1
|
Cervellieri S, Longobardi F, Susca A, Anelli P, Ferrara M, Netti T, Haidukowski M, Moretti A, Lippolis V. Early prediction of ochratoxigenic Aspergillus westerdijkiae on traditional Italian caciocavallo during ripening process by MS-based electronic nose. Food Chem 2025; 468:142470. [PMID: 39700791 DOI: 10.1016/j.foodchem.2024.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
A rapid and non-invasive mass spectrometry-based electronic nose (MS-eNose) method, combined with chemometric analysis, was developed for the early detection of Aspergillus westerdijkiae on caciocavallo cheeses during ripening process. MS-eNose analyses were carried out on caciocavallo inoculated with ochratoxin A (OTA) non-producing species and artificially contaminated with A. westerdijkiae, an OTA producing species. Two classification models, i.e. PLS-DA and PC-LDA, were used to discriminate cheese samples in two classes, based on their contamination with toxigenic or non-toxigenic fungal species. Accuracy values were between 87 and 100 % and 86-100 %, in calibration and validation, respectively, with best results obtained at 15-ripening days with 98 % (PLS-DA) and 100 % (PC-LDA) of accuracy in validation. Moreover, eighteen potential volatile markers of the presence of A. westerdijkiae were identified by GC-MS analysis. Results show that MS-eNose represents a useful tool for a rapid screening in preventing A. westerdijkiae and related OTA contamination in caciocavallo cheese during ripening process.
Collapse
Affiliation(s)
- Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Francesco Longobardi
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy.
| | - Antonia Susca
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Pamela Anelli
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Thomas Netti
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Miriam Haidukowski
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Antonio Moretti
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
2
|
Borowik P, Tkaczyk M, Pluta P, Okorski A, Stocki M, Tarakowski R, Oszako T. Distinguishing between Wheat Grains Infested by Four Fusarium Species by Measuring with a Low-Cost Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2024; 24:4312. [PMID: 39001090 PMCID: PMC11244303 DOI: 10.3390/s24134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus Fusarium: F. avenaceum, F. langsethiae, F. poae, and F. sporotrichioides. The electronic nose prototype is a low-cost device based on commercially available TGS series sensors from Figaro Corp. Two types of gas sensors that respond to the perturbation are used to collect signals useful for discriminating between the samples under study. First, an electronic nose detects the transient response of the sensors to a change in operating conditions from clean air to the presence of the gas being measured. A simple gas chamber was used to create a sudden change in gas composition near the sensors. An inexpensive pneumatic system consisting of a pump and a carbon filter was used to supply the system with clean air. It was also used to clean the sensors between measurement cycles. The second function of the electronic nose is to detect the response of the sensor to temperature disturbances of the sensor heater in the presence of the gas to be measured. It has been shown that features extracted from the transient response of the sensor to perturbations by modulating the temperature of the sensor heater resulted in better classification performance than when the machine learning model was built from features extracted from the response of the sensor in the gas adsorption phase. By combining features from both phases of the sensor response, a further improvement in classification performance was achieved. The E-nose enabled the differentiation of F. poae from the other fungal species tested with excellent performance. The overall classification rate using the Support Vector Machine model reached 70 per cent between the four fungal categories tested.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| | - Przemysław Pluta
- Forestry Students’ Scientific Association, Forest Department, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland;
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Ul. Wiejska 45E, 15-351 Białystok, Poland;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| |
Collapse
|
3
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
4
|
