1
|
Li Q, Liu Y, Ren B, Jin J, Zhang L, Wu C, Jin J. Recombinant neorudin and its active metabolite hirudin: the fate in vivo of a novel anticoagulant drug. Front Pharmacol 2024; 15:1443475. [PMID: 39355775 PMCID: PMC11442382 DOI: 10.3389/fphar.2024.1443475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Thrombosis, a prevalent condition, can provoke severe health issues like acute coronary syndrome (ACS), deep vein thrombosis (DVT), and pulmonary embolism (PE). The rising incidence of these diseases annually significantly impacts patient wellbeing and poses a substantial burden on healthcare systems. Recombinant neorudin is a developing anticoagulant drug for thrombotic diseases whose phase I clinical trials has been completed. The distribution pattern of it and its active metabolite, hirudin, in thrombi, blood surrounding the thrombus and peripheral blood remains uncertain. This study explored their distribution using a rat arteriovenous bypass thrombosis model, revealing higher neorudin levels in blood surrounding the thrombus and elevated hirudin concentrations in thrombus. Recombinant neorudin significantly increased Thrombin Time (TT) in both plasma surrounding the thrombus and peripheral blood, and reduced the wet weight of the thrombus. The results above demonstrated the anticoagulant and antithrombotic efficacy of recombinant neorudin in vivo. Give the distribution pattern of neorudin and hirudin, we hypothesized that neorudin was cleaved at the site of thrombus formation to produce hirudin, leading to the rapid accumulation of hirudin within local thrombi and resulting in a higher concentration inside the thrombus. This insight was crucial for understanding the action mechanisms of anticoagulants in thrombosis management and provided a valuable guidance for therapeutic strategies in treating thrombotic diseases.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yubin Liu
- Beijing Institute of Radiation Medicine, Beijing, China
- Division of (Bio) Pharmaceutics, Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, China
| | - Boyuan Ren
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiayan Jin
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lin Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - ChuTse Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - JiDe Jin
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
3
|
Liu SJ, Cao YL, Zhang C. Hirudin in the Treatment of Chronic Kidney Disease. Molecules 2024; 29:1029. [PMID: 38474541 DOI: 10.3390/molecules29051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a common public health concern. The global burden of CKD is increasing due to the high morbidity and mortality associated with it, indicating the shortcomings of therapeutic drugs at present. Renal fibrosis is the common pathology of CKD, which is characterized by glomerulosclerosis, renal tubular atrophy, and renal interstitial fibrosis. Natural hirudin is an active ingredient extracted from Hirudo medicinalis, which has been found to be the strongest natural specific inhibitor of thrombin. Evidence based on pharmacological data has shown that hirudin has important protective effects in CKD against diabetic nephrology, nephrotic syndrome, and renal interstitial fibrosis. The mechanisms of hirudin in treating CKD are mainly related to inhibiting the inflammatory response, preventing apoptosis of intrinsic renal cells, and inhibiting the interactions between thrombin and protease-activated receptors. In this review, we summarize the function and beneficial properties of hirudin for the treatment of CKD, and its underlying mechanisms.
Collapse
Affiliation(s)
- Sai-Ji Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Ling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Liu YB, Zhang L, Zhou XC, Zhou Y, Liu Y, Zheng C, Xu X, Geng PP, Hao CH, Zhao ZY, Wu CT, Jin JD. The Antithrombotic Effect of Recombinant Neorudin on Thrombi. Drug Des Devel Ther 2022; 16:1667-1678. [PMID: 35677424 PMCID: PMC9169676 DOI: 10.2147/dddt.s353088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Yu-Bin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Lin Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Xing-Chen Zhou
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Ying Zhou
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Yun Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Can Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Xiao Xu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Pan-Pan Geng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Chun-Hua Hao
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, People’s Republic of China
| | - Zhuan-You Zhao
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, People’s Republic of China
| | - Chu-Tse Wu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
- Correspondence: Chu-Tse Wu; Ji-De Jin, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, People’s Republic of China, Tel +86 1086-68158312; +86 1086-66931425, Email ;
| | - Ji-De Jin
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| |
Collapse
|
5
|
Ren K, Gong H, Huang J, Liu Y, Dong Q, He K, Tian L, Zhang F, Yu A, Wu C. Thrombolytic and anticoagulant effects of a recombinant staphylokinase-hirudin fusion protein. Thromb Res 2021; 208:26-34. [PMID: 34688099 DOI: 10.1016/j.thromres.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
A pure recombinant staphylokinase-hirudin fusion protein (SFH) was obtained by recombinant genetic engineering and purification techniques. The thrombolytic and anticoagulant activities of SFH were investigated using in vitro coagulation models and chromogenic assays. The results showed that intact SFH had targeted thrombolytic activity, and gained anticoagulant activity when cleaved by FXa. In addition, we investigated the pharmacodynamics of SFH in vivo using a variety of animal models, including a rat inferior vena cava thrombosis model, a rat coronary thrombosis model, a rabbit carotid artery thrombosis model and a canine coronary thrombosis model. We found that SFH had an obvious thrombolytic effect and could prevent and reduce re-embolization after thrombolysis and reduce the serious bleeding side effects caused by the combination of thrombolytic and anticoagulant drugs. The results suggest that SFH can be used for thrombolytic therapy in thromboembolic diseases.
