/stresses3010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A rest–pause (RP) technique involves performing one or more repetitions at high resistance to failure, followed by a short rest before performing one or more repetitions. These techniques can affect neuromuscular conditions and fatigue by changing the rest time between repetitions. This study compared the effect of 12 weeks of RP and traditional resistance training (TRT) on myokines (myostatin (MSTN), follistatin (FLST) and insulin-like growth factor-1 (IGF-1)) and functional adaptations. The study recruited 29 men between the ages of 20 and 30 who had performed resistance training for at least 6 to 12 months. Participants were randomly divided into three groups: RP, TRT, and control; resistance training was performed 3 days per week for 12 weeks. The training methods of the two groups were largely similar. The results showed that RP increased IGF-1 and FLST/MSTN more than the TRT group (% change = 19.04, % change = 37.71), and only the RP and TRT groups had significant changes in the FLST/MSTN ratio compared to the control group (p < 0.001 and p = 0.02, respectively). In addition, FLST levels increased and MSTN decreased in the RP and TRT groups, but the rate of change in FLST was significant in the RP and TRT groups compared to the control group (p = 0.002 and p = 0.001, respectively). Leg press and bench press strength, and arm and thigh muscular cross-sectional area (MCSA) increased more in the RP group than in the others, and the percentage of body fat (PBF) decreased significantly. The change between strength and MCSA was significant (p ≤ 0.05), and the PBF change in RP and TRT compared to the control (ES RP group = 0.43; ES TRT group = 0.55; control group ES = 0.09) was significant (p = 0.005, p = 0.01; respectively). Based on the results, the RP training technique significantly affects strength and muscle hypertrophy more than the TRT method, which can be included in the training system to increase strength and hypertrophy.
Collapse
|
8
|
Nuzzo JL, Pinto MD, Nosaka K. Muscle fatigue during maximal eccentric-only, concentric-only, and eccentric-concentric bicep curl exercise with automated drop setting. Scand J Med Sci Sports 2023; 33:857-871. [PMID: 36752667 DOI: 10.1111/sms.14330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Connected adaptive resistance exercise (CARE) machines are new technology purported to adjust resistance exercise loads in response to muscle fatigue. The present study examined muscle fatigue (strength loss, fatigue perceptions) during maximal eccentric-only (ECCmax -only), concentric-only (CONmax -only), and coupled ECC-CON (ECCmax -CONmax ) bicep curl exercise on a CARE machine. Eleven men and nine women completed the three protocols in separate sessions and in random order. All protocols included 4 sets of 20 maximal effort muscle contractions. Strength loss was calculated as Set 4 set end load minus Set 1 highest load. The CARE machine's algorithm adjusted resistances automatically, permitting continued maximal effort repetitions without stopping. Consequently, all protocols caused substantial fatigue. Women were most susceptible to strength loss from exercise that included maximal efforts in the ECC phase, whereas men were most susceptible to strength loss from exercise that included maximal efforts in the CON phase. With ECCmax -only exercise, ECC strength loss (mean ± SD) was similar between men (55.9 ± 14.1%) and women (56.4 ± 10.8%). However, with CONmax -only exercise, men and women experienced 55.6 ± 6.2% and 35.3 ± 8.7% CON strength loss, respectively. With ECCmax -CONmax exercise, men experienced greater ECC (62.9 ± 7.7%) and CON (77.0 ± 5.3%) strength loss than women (ECC: 48.5 ± 15.7%, CON: 66.2 ± 12.1%). Heightened perceptions of fatigue and pain of the exercised limb were reported after all protocols. Women generally reported more biceps pain than men. The results illustrate CARE technology delivers ECC-only and accentuated ECC exercise feasibly. Acute responses to repeated maximal effort bicep curl exercise with such technology might differ between men and women depending on muscle contraction type.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
9
|
Hackett D, Ghayomzadeh M, Farrell S, Davies T, Sabag A. Influence of total repetitions per set on local muscular endurance: A systematic review with meta-analysis and meta-regression. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Comment on: "Stepwise Load Reduction Training: A New Training Concept for Skeletal Muscle and Energy Systems". Sports Med 2022; 52:2297-2300. [PMID: 35247204 PMCID: PMC8897737 DOI: 10.1007/s40279-022-01661-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
|
11
|
Ozaki H, Abe T, Loenneke JP, Katamoto S. Response to: Comment on "Stepwise Load Reduction Training: A New Training Concept for Skeletal Muscle and Energy Systems". Sports Med 2022; 52:2301-2302. [PMID: 35247205 DOI: 10.1007/s40279-022-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hayao Ozaki
- School of Sport and Health Science, Tokai Gakuen University, 21-233, Nishinohora, Ukigai, Miyoshi, Aichi, Japan.