Ji J, Huang H, Li L, Ye J, Sun J, Sheng L, Ye Y, Zheng Y, Zhang Z, Sun X. Volatile Metabolite Profiling of Wheat Kernels Contaminated by Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 71:3508-3517. [PMID: 36576334 DOI: 10.1021/acs.jafc.2c06711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Traditional methods used to detect fungi or mycotoxins are time-consuming and prevent real-time monitoring. In this study, solid-phase microextraction combined with full two-dimensional gas chromatography time-of-flight mass spectrometry was utilized to detect volatile organic compounds (VOCs) produced by fungi during grain infestation predictive F. graminearum PH-1 infestation in wheat. The results show that the VOCs emitted by F. graminearum can distinguish strains at different growth stages. The growth matrices (potato dextrose agar medium and wheat kernels) play a large role in VOC production. The infection of wheat sample F. graminearum showed that a specific relationship between VOCs and the composition of fungal flora, for example, 5-pentyl-cyclohexa-1,3-diene, 3-hexanone, and 1,3-octadiene, was positively correlated with the infection rate of PH-1. In the correlation study of fungal mycotoxins and VOCs, zearalenone produced by F. graminearum was predicted based on the VOCs released. Further analysis determined the correlation of three VOCs, 6-butyl-1,4-cycloheptadiene, hexahydro-3-methylenebenzofuran-2(3H)-one, and (E,E)-3,5-octadien-2-one, with zearalenone production, confirming the ability of VOCs as characteristic markers of mycotoxins.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi, Xinjiang Uygur Autonomous Region, 830052, P. R. China
| | - Heyang Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Li
- LECO Instruments (Shanghai) Company Limited, Shanghai 200000, P. R. China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str, Xicheng District, Beijing 100037, P. R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi Zheng
- Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhijie Zhang
- LECO Instruments (Shanghai) Company Limited, Shanghai 200000, P. R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| |
Collapse
|
5
|
Zhang X, Li M, Cheng Z, Ma L, Zhao L, Li J. A comparison of electronic nose and gas chromatography-mass spectrometry on discrimination and prediction of ochratoxin A content in Aspergillus carbonarius cultured grape-based medium. Food Chem 2019; 297:124850. [PMID: 31253256 DOI: 10.1016/j.foodchem.2019.05.124] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
This study investigated discrimination and prediction of ochratoxin A (OTA) in three Aspergillus carbonarius strains cultured grape-based medium using E-nose technology and GC-MS analysis. Results showed that these strains cultured medium samples were divided into four groups regarding their log 10 OTA value using an equispaced normal distribution analysis. Partial least squares-discriminant analysis (PLS-DA) revealed that GC-MS PLS-DA model only separated the low OTA level medium samples from the rest OTA level samples, whereas all the OTA level samples were segregated from each other using E-nose PLS-DA model. Partial least squares regression (PLSR) analysis indicated that an excellent prediction performance was established on the accumulation of OTA in these medium samples using E-nose PLSR, whereas GC-MS PLSR model showed a screening performance on the OTA formation. These indicated that E-nose analysis could be a reliable method on discriminating and predicting OTA in A. carbonarius strains under grape-based medium.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Menghua Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Inspection & Testing Center for Agricultural Products Quality, Ministry of Agriculture, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Longlian Zhao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
D’Souza AA, Kumari D, Banerjee R. Nanocomposite biosensors for point-of-care—evaluation of food quality and safety. NANOBIOSENSORS 2017. [PMCID: PMC7149521 DOI: 10.1016/b978-0-12-804301-1.00015-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanosensors have wide applications in the food industry. Nanosensors based on quantum dots for heavy metal and organophosphate pesticides detection, and nanocomposites as indicators for shelf life of fish/meat products, have served as important tools for food quality and safety assessment. Luminescent labels consisting of NPs conjugated to aptamers have been popular for rapid detection of infectious and foodborne pathogens. Various detection technologies, including microelectromechanical systems for gas analytes, microarrays for genetically modified foods, and label-free nanosensors using nanowires, microcantilevers, and resonators are being applied extensively in the food industry. An interesting aspect of nanosensors has also been in the development of the electronic nose and electronic tongue for assessing organoleptic qualities, such as, odor and taste of food products. Real-time monitoring of food products for rapid screening, counterfeiting, and tracking has boosted ingenious, intelligent, and innovative packaging of food products. This chapter will give an overview of the contribution of nanotechnology-based biosensors in the food industry, ongoing research, technology advancements, regulatory guidelines, future challenges, and industrial outlook.