Collapse
Affiliation(s)
- Keyun Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hao Gong
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei 430072, PR China
| | - Junjie Huang
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei 430072, PR China
| | - Yubin Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qiaoyan Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Kun He
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei 430072, PR China
| | - Lvming Tian
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei 430072, PR China
| | - Fan Zhang
- The Innovative Drug R & D Center of Wuhan Junke-Optical Valley, Wuhan, Hubei 430072, PR China
| | - Aiping Yu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Chutse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
6
|
Yu HX, Lin W, Yang K, Wei LJ, Chen JL, Liu XY, Zhong K, Chen X, Pei M, Yang HT. Transcriptome-Based Network Analysis Reveals Hirudin Potentiates Anti-Renal Fibrosis Efficacy in UUO Rats. Front Pharmacol 2021; 12:741801. [PMID: 34621173 PMCID: PMC8490886 DOI: 10.3389/fphar.2021.741801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Hirudin has been widely used in the treatment of antifibrosis. Previous studies have shown that hirudin can effectively improve the clinical remission rate of chronic kidney disease. However, the mechanism of its renal protection has not been systematically investigated. Methods: In this study, the reliability of UUO-induced renal interstitial fibrosis was evaluated by histopathological verification. High-throughput transcriptome sequencing was used to elucidate the molecular mechanism of hirudin, differentially expressed mRNAs were identified, and their functions were analyzed by GO analysis and GSEA. In addition, the RNA-seq results were validated by in vitro and vivo experiments. Results: We found 322 identical differential expressed genes (IDEs) in the UUO hirudin-treated group compared with the sham group. Functional enrichment analysis indicated that cellular amino acid metabolic processes were the most obvious enrichment pathways in biological processes. In terms of molecular functional enrichment analysis, IDEs were mainly enriched in coenzyme binding, pyridoxal phosphate binding and other pathways. In addition, microbody is the most obvious pathway for cellular components. A total of 115 signaling pathways were enriched, and AMPK, JAK-STAT, and PI3K-Akt signaling pathways were the important signaling pathways enriched. We found that PI3K, p-Akt, and mTOR expression were significantly reduced by hirudin treatment. In particular, our results showed that hirudin could induce a decrease in the expression of autophagy-related proteins such as P62, LC3, Beclin-1 in TGF-β1-induced NRK-52E cells. Conclusion: Our results suggest that hirudin may protect the kidney by ameliorating renal autophagy impairment through modulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hang-Xing Yu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- Kidney Disease Treatment Center, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Li-Juan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jun-Li Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ke Zhong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Liu L, Shen XJ, Xue LJ, Yao SK, Zhu JY. Submucosal hematoma with a wide range of lesions, severe condition and atypical clinical symptoms: A case report. World J Clin Cases 2021; 9:5683-5688. [PMID: 34307625 PMCID: PMC8281432 DOI: 10.12998/wjcc.v9.i20.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Submucosal hematoma (SH) is one of the rare causes of upper gastrointestinal bleeding. As a rare and critical disease in clinical practice, it should be paid more attention to by clinicians to avoid missed diagnosis and misdiagnosis. Most of the esophageal submucosal hematomas have clear causes, including retrosternal pain, dysphagia, etc. Here, we report a rare case of SH extending from the hypopharynx to the lower esophagus caused by oral administration of hirudin and panax notoginseng powder, with atypical clinical manifestation. Such a long submucosal hematoma has rarely been reported. CASE SUMMARY The patient was a 60-year-old male with a history of gastritis, hypertension, coronary heart disease, and coronary stent implantation. The patient developed chest tiredness and heartburn after taking 10 capsules of a homemade mixture of hirudin and notoginseng powder in the previous 2 d. He did not have hematemesis or black stool. Gastroscopy and chest computed tomography confirmed the diagnosis of SH, which ranged from the pharynx to the lower esophagus and was 35-40 cm in length. After the diagnosis was confirmed, we performed active conservative treatment on the patient, and the patient recovered well and remained asymptomatic during the 26-mo follow-up. CONCLUSION SH is rare, and cases with atypical clinical symptoms may lead to misdiagnosis and missed diagnosis. Ignorance of this disease can lead to serious clinical consequences. Conservative therapy is effective and the prognosis is good.
