1
|
Xiao X, Xu L, Lu H, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, Ge Q, Zhuang Y, Geng X, Chen X, Lan Y, He J, Sun W. Untargeted Metabolomic Analyses of Body Fluids to Differentiate TBI DOC and NTBI DOC. Curr Mol Med 2024; 24:1183-1193. [PMID: 37817528 DOI: 10.2174/0115665240249826230928104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To investigate the metabolomic differences between Traumatic brain injury (TBI) disorder of consciousness (DOC) patients and non-traumatic brain injury (NTBI) DOC patients by using cerebrospinal fluid (CSF), serum and urine samples beneficial to understand the pathological mechanism differences between the two etiologies, provide potential clues for the subsequent treatment and prognosis, and investigate the metabolome differences and similarities between TBI and NTBI among three different body fluids. METHODS In total, 24 TBI DOC subjects and 29 NTBI DOC subjects were enrolled. CSF, serum and urine samples from TBI DOC and NTBI DOC patients were collected and analyzed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarkers and altered metabolic functions. RESULTS When comparing TBI DOC and NTBI DOC, 36, 31 and 52 differential metabolites were obtained in CSF, serum and urine, respectively. The functional analysis of differential metabolites obtained in CSF, serum and urine were all related to amino acid metabolism. Except for amino acid metabolism, metabolic biomarkers in CSF, serum and urine mainly focus on central function, cognitive function, necrosis and apoptosis and neurological function, respectively. In CSF, the highest AUC was 0.864 (Isoproturon) and 0.816 (Proline betaine). Then, the AUC of NFurfurylformamide in serum was 0.941, while the AUC of Dihydronepetalactone and Doxepin N-oxide glucuronide were 1.0 in urine. CONCLUSION CSF, serum and urine metabolomic analyses could differentiate TBI DOC from NTBI DOC and functional analyses showed a metabolic change difference between TBI DOC and NTBI DOC.
Collapse
Affiliation(s)
- Xiaoping Xiao
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Medical College, Beijing, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| |
Collapse
|
2
|
Stevens AR, Stickland CA, Harris G, Ahmed Z, Goldberg Oppenheimer P, Belli A, Davies DJ. Raman Spectroscopy as a Neuromonitoring Tool in Traumatic Brain Injury: A Systematic Review and Clinical Perspectives. Cells 2022; 11:1227. [PMID: 35406790 PMCID: PMC8997459 DOI: 10.3390/cells11071227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant global health problem, for which no disease-modifying therapeutics are currently available to improve survival and outcomes. Current neuromonitoring modalities are unable to reflect the complex and changing pathophysiological processes of the acute changes that occur after TBI. Raman spectroscopy (RS) is a powerful, label-free, optical tool which can provide detailed biochemical data in vivo. A systematic review of the literature is presented of available evidence for the use of RS in TBI. Seven research studies met the inclusion/exclusion criteria with all studies being performed in pre-clinical models. None of the studies reported the in vivo application of RS, with spectral acquisition performed ex vivo and one performed in vitro. Four further studies were included that related to the use of RS in analogous brain injury models, and a further five utilised RS in ex vivo biofluid studies for diagnosis or monitoring of TBI. RS is identified as a potential means to identify injury severity and metabolic dysfunction which may hold translational value. In relation to the available evidence, the translational potentials and barriers are discussed. This systematic review supports the further translational development of RS in TBI to fully ascertain its potential for enhancing patient care.
Collapse
Affiliation(s)
- Andrew R. Stevens
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - Clarissa A. Stickland
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (C.A.S.); (G.H.); (P.G.O.)
| | - Georgia Harris
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (C.A.S.); (G.H.); (P.G.O.)
| | - Zubair Ahmed
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (C.A.S.); (G.H.); (P.G.O.)
| | - Antonio Belli
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham B15 2TT, UK
| | - David J. Davies
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Geng H, Tsang M, Subbaraj L, Cleveland J, Chen L, Lu M, Sharma J, Vigneron DB, Kurhanewicz J, LaFontaine M, Luks T, Barshop BA, Gangoiti J, Villanueva-Meyer JE, Rubenstein JL. Tumor Metabolism and Neurocognition in CNS Lymphoma. Neuro Oncol 2021; 23:1668-1679. [PMID: 33625503 DOI: 10.1093/neuonc/noab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The mechanistic basis for neurocognitive deficits in CNS lymphoma and other brain tumors is incompletely understood. We tested the hypothesis that tumor metabolism impairs neurotransmitter pathways and neurocognitive function. METHODS We performed serial cerebrospinal fluid (CSF) metabolomic analyses using liquid chromatography-electrospray tandem mass spectrometry to evaluate changes in the tumor microenvironment in 14 patients with recurrent CNS lymphoma, focusing on 18 metabolites involved in neurotransmission and bioenergetics. These were paired with serial mini-mental state examinations (MMSE) and MRI studies for tumor volumetric analyses. Patients were analyzed in the setting of the phase I trial of lenalidomide/rituximab. Associations were assessed by Pearson and Spearman correlation coefficient. Generalized estimating equation (gee) models were also established, adjusting for within-subject repeated measures. RESULTS Of 18 metabolites, elevated CSF lactate correlated most strongly with lower MMSE score (p<8E-8, rho=-0.67). High lactate was associated with lower GABA, higher glutamate/GABA ratio and dopamine. Conversely, high succinate correlated with higher MMSE score. Serial analysis demonstrated a reproducible, time-dependent, reciprocal correlation between changes in lactate and GABA concentrations. While high lactate and low GABA correlated with tumor contrast enhancing volume, they correlated more significantly with lower MMSE scores than tumor volumes. CONCLUSIONS We provide evidence that lactate production and Warburg metabolism may impact neurotransmitter dysregulation and neurocognition in CNS lymphomas. We identify novel metabolomic biomarkers that may be applied in future studies of neurocognition in CNS lymphomas. Elucidation of mechanistic interactions between lymphoma metabolism, neurotransmitter imbalance and neurocognition may promote interventions that preserve cognitive function.
Collapse
Affiliation(s)
- Huimin Geng
- Laboratory Medicine, University of California, San Francisco (UCSF).,Helen Diller Family Comprehensive Cancer Center, UCSF
| | - Mazie Tsang
- Hematology/Oncology, UCSF.,Department of Medicine, UCSF
| | | | | | - Lingjing Chen
- Hematology/Oncology, UCSF.,Department of Medicine, UCSF
| | - Ming Lu
- Hematology/Oncology, UCSF.,Department of Medicine, UCSF
| | | | - Daniel B Vigneron
- Helen Diller Family Comprehensive Cancer Center, UCSF.,Radiology and Biomedical Imaging
| | - John Kurhanewicz
- Helen Diller Family Comprehensive Cancer Center, UCSF.,Radiology and Biomedical Imaging
| | | | | | - Bruce A Barshop
- Genetics and Pediatrics, University of California, San Diego
| | - Jon Gangoiti
- Genetics and Pediatrics, University of California, San Diego
| | | | - James L Rubenstein
- Helen Diller Family Comprehensive Cancer Center, UCSF.,Hematology/Oncology, UCSF
| |
Collapse
|