Collapse
|
7
|
Buśko M, Stuper K, Jeleń H, Góral T, Chmielewski J, Tyrakowska B, Perkowski J. Comparison of Volatiles Profile and Contents of Trichothecenes Group B, Ergosterol, and ATP of Bread Wheat, Durum Wheat, and Triticale Grain Naturally Contaminated by Mycobiota. FRONTIERS IN PLANT SCIENCE 2016; 7:1243. [PMID: 27597856 PMCID: PMC4992695 DOI: 10.3389/fpls.2016.01243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
In natural conditions cereals can be infested by pathogenic fungi. These can reduce the grain yield and quality by contamination with mycotoxins which are harmful for plants, animals, and humans. To date, performed studies of the compounds profile have allowed for the distinction of individual species of fungi. The aim of this study was to determine the profile of volatile compounds and trichothecenes of group B, ergosterol, adenosine triphosphate content carried out on a representative sample of 16 genotypes of related cereals: triticale, bread wheat, and durum wheat. Based on an analysis of volatile compounds by means of gas chromatography mass spectrometry and with the use of an electronic nose, volatile profiles for cereals were determined. Differentiation is presented at four levels through discriminant analysis, heatmaps, principal component analysis (PCA), and electronic nose maps. The statistical model was built by subsequent incorporation of chemical groups such as trichothecenes (GC/MS), fungal biomass indicators ergosterol (HPLC) and ATP (luminometric) and volatiles. The results of the discriminatory analyses showed that the volatile metabolites most markedly differentiated grain samples, among which were mainly: lilial, trichodiene, p-xylene. Electronic nose analysis made it possible to completely separate all the analyzed cereals based only on 100 ions from the 50-150 m/z range. The research carried out using chemometric analysis indicated significant differences in the volatile metabolites present in the grain of bread wheat, durum wheat and triticale. The end result of the performed analyses was a complete discrimination of the examined cereals based on the metabolites present in their grain.
Collapse
Affiliation(s)
- Maciej Buśko
- Department of Chemistry, Poznań University of Life SciencesPoznan, Poland
| | - Kinga Stuper
- Department of Chemistry, Poznań University of Life SciencesPoznan, Poland
| | - Henryk Jeleń
- Department of Food Science and Nutrition, Poznań University of Life SciencesPoznan, Poland
| | - Tomasz Góral
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute NRIRadzików, Poland
| | - Jarosław Chmielewski
- Department of Instrumental Analysis, Poznań University of EconomicsPoznan, Poland
| | - Bożena Tyrakowska
- Department of Instrumental Analysis, Poznań University of EconomicsPoznan, Poland
| | - Juliusz Perkowski
- Department of Chemistry, Poznań University of Life SciencesPoznan, Poland
| |
Collapse
|
8
|
Lippolis V, Ferrara M, Cervellieri S, Damascelli A, Epifani F, Pascale M, Perrone G. Rapid prediction of ochratoxin A-producing strains of Penicillium on dry-cured meat by MOS-based electronic nose. Int J Food Microbiol 2015; 218:71-7. [PMID: 26619315 DOI: 10.1016/j.ijfoodmicro.2015.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
The availability of rapid diagnostic methods for monitoring ochratoxigenic species during the seasoning processes for dry-cured meats is crucial and constitutes a key stage in order to prevent the risk of ochratoxin A (OTA) contamination. A rapid, easy-to-perform and non-invasive method using an electronic nose (e-nose) based on metal oxide semiconductors (MOS) was developed to discriminate dry-cured meat samples in two classes based on the fungal contamination: class P (samples contaminated by OTA-producing Penicillium strains) and class NP (samples contaminated by OTA non-producing Penicillium strains). Two OTA-producing strains of Penicillium nordicum and two OTA non-producing strains of Penicillium nalgiovense and Penicillium salamii, were tested. The feasibility of this approach was initially evaluated by e-nose analysis of 480 samples of both Yeast extract sucrose (YES) and meat-based agar media inoculated with the tested Penicillium strains and incubated up to 14 days. The high recognition percentages (higher than 82%) obtained by Discriminant Function Analysis (DFA), either in calibration and cross-validation (leave-more-out approach), for both YES and meat-based samples demonstrated the validity of the used approach. The e-nose method was subsequently developed and validated for the analysis of dry-cured meat samples. A total of 240 e-nose analyses were carried out using inoculated sausages, seasoned by a laboratory-scale process and sampled at 5, 7, 10 and 14 days. DFA provided calibration models that permitted discrimination of dry-cured meat samples after only 5 days of seasoning with mean recognition percentages in calibration and cross-validation of 98 and 88%, respectively. A further validation of the developed e-nose method was performed using 60 dry-cured meat samples produced by an industrial-scale seasoning process showing a total recognition percentage of 73%. The pattern of volatile compounds of dry-cured meat samples was identified and characterized by a developed HS-SPME/GC-MS method. Seven volatile compounds (2-methyl-1-butanol, octane, 1R-α-pinene, d-limonene, undecane, tetradecanal, 9-(Z)-octadecenoic acid methyl ester) allowed discrimination between dry-cured meat samples of classes P and NP. These results demonstrate that MOS-based electronic nose can be a useful tool for a rapid screening in preventing OTA contamination in the cured meat supply chain.