Collapse
Affiliation(s)
- Liang Liu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250011, Shandong Province, China
- Department of Gastroenterology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250011, Shandong Province, China
| | - Xing-Jie Shen
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250011, Shandong Province, China
- Department of Gastroenterology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250011, Shandong Province, China
| | - Li-Jun Xue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250011, Shandong Province, China
- Department of Gastroenterology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250011, Shandong Province, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing-Yu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250011, Shandong Province, China
- Department of Gastroenterology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250011, Shandong Province, China
| |
Collapse
|
8
|
Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, Yuqing G, Yanan L, Yue Z, Fu P, Cheng P. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives - A Review. Front Pharmacol 2021; 12:660757. [PMID: 33935784 PMCID: PMC8085555 DOI: 10.3389/fphar.2021.660757] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Hirudin, an acidic polypeptide secreted by the salivary glands of Hirudo medicinalis (also known as "Shuizhi" in traditional Chinese medicine), is the strongest natural specific inhibitor of thrombin found so far. Hirudin has been demonstrated to possess potent anti-thrombotic effect in previous studies. Recently, increasing researches have focused on the anti-thrombotic activity of the derivatives of hirudin, mainly because these derivatives have stronger antithrombotic activity and lower bleeding risk. Additionally, various bioactivities of hirudin have been reported as well, including wound repair effect, anti-fibrosis effect, effect on diabetic complications, anti-tumor effect, anti-hyperuricemia effect, effect on cerebral hemorrhage, and others. Therefore, by collecting and summarizing publications from the recent two decades, the pharmacological activities, pharmacokinetics, novel preparations and derivatives, as well as toxicity of hirudin were systematically reviewed in this paper. In addition, the clinical application, the underlying mechanisms of pharmacological effects, the dose-effect relationship, and the development potential in new drug research of hirudin were discussed on the purpose of providing new ideas for application of hirudin in treating related diseases.
Collapse
Affiliation(s)
- Chen Junren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xie Xiaofang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Huiqiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Gangmin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Yanpeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cao Xiaoyu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gao Yuqing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yanan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Peng Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Song CG, Bi LJ, Zhao JJ, Wang X, Li W, Yang F, Jiang W. The efficacy and safety of Hirudin plus Aspirin versus Warfarin in the secondary prevention of Cardioembolic Stroke due to Nonvalvular Atrial Fibrillation: A multicenter prospective cohort study. Int J Med Sci 2021; 18:1167-1178. [PMID: 33526977 PMCID: PMC7847633 DOI: 10.7150/ijms.52752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/22/2020] [Indexed: 11/05/2022] Open
Abstract
Background: To investigate the efficacy and safety of hirudin plus aspirin therapy compared with warfarin in the secondary prevention of cardioembolic stroke due to nonvalvular atrial fibrillation (NVAF). Methods: Patients with cardioembolic stroke due to NVAF were prospectively enrolled from 18 collaborating hospitals from Dec 2011 to June 2015. Fourteen days after stroke onset, eligible patients were assigned to the hirudin plus aspirin group (natural hirudin prescribed as the traditional Chinese medicine Maixuekang capsule, 0.75 g, three times daily, combined with aspirin 100 mg, once daily) or the warfarin group (dose-adjusted warfarin targeting international normalized ratio (INR) 2-3, with an initial daily dose of 1.25 mg). Patients were followed up at 1, 2, 3, 6, 9, and 12 months after stroke onset. Time in therapeutic range (TTR) was calculated according to Rosendaal methodology to evaluate the quality of INR management in the warfarin group. The primary efficacy endpoint was the recurrence of stroke within 12 months after stroke onset. Safety was assessed as the occurrence of the composite event "intracranial hemorrhage and other bleeding events, death, and other serious adverse events". The Cox proportional hazard model and Kaplan-Meier curve were used to analyze the efficacy and safety