| | - Takashi Abe
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, School of Applied Sciences, The University of Mississippi, University, MS, USA
| | - Shizuo Katamoto
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
12
|
Mang ZA, Ducharme JB, Mermier C, Kravitz L, de Castro Magalhaes F, Amorim F. Aerobic Adaptations to Resistance Training: The Role of Time under Tension. Int J Sports Med 2022; 43:829-839. [PMID: 35088396 DOI: 10.1055/a-1664-8701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, skeletal muscle adaptations to exercise are perceived through a dichotomous lens where the metabolic stress imposed by aerobic training leads to increased mitochondrial adaptations while the mechanical tension from resistance training leads to myofibrillar adaptations. However, there is emerging evidence for cross over between modalities where aerobic training stimulates traditional adaptations to resistance training (e.g., hypertrophy) and resistance training stimulates traditional adaptations to aerobic training (e.g., mitochondrial biogenesis). The latter is the focus of the current review in which we propose high-volume resistance training (i.e., high time under tension) leads to aerobic adaptations such as angiogenesis, mitochondrial biogenesis, and increased oxidative capacity. As time under tension increases, skeletal muscle energy turnover, metabolic stress, and ischemia also increase, which act as signals to activate the peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which is the master regulator of mitochondrial biogenesis. For practical application, the acute stress and chronic adaptations to three specific forms of high-time under tension are also discussed: Slow-tempo, low-intensity resistance training, and drop-set resistance training. These modalities of high-time under tension lead to hallmark adaptations to resistance training such as muscle endurance, hypertrophy, and strength, but little is known about their effect on traditional aerobic training adaptations.
Collapse
Affiliation(s)
- Zachary Aaron Mang
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Jeremy B Ducharme
- Health, Exercise, and Sports Science, University of New Mexico - Albuquerque, Albuquerque, United States
| | - Christine Mermier
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Len Kravitz
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| | - Flavio de Castro Magalhaes
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Fabiano Amorim
- Health, Exercise, and Sports Science, University of New Mexico, Albuquerque, United States
| |
Collapse
|
13
|
Rodriguez J, Hanney WJ, Kolber MJ, Cheatham S. Utility of Back-Off Sets: An Overview. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Sato S, Yoshida R, Kiyono R, Yahata K, Yasaka K, Nosaka K, Nakamura M. Cross-education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors. BMC Sports Sci Med Rehabil 2021; 13:105. [PMID: 34488881 PMCID: PMC8419922 DOI: 10.1186/s13102-021-00298-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Background Unilateral resistance training increases the strength of the contralateral non-trained homologous muscles known as the cross-education effect. We tested the hypothesis that unilateral eccentric resistance training (ET) would induce greater and longer-lasting cross-education effect when compared with concentric resistance training (CT). Methods Young (20–23 y) participants were allocated to ET (5 males, 4 females) or CT (5 males, 4 females) group that performed unilateral progressive ET or CT of the elbow flexors, twice a week for 5 weeks (10 sessions) followed by a 5-week detraining, and control group (7 males, 6 females) that did not perform any training. Maximum voluntary isometric contraction torque of the elbow flexors (MVIC), one-repetition