Collapse
Affiliation(s)
- Vincenzo Lippolis
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Anna Damascelli
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Filomena Epifani
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), CNR-National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
9
|
Rodríguez A, Rodríguez M, Andrade MJ, Córdoba JJ. Detection of filamentous fungi in foods. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Dell’Orto V, Baldi G, Cheli F. Mycotoxins in silage: checkpoints for effective management and control. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has a substantial role in ruminant nutrition. Silages as a source of mycotoxigenic fungi and mycotoxins merit attention. Fungal growth and mycotoxin production before and during storage are a well-known phenomenon, resulting in reduced nutritional value and a possible risk factor for animal health. Mycotoxin co-contamination seems to be unavoidable under current agricultural and silage-making practices. Multi-mycotoxin contamination in silages is of particular concern due to the potential additive or synergistic effects on animals. In regard to managing the challenge of mycotoxins in silages, there are many factors with pre- and post-harvest origins to take into account. Pre-harvest events are predominantly dictated by environmental factors, whereas post-harvest events can be largely controlled by the farmer. An effective mycotoxin management and control programme should be integrated and personalised to each farm at an integrative level throughout the silage production chain. Growing crops in the field, silage making practices, and the feed out phase must be considered. Economical and straightforward silage testing is critical to reach a quick and sufficiently accurate diagnosis of silage quality, which allows for ‘in field decision-making’ with regard to the rapid diagnosis of the quality of given forage for its safe use as animal feed. Regular sampling and testing of silage allow picking up any variations in mycotoxin contamination. The use of rapid methods in the field represents future challenges. Moreover, a proper nutritional intervention needs to be considered to manage mycotoxin-contaminated silages. At farm level, animals are more often exposed to moderate amounts of several mycotoxins rather than to high levels of a single mycotoxin, resulting more frequently in non-specific digestive and health status impairment. Effective dietary strategies to promote rumen health, coupled with the administration of effective and broad-spectrum mycotoxin detoxifiers, are essential to minimise the negative impact of mycotoxins.
Collapse
Affiliation(s)
- V. Dell’Orto
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - G. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| |
Collapse
|
11
|
Volatile profiles of healthy and aflatoxin contaminated pistachios. Food Res Int 2015; 74:89-96. [DOI: 10.1016/j.foodres.2015.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/09/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
|
12
|
|
13
|
Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. FUNGAL BIOL REV 2012. [DOI: 10.1016/j.fbr.2012.07.001] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Cheli F, Battaglia D, Pinotti L, Baldi A. State of the art in feedstuff analysis: a technique-oriented perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9529-9542. [PMID: 22954135 DOI: 10.1021/jf302555b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The need for global feed supply traceability, the high-throughput testing demands of feed industry, and regulatory enforcement drive the need for feed analysis and make extremely complex the issue of the control and evaluation of feed quality, safety, and functional properties, all of which contribute to the very high number of analyses that must be performed. Feed analysis, with respect to animal nutritional requirements, health, reproduction, and production, should be multianalytically approached. In addition to standard methods of chemical analysis, new methods for evaluation of feed composition and functional properties, authenticity, and safety have been developed. Requirements for new analytical methods emphasize performance, sensitivity, reliability, speed, simplified use, low cost for high volume, and routine assays. This review provides an overview of the most used and promising methods for feed analysis. The review is intentionally focused on the following techniques: classical chemical analysis; in situ and in vitro methods; analytical techniques coupled with chemometric tools (NIR and sensors); and cell-based bioassays. This review describes both the potential and limitations of each technique and discusses the challenges that need to be overcome to obtain validated and standardized methods of analysis for a complete and global feed evaluation and characterization.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Via Trentacoste 2, 20134 Milan, Italy.