events. Results: A total of 221 patients entered final analysis with 112 patients in the hirudin plus aspirin group and 109 in the warfarin group. Over the whole duration of our study, TTR for patients taking warfarin was 66.5 % ± 21.5%. A significant difference was not observed in the recurrence of stroke between the two groups (3.57% vs. 2.75%; P = 0.728). The occurrence of safety events was significantly lower in the hirudin plus aspirin group (2.68% vs.10.09%; P = 0.024). The risk for efficacy event was similar between the two groups (hazard ratio (HR), 1.30; 95% confidence interval (CI), 0.29-5.80). The safety risk was significantly lower in the hirudin plus aspirin group (HR, 0.27; 95% CI, 0.07-0.95). Kaplan-Meier analysis revealed significant difference in the temporal distribution in safety events (P = 0.023) but not in stroke recurrence (P = 0.726). Conclusion: Significant difference in efficacy was not detected between warfarin group and hirudin plus aspirin group. Compared with warfarin, hirudin plus aspirin therapy had lower safety risk in the secondary prevention of cardioembolic stroke due to NVAF.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Jie Bi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuan Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Chen J, Shi W, Xu Y, Zhang H, Chen B. Hirudin prevents vascular endothelial cell apoptosis and permeability enhancement induced by the serum from rat with chronic renal failure through inhibiting RhoA/ROCK signaling pathway. Drug Dev Res 2020; 82:553-561. [PMID: 33345328 DOI: 10.1002/ddr.21773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022]
Abstract
Endothelial cells injury and activation contribute to arteriovenous fistula (AVF) stenosis. Hirudin (Hiru) can inhibit the activity of thrombin, which was reported to enhance endothelial cell permeability and promote vascular inflammatory responses. RhoA/ROCK signaling pathway is also important in regulating vascular endothelial permeability. This study aimed to investigate the role of Hiru on the viability and permeability of human umbilical vein endothelial cells (HUVECs) following stimulation of serum from rat with chronic renal failure (CRF) and illustrated the effects of Hiru on RhoA/ROCK signaling. Wistar rats were randomly divided into control group and CRF group. Serum from each group was collected to stimulate HUVECs. Proliferation capability was estimated with Cell Count Kit-8 (CCK-8) assay. Transwell assay was performed to determine permeability. Cell apoptosis was examined using Tunel staining. Telomere length and telomerase activity were determined by qPCR. Moreover, the expression of RhoA, ROCK1 and ROCK2 was estimated via western blot. Results showed that the serum from CRF rat significantly inhibited cell viability while enhanced cell permeability and apoptosis. Different concentrations of Hiru prevented the above effects caused by CRF serum. Additionally, Hiru recovered the CRF serum-induced decreased telomere length and telomerase activity. Hiru also inhibited the protein expression of RhoA, ROCK1 and ROCK2, which were activated by CRF serum. Moreover, the ROCK inhibitor, Y27632, exhibited similar effects with Hiru. In conclusion, Hiru-restored HUVECs cell viability, telomere length and telomerase activity, suppressed permeability and apoptosis in the presence of CRF serum might depend on inactivating the RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Wenbin Shi
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Yan Xu
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Huaming Zhang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Bo Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| |
Collapse
|
11
|
Wüstenhagen DA, Lukas P, Müller C, Aubele SA, Hildebrandt JP, Kubick S. Cell-free synthesis of the hirudin variant 1 of the blood-sucking leech Hirudo medicinalis. Sci Rep 2020; 10:19818. [PMID: 33188246 PMCID: PMC7666225 DOI: 10.1038/s41598-020-76715-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Synthesis and purification of peptide drugs for medical applications is a challenging task. The leech-derived factor hirudin is in clinical use as an alternative to heparin in anticoagulatory therapies. So far, recombinant hirudin is mainly produced in bacterial or yeast expression systems. We describe the successful development and application of an alternative protocol for the synthesis of active hirudin based on a cell-free protein synthesis approach. Three different cell lysates were compared, and the effects of two different signal peptide sequences on the synthesis of mature hirudin were determined. The combination of K562 cell lysates and the endogenous wild-type signal peptide sequence was most effective. Cell-free synthesized hirudin showed a considerably higher anti-thrombin activity compared to recombinant hirudin produced in bacterial cells.