maximum of concentric dumbbell curl (1-RM), and biceps brachii and brachialis muscle thickness (MT) were measured from the trained and non-trained arms before, several days after the last training session, and 5 weeks later. A ratio between the trained and non-trained arms for the change in MVIC or 1-RM from pre- to post-training (cross-body transfer ratio) was compared between ET and CT groups. Results The control group did not show significant changes in any variables. Both ET and CT increased (P < 0.05) MVIC (22.5 ± 12.3 % vs. 26.0 ± 11.9 %) and 1-RM (28.8 ± 6.6 % vs. 35.4 ± 12.9 %) of the trained arm without a significant difference between groups. MVIC was maintained after detraining for ET but returned to the baseline for CT, and 1-RM was maintained after detraining for both ET and CT. For the non-trained arm, MVIC (22.7 ± 17.9 % vs. 12.2 ± 10.2 %) and 1-RM (19.9 ± 14.6 % vs. 24.0 ± 10.6 %) increased similarly (P > 0.05) after ET and CT, and MVIC returned to the baseline after detraining, but 1-RM was maintained for both groups. An increase (P < 0.05) in MT was found only after ET for the trained arm (7.1 ± 6.1 %). The cross-body transfer ratio for MVIC was greater (P < 0.05) for ET (90.9 ± 46.7 %) than CT (49.0 ± 30.0 %). Conclusions These results did not support the hypothesis and showed similar changes in the most of the variables between ET and CT for the trained and non-trained arms, and strong cross-education effects on MVIC and 1-RM, but less detraining effect after ET than CT on MVIC of the trained arm. Trial registration University Hospital Medical Information Network Clinical Trials Registry (UMIN000044477; Jun 09, 2021).
Collapse
Affiliation(s)
- Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan. .,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
15
|
Enes A, Alves RC, Schoenfeld BJ, Oneda G, Perin SC, Trindade TB, Prestes J, Souza-Junior TP. Rest-pause and drop-set training elicit similar strength and hypertrophy adaptations compared to traditional sets in resistance-trained males. Appl Physiol Nutr Metab 2021; 46:1417-1424. [PMID: 34260860 DOI: 10.1139/apnm-2021-0278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper aimed to compare the effect of drop-set (DS) and rest-pause (RP) systems versus traditional resistance training (TRT) with equalized total training volume on maximum dynamic strength (1RM) and thigh muscle thickness (MT).Twenty-eight resistance-trained males were randomly assigned to either RP (n = 10), DS (n = 9) or TRT (n = 9) protocols performed twice a week for 8 weeks. 1RM and MT of the proximal, middle and distal portions of the lateral thigh were assessed at baseline and post intervention.A significant time x group interaction was observed for 1RM (P = 0.025) in the barbell back squat after 8-weeks. Post hoc comparisons revealed that RP promoted higher 1RM than TRT (P = 0.001); no statistical differences in strength were observed between the other conditions. A significant main effect of time was revealed for MT at the proximal (P = 0.0001) and middle (P = 0.0001) aspects of the lateral thigh for all training groups; however, the distal portion did not show a time effect (P = 0.190). There were no between-group interactions for MT. Our findings suggest that RP promotes slightly superior strength-related improvements compared to TRT, but hypertrophic adaptations are similar between conditions. Novelty bullets • Rest-pause elicited a slightly superior benefit for strength adaptations compared to traditional resistance training. • Resistance training systems do not promote superior hypertrophic adaptations when total training volume is equalized. • Muscle thickness in distal portion of thigh are similar to baseline. Although modest, effect sizes tended to favor rest-pause.