| | | | | | | |
Collapse
|
15
|
Pallottino F, Costa C, Antonucci F, Strano MC, Calandra M, Solaini S, Menesatti P. Electronic nose application for determination of Penicillium digitatum in Valencia oranges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2008-2012. [PMID: 22261834 DOI: 10.1002/jsfa.5586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Penicillium digitatum and Penicillium italicum are responsible for one the most serious diseases occurring during storage of citrus fruits. Its early detection allows a relevant increase in shelf life, and in situ monitoring of fungal infections represents a very efficient tool to improve storage quality. In the case of metabolic alterations due to physiological or fungal pathologies, olfactometric analysis allows the detection of specific volatile biomarkers, thus providing an effective tool for postharvest quality control of fruits and vegetables. RESULTS A total of 300 Valencia oranges were analysed with an electronic nose and results were screened by a multivariate classification technique, partial least squares discriminant analysis, in order to investigate whether the electronic nose could distinguish between Penicillium-infected and non-infected samples and to evaluate the efficiency of the group classifications. High percentages of correct classification were obtained at low levels of infection (100% for 2-5% infection in an independent test). CONCLUSION The electronic nose may be successfully applied as a reliable, non-destructive and non-contact indirect technology for the identification of fungal strains in storage rooms, especially when the infection occurs in small percentages that are not easily identifiable by classic methodologies of inspection.
Collapse
Affiliation(s)
- Federico Pallottino
- CRA-ING Agricultural Engineering Research Unit of the Agriculture Research Council, Via della Pascolare 16, 00015 Monterotondo Scalo, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Electronic Nose for Microbiological Quality Control of Food Products. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2012. [DOI: 10.1155/2012/715763] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electronic noses (ENs) have recently emerged as valuable candidates in various areas of food quality control and traceability, including microbial contamination diagnosis. In this paper, the EN technology for microbiological screening of food products is reviewed. Four paradigmatic and diverse case studies are presented: (a)Alicyclobacillusspp. spoilage of fruit juices, (b) early detection of microbial contamination in processed tomatoes, (c) screening of fungal and fumonisin contamination of maize grains, and (d) fungal contamination on green coffee beans. Despite many successful results, the high intrinsic variability of food samples together with persisting limits of the sensor technology still impairs ENs trustful applications at the industrial scale. Both advantages and drawbacks of sensor technology in food quality control are discussed. Finally, recent trends and future directions are illustrated.
Collapse
|
17
|
Pont NP, Kendall CA, Magan N. Analysis of Volatile Fingerprints for Monitoring Anti-Fungal Efficacy Against the Primary and Opportunistic Pathogen Aspergillus fumigatus. Mycopathologia 2011; 173:93-101. [DOI: 10.1007/s11046-011-9490-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
|
18
|
|
19
|
Leggieri MC, Pont NP, Battilani P, Magan N. Detection and discrimination between ochratoxin producer and non-producer strains of Penicillium nordicum on a ham-based medium using an electronic nose. Mycotoxin Res 2010; 27:29-35. [PMID: 23605620 DOI: 10.1007/s12550-010-0072-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/05/2010] [Indexed: 12/01/2022]
Abstract
The aim of this work was to evaluate the potential use of qualitative volatile patterns produced by Penicillium nordicum to discriminate between ochratoxin A (OTA) producers and non-producer strains on a ham-based medium. Experiments were carried out on a 3% ham medium at two water activities (aw ; 0.995, 0.95) inoculated with P. nordicum spores and incubated at 25°C for up to 14 days. Growing colonies were sampled after 1, 2, 3, 7 and 14 days, placed in 30-ml vials, sealed and the head space analysed using a hybrid sensor electronic nose device. The effect of environmental conditions on growth and OTA production was evaluated based on the qualitative response. However, after 7 days, it was possible to discriminate between strains grown at 0.995 aw, and after 14 days, the OTA producer and non-producer strain and the controls could be discriminated at both aw levels. This study suggests that volatile patterns produced by P. nordicum strains may differ and be used to predict the presence of toxigenic contaminants in ham. This approach could be utilised in ham production as part of a quality assurance system for preventing OTA contamination.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Institute of Entomology and Plant Pathology, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100, Piacenza, Italy
| | | | | | | |
Collapse
|
20
|
Buśko M, Jeleń H, Góral T, Chmielewski J, Stuper K, Szwajkowska-Michałek L, Tyrakowska B, Perkowski J. Volatile metabolites in various cereal grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:1574-81. [DOI: 10.1080/19440049.2010.506600] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
The future of early disease detection? Applications of electronic nose technology in otolaryngology. The Journal of Laryngology & Otology 2010; 124:823-7. [PMID: 20519037 DOI: 10.1017/s002221511000112x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Recent advances in electronic nose technology, and successful clinical applications, are facilitating the development of new methods for rapid, bedside diagnosis of disease. There is a real clinical need for such new diagnostic tools in otolaryngology. MATERIALS AND METHODS We present a critical review of recent advances in electronic nose technology and current applications in otolaryngology. RESULTS The literature reports evidence of accurate diagnosis of common otolaryngological conditions such as sinusitis (acute and chronic), chronic suppurative otitis media, otitis externa and nasal vestibulitis. A significant recent development is the successful identification of biofilm-producing versus non-biofilm-producing pseudomonas and staphylococcus species. CONCLUSION Electronic nose technology holds significant potential for enabling rapid, non-invasive, bedside diagnosis of otolaryngological disease.