Collapse
Affiliation(s)
- Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), 14476, Potsdam, Germany
| | - Phil Lukas
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489, Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489, Greifswald, Germany
| | - Simone A Aubele
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), 14476, Potsdam, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), 14476, Potsdam, Germany. .,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 16816, Neuruppin, Germany.
| |
Collapse
|
12
|
Rai K, Chu X, Bao Z, Liang Y, Wang X, Yang J, Xian M, Sun Y, Nian R. Enhanced anticoagulant activity of hirudin-i analogue co-expressed with arylsulfotransferase in periplasm of E. coli BL21(DE3). J Biotechnol 2020; 323:107-112. [PMID: 32795502 DOI: 10.1016/j.jbiotec.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Hirudin, a blood anticoagulant, is the most potent natural thrombin inhibitor of leech origin. Its application is limited because it is difficult to obtain abundant natural hirudin directly from the leech. Although some bioengineering methods can significantly increase the production of hirudin, the reduced efficacy of recombinant hirudin (rH) remains a critical shortcoming. The lack of sulfation of tyrosine 63 in rH is an important cause of its inadequate performance. This article is the first report of periplasmic co-expression of an rH-I analogue with arylsulfotransferase (ASST) in E. coli BL21(DE3). Co-expressed rH-I analogue with sulfate donor substrate (p-nitrophenyl sulfate potassium) showed anticoagulant (rabbit and goat serum) activity twice more than rH-I analogue expressed without ASST, indicating its potential periplasmic sulfation. Moreover, purified rH-I analogue showed above 4.5 times higher anticoagulant activity compared to therapeutic anti-thrombotic heparin (HE). At the same time, pH-dependent differential solubility was employed to purify rH analogues from fermentation broth, which is a simple, fast and inexpensive purification technology, and can potentially be used for larger scale purification. This will also greatly improve the application of rH in clinical treatment.
Collapse
Affiliation(s)
- Kamal Rai
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | | | - Zixian Bao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yunlong Liang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xingang Wang
- Shandong Fengjin Biopharmaceutical Co., Ltd., Yantai, China
| | - Junqing Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Wang Y, Liao S, Guan N, Liu Y, Dong K, Weber W, Ye H. A versatile genetic control system in mammalian cells and mice responsive to clinically licensed sodium ferulate. SCIENCE ADVANCES 2020; 6:eabb9484. [PMID: 32821842 PMCID: PMC7413729 DOI: 10.1126/sciadv.abb9484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Dynamically adjustable gene- and cell-based therapies are recognized as next-generation medicine. However, the translation of precision therapies into clinics is limited by lack of specific switches controlled by inducers that are safe and ready for clinical use. Ferulic acid (FA) is a phytochemical with a wide range of therapeutic effects, and its salt sodium ferulate (SF) is used as an antithrombotic drug in clinics. Here, we describe an FA/SF-adjustable transcriptional switch controlled by the clinically licensed drug SF. We demonstrated that SF-responsive switches can be engineered to control CRISPR-Cas9 systems for on-command genome/epigenome engineering. In addition, we integrated FA-controlled switches into programmable biocomputers to process logic operations. We further demonstrated the dose-dependent SF-inducible transgene expression in mice by oral administration of SF tablets. Engineered switches responsive to small-molecule clinically licensed drugs to achieve adjustable transgene expression profiles provide new opportunities for dynamic interventions in gene- and cell-based precision medicine.
Collapse
Affiliation(s)
- Yidan Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shuyong Liao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuanxiao Liu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Kaili Dong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Wilfried Weber
- Faculty of Biology, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- Corresponding author.
| |
Collapse
|