Collapse
Affiliation(s)
- Alysson Enes
- Federal University of Parana, 28122, Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Department of Physical Education, Curitiba, PR, Brazil;
| | - Ragami Chaves Alves
- Federal University of Parana, 28122, Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Department of Physical Education, Curitiba, PR, Brazil;
| | - Brad Jon Schoenfeld
- Exercise Science Department, CUNY Lehman College, Bronx, New York, USA, New York, United States;
| | - Gustavo Oneda
- Federal University of Parana, 28122, Exercise Performance Research Group (CEPEFIS), Department of Physical Education, Curitiba, PR, Brazil;
| | - Samuel C Perin
- Federal University of Parana, 28122, Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Department of Physical Education, Curitiba, PR, Brazil;
| | - Thiago Barbosa Trindade
- Universidade Católica de Brasília, 28106, Graduation Program on Physical Education, Q.S. 07, Lote 01, EPTC - Bloco G., Taguatinga, Canada, 71966-700;
| | - Jonato Prestes
- Catholic University of Brasilia, Physical Education, QS 07, Lote 01 - Bloco G, Águas Claras, Brazil, 71966-700;
| | - Tacito P Souza-Junior
- Federal University of Parana, 28122, Metabolism, Nutrition and Resistance Training Research Group (GPMENUTF), Department of Physical Education, Curitiba, PR, Brazil.,Appalachian State University, 1801, Health and Exercise Science, Boone, North Carolina, United States;
| |
Collapse
|
16
|
Iversen VM, Norum M, Schoenfeld BJ, Fimland MS. No Time to Lift? Designing Time-Efficient Training Programs for Strength and Hypertrophy: A Narrative Review. Sports Med 2021; 51:2079-2095. [PMID: 34125411 PMCID: PMC8449772 DOI: 10.1007/s40279-021-01490-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/02/2023]
Abstract
Abstract Lack of time is among the more commonly reported barriers for abstention from exercise programs. The aim of this review was to determine how strength training can be most effectively carried out in a time-efficient manner by critically evaluating research on acute training variables, advanced training techniques, and the need for warm-up and stretching. When programming strength training for optimum time-efficiency we recommend prioritizing bilateral, multi-joint exercises that include full dynamic movements (i.e. both eccentric and concentric muscle actions), and to perform a minimum of one leg pressing exercise (e.g. squats), one upper-body pulling exercise (e.g. pull-up) and one upper-body pushing exercise (e.g. bench press). Exercises can be performed with machines and/or free weights based on training goals, availability, and personal preferences. Weekly training volume is more important than training frequency and we recommend performing a minimum of 4 weekly sets per muscle group using a 6–15 RM loading range (15–40 repetitions can be used if training is performed to volitional failure). Advanced training techniques, such as supersets, drop sets and rest-pause training roughly halves training time compared to traditional training, while maintaining training volume. However, these methods are probably better at inducing hypertrophy than muscular strength, and more research is needed on longitudinal training effects. Finally, we advise restricting the warm-up to exercise-specific warm-ups, and only prioritize stretching if the goal of training is to increase flexibility. This review shows how acute training variables can be manipulated, and how specific training techniques can be used to optimize the training response: time ratio in regard to improvements in strength and hypertrophy. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vegard M Iversen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Martin Norum
- Independent Researcher, Norum Helse AS, Oslo, Norway
| | | | - Marius S Fimland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Unicare Helsefort Rehabilitation Centre, Rissa, Norway
| |
Collapse
|
17
|
LOPEZ PEDRO, RADAELLI RÉGIS, TAAFFE DENNISR, NEWTON ROBERTU, GALVÃO DANIELA, TRAJANO GABRIELS, TEODORO JULIANAL, KRAEMER WILLIAMJ, HÄKKINEN KEIJO, PINTO RONEIS. Resistance Training Load Effects on Muscle Hypertrophy and Strength Gain: Systematic Review and Network Meta-analysis. Med Sci Sports Exerc 2021; 53:1206-1216. [PMID: 33433148 PMCID: PMC8126497 DOI: 10.1249/mss.0000000000002585] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to analyze the effect of resistance training (RT) performed until volitional failure with low, moderate, and high loads on muscle hypertrophy and muscle strength in healthy adults and to assess the possible participant-, design-, and training-related covariates that may affect the adaptations. METHODS Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, MEDLINE, CINAHL, EMBASE, SPORTDiscus, and Web of Science databases were searched. Including only studies that performed sets to volitional failure, the effects of low- (>15 repetitions maximum (RM)), moderate- (9-15 RM), and high-load (≤8 RM) RTs were examined in healthy adults. Network meta-analysis was undertaken to calculate the standardized mean difference (SMD) between RT loads in overall and subgroup analyses