Collapse
|
22
|
Maragos C, Busman M. Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:688-700. [DOI: 10.1080/19440040903515934] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Early discrimination of fungal species responsible of ochratoxin A contamination of wine and other grape products using an electronic nose. Mycotoxin Res 2009; 25:187-92. [PMID: 23605147 DOI: 10.1007/s12550-009-0027-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
An electronic nose (e-nose) system using an array of metal oxide sensors (Fox 3000, Alpha MOS) was used to detect and discriminate two ochratoxigenic fungal species, Aspergillus carbonarius (Bain.) Thom and A. niger Van Tieghem, that are responsible for the contamination of wine and other wine grape products, using their volatile production patterns. Two well-known ochratoxigenic strains were used in this study: A. carbonarius A941 and A. niger A75. These strains were grown on three culture media, Czapek Dox modified (CDm) agar, yeast extract sucrose (YES) agar and white grape juice (WGJ) agar, and the volatile organic compounds produced in the headspace by these species were evaluated over periods of 48-120 h. The e-nose system was able to differentiate between the two species within 48 h of growth on YES and WGJ agar using principal component analysis (PCA), which accounted for 99.9% and 97.2% of the data respectively, in principal components 1 and 2, based on the qualitative volatile profiles. This differentiation was confirmed by cluster analysis of data. However, it was not possible to separate these species on CDm agar. Our results show that the two closely related ochratoxigenic species responsible for the contamination of wine and other wine grape products can be discriminated by the use of qualitative volatile fingerprints. This approach could have potential for rapid identification of A. carbonarius and A. niger on wine grape samples, thereby significantly reducing the time of detection of these ochratoxin A producing species.
Collapse
|
24
|
Maragos C. Biosensors for mycotoxin analysis: recent developments and future prospects. WORLD MYCOTOXIN J 2009. [DOI: 10.3920/wmj2008.1117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The toxicity and prevalence of mycotoxins in commodities and foods has necessitated the development of rapid methods in order to ensure the protection of human food and animal feed supplies. Testing for mycotoxins can be accomplished by many techniques that range from determinative tests in which the presence of the toxin is confirmed, to presumptive tests in which the presence of the toxin is inferred from the presence of markers. This review focuses on tests that fall into a third category, namely indirect assays, where the presence of the toxin is established by it's interaction with an intermediary. Such intermediaries include biological materials that bind mycotoxins, such as antibodies, as well as synthetic materials such as polymers and man-made peptides. The diversity of assays within this category is extraordinary and includes assays based upon traditional microwell formats, microbeads, membranes, electrodes, wave-guides, and solution-phase assays. The microbead format includes platforms as diverse as flow injection immunoassays, tandem column immunoassays, and immunoaffinity columns. The membrane-based formats include flow-through as well as lateral-flow assays. The electrode-based formats incorporate miniaturised immunoassays with electrochemical endpoints. The wave-guide-based devices include formats such as surface plasmon resonance, and fluorescence array biosensors, and the solution phase formats include homogeneous assays such as fluorescence polarisation immunoassay. The breadth of technologies brought to bear upon solving the need for rapid, accurate, detection of mycotoxins is impressive and includes technologies currently available commercially and those which appear poised to enter the marketplace.
Collapse
Affiliation(s)
- C. Maragos
- Mycotoxin Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|