involving studies deemed of high quality. Associations between participant-, design-, and training-related covariates with SMD were assessed by univariate and multivariate network meta-regression analyses. RESULTS Twenty-eight studies involving 747 healthy adults were included. Although no differences in muscle hypertrophy between RT loads were found in overall (P = 0.113-0.469) or subgroup analysis (P = 0.871-0.995), greater effects were observed in untrained participants (P = 0.033) and participants with some training background who undertook more RT sessions (P = 0.031-0.045). Muscle strength improvement was superior for both high-load and moderate-load compared with low-load RT in overall and subgroup analysis (SMD, 0.60-0.63 and 0.34-0.35, respectively; P < 0.001-0.003), with a nonsignificant but superior effect for high compared with moderate load (SMD, 0.26-0.28, P = 0.068). CONCLUSIONS Although muscle hypertrophy improvements seem to be load independent, increases in muscle strength are superior in high-load RT programs. Untrained participants exhibit greater muscle hypertrophy, whereas undertaking more RT sessions provides superior gains in those with previous training experience.
Collapse
Affiliation(s)
- PEDRO LOPEZ
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
| | - RÉGIS RADAELLI
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BRAZIL
| | - DENNIS R. TAAFFE
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
| | - ROBERT U. NEWTON
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
- School of Human Movement and Nutrition Sciences, University of Queensland, Queensland, AUSTRALIA
| | - DANIEL A. GALVÃO
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA
| | - GABRIEL S. TRAJANO
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, AUSTRALIA
| | - JULIANA L. TEODORO
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BRAZIL
| | | | - KEIJO HÄKKINEN
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - RONEI S. PINTO
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BRAZIL
| |
Collapse
|
18
|
Schoenfeld BJ, Grgic J, Van Every DW, Plotkin DL. Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports (Basel) 2021; 9:sports9020032. [PMID: 33671664 PMCID: PMC7927075 DOI: 10.3390/sports9020032] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Loading recommendations for resistance training are typically prescribed along what has come to be known as the “repetition continuum”, which proposes that the number of repetitions performed at a given magnitude of load will result in specific adaptations. Specifically, the theory postulates that heavy load training optimizes increases maximal strength, moderate load training optimizes increases muscle hypertrophy, and low-load training optimizes increases local muscular endurance. However, despite the widespread acceptance of this theory, current research fails to support some of its underlying presumptions. Based on the emerging evidence, we propose a new paradigm whereby muscular adaptations can be obtained, and in some cases optimized, across a wide spectrum of loading zones. The nuances and implications of this paradigm are discussed herein.
Collapse
Affiliation(s)
- Brad J. Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY 10468, USA; (D.W.V.E.); (D.L.P.)
- Correspondence:
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
| | - Derrick W. Van Every
- Department of Health Sciences, CUNY Lehman College, Bronx, NY 10468, USA; (D.W.V.E.); (D.L.P.)
| | - Daniel L. Plotkin
- Department of Health Sciences, CUNY Lehman College, Bronx, NY 10468, USA; (D.W.V.E.); (D.L.P.)
| |
Collapse
|
19
|
Kassiano W, de Vasconcelos Costa BD, Nunes JP, Aguiar AF, de Salles BF, Ribeiro AS. Are We Exploring the Potential Role of Specialized Techniques in Muscle Hypertrophy? Int J Sports Med 2021; 42:494-496. [PMID: 33506444 DOI: 10.1055/a-1342-7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Specialized resistance training techniques (e.g., drop-set, rest-pause) are commonly used by well-trained subjects for maximizing muscle hypertrophy. Most of these techniques were designed to allow a greater training volume (i.e., total repetitions×load), due to the supposition that it elicits greater muscle mass gains. However, many studies that compared the traditional resistance training configuration with specialized techniques seek to equalize the volume between groups, making it difficult to determine the inherent hypertrophic potential of these advanced strategies, as well as, this equalization restricts part of the practical extrapolation on these findings. In this scenario, the objectives of this manuscript were 1) to present the nuance of the evidence that deals with the effectiveness of these specialized resistance training techniques and - primarily - to 2) propose possible ways to explore the hypertrophic potential of such strategies with greater ecological validity without losing the methodological rigor of controlling possible intervening variables; and thus, contributing to increasing the applicability of the findings and improving the effectiveness of hypertrophy-oriented resistance training programs.
Collapse
Affiliation(s)
- Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | | | - João Pedro Nunes
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | | | - Belmiro F de Salles
- Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Silva Ribeiro
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil.,University of Northern Paraná, Londrina, PR, Brazil
| |
Collapse
|
20
|
Ozaki H, Abe T, Loenneke JP, Katamoto S. Stepwise Load Reduction Training: A New Training Concept for Skeletal Muscle and Energy Systems. Sports Med 2020; 50:2075-2081. [DOI: 10.1007/s40279-020-01341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Spitz RW, Bell ZW, Wong V, Yamada Y, Song JS, Buckner SL, Abe T, Loenneke JP. Strength testing or strength training: considerations for future research. Physiol Meas 2020; 41:09TR01. [PMID: 33017302 DOI: 10.1088/1361-6579/abb1fa] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maximal strength testing is often performed to assess the efficacy of training programs or as a way to prescribe exercise load. Generally, it is believed that high load exercise is superior to low load exercise at increasing absolute strength, however this is not always the case (i.e. strength increases similarly between groups). We hypothesized that some of the discrepancy in the literature may be related to performing the strength test itself. To investigate this further we reviewed the literature looking for studies comparing high load and low load exercise. The included studies were separated into 'no extra practice' and 'practice'. No extra practice means the strength test was only performed at pre and post whereas practice refers to additional strength tests performed throughout the training intervention. Our results indicated that the differences between high load and low load exercise can be reduced when the group training with a low load is allowed additional exposure to the maximal strength test. This suggests that repeated exposure to strength tests may augment low load training adaptations and influence the outcomes. We discuss potential moderators of this relationship (e.g. how low is the low load, complexity of the skill) and offer considerations for future research. Based on this it would be recommended that when investigating the effects of low load training strength tests should be limited to pre and post intervention or if a control group is utilized then the control group should receive the same number of exposures to the strength test.
Collapse
Affiliation(s)
- Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li Z, Zhang W, Wu W, Wei C, Chen X, Lin J. Is there cervical spine muscle weakness in patients with Hirayama disease? A morphological study about cross-sectional areas of muscles on MRI. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:1022-1028. [PMID: 31950351 DOI: 10.1007/s00586-020-06290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Patients with Hirayama disease (HD) present with a larger range of neck flexion and show signs of cervical spine instability. Cervical spine stability largely relies on cervical spine muscles. The purpose of this study was to compare the cross-sectional areas (CSAs) of cervical spine muscles between patients with HD and healthy controls, providing some insights into whether there is cervical spine muscle weakness and incongruence in HD patients. METHODS In this retrospective study, cervical spine muscles CSAs of 44 HD patients, as well as that of 44 age- and sex-matched healthy counterparts, were measured on the T2-weighted axial MR images. The ratios of cervical spine muscles CSA to the corresponding vertebral body areas, defined as R-CSAs, and the flexor/extensor CSA ratios were computed and compared between two groups. RESULTS Compared with healthy counterparts, R-CSAs of total cervical spine muscles, total extensors, superficial extensors, and deep flexors were significantly lower in HD patients. HD patients also demonstrated a significantly greater superficial flexor/superficial extensor CSA ratio than the healthy counterparts, indicating a mismatch between superficial flexors CSA and superficial extensors CSA in HD patients. CONCLUSIONS In this pioneering study, HD patients had decreased size in most cervical spine muscles and a mismatch between CSAs of superficial flexor and that of superficial extensors. These results indicate generalized weakness and incongruence of cervical spine muscles, which may predispose cervical spine of HD patients to a less stable situation. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Zhechen Li
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Wenming Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wence Wu
- Fujian Medical University, Fuzhou, Fujian, China
| | - Chao Wei
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Xuanwei Chen
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China
| | - Jianhua Lin
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
23
|
Krzysztofik M, Wilk M, Wojdała G, Gołaś A. Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4897. [PMID: 31817252 PMCID: PMC6950543 DOI: 10.3390/ijerph16244897] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Effective hypertrophy-oriented resistance training (RT) should comprise a combination of mechanical tension and metabolic stress. Regarding training variables, the most effective values are widely described in the literature. However, there is still a lack of consensus regarding the efficiency of advanced RT techniques and methods in comparison to traditional approaches. METHODS MEDLINE and SPORTDiscus databases were searched from 1996 to September 2019 for all studies investigating the effects of advanced RT techniques and methods on muscle hypertrophy and training variables. Thirty articles met the inclusion criteria and were consequently included for the quality assessment and data extraction. RESULTS Concerning the time-efficiency of training, the use of agonist-antagonist, upper-lower body supersets, drop and cluster sets, sarcoplasma stimulating training, employment of fast, but controlled duration of eccentric contractions (~2s), and high-load RT supplemented with low-load RT under blood flow restriction may provide an additional stimulus and an advantage to traditional training protocols. With regard to the higher degree of mechanical tension, the use of accentuated eccentric loading in RT should be considered. Implementation of drop sets, sarcoplasma stimulating training, low-load RT in conjunction with low-load RT under blood flow restriction could provide time-efficient solutions to increased metabolic stress. CONCLUSIONS Due to insufficient evidence, it is difficult to provide specific guidelines for volume, intensity of effort, and frequency of previously mentioned RT techniques and methods. However, well-trained athletes may integrate advanced RT techniques and methods into their routines as an additional stimulus to break through plateaus and to prevent training monotony.
Collapse
Affiliation(s)
- Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, ul. Mikolowska 72a, 40-065 Katowice, Poland; (M.W.); (G.W.); (A.G.)
| | | | | | | |
Collapse
|
24
|
Ozaki H, Kato G, Nakagata T, Nakamura T, Nakada K, Kitada T, Katamoto S, Naito H. Decrescent intensity training concurrently improves maximal anaerobic power, maximal accumulated oxygen deficit, and maximal oxygen uptake. Physiol Int 2019. [PMID: 31859528 DOI: 10.1556/2060.106.2019.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to investigate the effects of a gradually decreasing intensity training from that corresponding to maximal anaerobic power (MAnP) to that of near maximal oxygen uptake ([Formula: see text]) (decrescent intensity training) on MAnP, maximal accumulated oxygen deficit (MAOD), and [Formula: see text] in untrained young men. Seventeen untrained young men were randomly divided into either a training (TR; n = 9) group or a control (CON; n = 8) group. The TR group performed the decrescent intensity training, whereas the CON group did not perform any exercises. The mean training time per session throughout the training period was 275 ± 135 s. There was a Group × Time interaction for both absolute and relative (p < 0.01) values of [Formula: see text], MAOD, and MAnP. The TR group had significantly increased values for all variables after the 8-week training program, and the relative values of all variables were significantly higher in the TR group than in the CON group. Muscle thicknesses in the anterior and posterior aspects of the thigh and maximal isokinetic knee extension and flexion strengths improved only in the TR group (p < 0.05). A single-exercise training with gradually decreasing intensity from that corresponding to the MAnP to that of approximately 100% [Formula: see text] improves MAnP, MAOD, and [Formula: see text] concurrently, despite the short training time per session.
Collapse
Affiliation(s)
- H Ozaki
- School of Sport and Health Science, Tokai Gakuen University, Miyoshi, Japan.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - G Kato
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - T Nakagata
- Sportology Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - T Nakamura
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - K Nakada
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - T Kitada
- Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - S Katamoto
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - H Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| |
Collapse
|
25
|
|