1
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
2
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
3
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
4
|
Peng L, Fu C, Liang Z, Zhang Q, Xiong F, Chen L, He C, Wei Q. Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice. Circ J 2020; 84:186-193. [PMID: 31915323 DOI: 10.1253/circj.cj-19-0758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies have shown that pulsed electromagnetic fields (PEMF) stimulate angiogenesis and may be a potential treatment strategy to improve cardiac function after myocardial infarction (MI). This study explored the effects and its related mechanisms of PEMF in MI mice. METHODS AND RESULTS MI mice were used in PEMF treatment (15 Hz 1.5 mT PEMF or 30 Hz 3.0 mT PEMF) for 45 min per day for 2 weeks. Furthermore, an in vivo Matrigel plug assay was used to observe the effect of PEMF in promoting angiogenesis. Compared with the sham PEMF group, PEMF treatment with 30 Hz 3.0 mT significantly improved heart function. PEMF treatment with 15 Hz 1.5 mT and 30 Hz 3.0 mT both increased capillary density, decreased infarction area size, increased the protein expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), Ser473-phosphorylated Akt (pSer473-Akt) and S1177-phosphorylated endothelial nitric oxide synthase (pS1177-eNOS), and increased the mRNA level of VEGF and hypoxia inducible factor 1-alpha (HIF-1α) in the infarct border zone. Additionally, treatment with 30 Hz 3.0 mT also increased protein and mRNA level of fibroblast growth factor 2 (FGF2), and protein level of β1 integrin, and shows a stronger therapeutic effect. CONCLUSIONS PEMF treatment could promote angiogenesis of the infarct border zone and improve cardiac function in MI mice. A treatment parameter of 30 Hz 3.0 mT is remarkably effective in MI mice. The effect is associated with the proangiogenic signaling pathways of HIF-1α/VEGF/Akt/eNOS or HIF-1α/FGF2/Akt/eNOS.
Collapse
Affiliation(s)
- Lihong Peng
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| | - Chenying Fu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University
| | - Zejun Liang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| | - Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University
- Key Laboratory of Rehabilitation Medicine in Sichuan Province
| |
Collapse
|
5
|
Liu J, Yan XL, Zheng XL, Mei L, Wang S, Han J, Yan H. Electric field exposure promotes epithelial‑mesenchymal transition in human lens epithelial cells via integrin β1‑FAK signaling. Mol Med Rep 2017; 16:4008-4014. [PMID: 28765922 PMCID: PMC5646981 DOI: 10.3892/mmr.2017.7086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 05/17/2017] [Indexed: 01/14/2023] Open
Abstract
Electric field (EF) exposure can affect the elongation, migration, orientation, and division of cells. The present study tested the hypothesis that EF may also affect epithelial-mesenchymal transition (EMT) in lens epithelial cells and that this effect may be an important inducer in the pathological process of posterior capsule opacification (PCO). Human lens epithelial (HLE)-B3 cells were exposed to an EF. Experiments were performed in the presence or absence of an anti-integrin β1 blocking antibody or a small molecule inhibitor targeting focal adhesion kinase (FAK). Cell morphology changes were observed by microscopy. The expression levels of integrin β1, FAK, phosphorylated (p)FAK and of EMT markers, E-cadherin and Vimentin, were examined by immunofluorescence, reverse transcription-quantitative polymerase chain reaction and western blotting. Following exposure to EF, HLE-B3 cells appeared elongated and resembled more fibroblast-like cells. Expression of E-cadherin was decreased, while expression of Vimentin was increased in HLE-B3 cells exposed to EF, compared with control cells. In addition, the mRNA expression levels of integrin β1 were increased, and the protein expression levels of integrin β1 and pFAK were increased in HLE-B3 cells exposed to EF, compared with control cells. Blocking of integrin β1 suppressed the EMT-related morphological changes of HLE-B3 cells and reduced the activation of FAK following EF exposure. However, blocking of pFAK did not affect the EMT status of HLE-B3 cells induced by EF. In conclusion, the present study demonstrated that EF exposure induced EMT in HLE-B3 cells and that this effect may partially be mediated by the activation of integrin β1-FAK signaling. The present results may provide a new mechanistic approach to prevent the development of PCO.
Collapse
Affiliation(s)
- Jun Liu
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Liang Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Lin Mei
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Song Wang
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hong Yan
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
6
|
Banks TA, Luckman PSB, Frith JE, Cooper-White JJ. Effects of electric fields on human mesenchymal stem cell behaviour and morphology using a novel multichannel device. Integr Biol (Camb) 2016; 7:693-712. [PMID: 25988194 DOI: 10.1039/c4ib00297k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsic piezoelectric nature of collagenous-rich tissues, such as bone and cartilage, can result in the production of small, endogenous electric fields (EFs) during applied mechanical stresses. In vivo, these EFs may influence cell migration, a vital component of wound healing. As a result, the application of small external EFs to bone fractures and cutaneous wounds is actively practiced clinically. Due to the significant regenerative potential of stem cells in bone and cartilage healing, and their potential role in the observed improved healing in vivo post applied EFs, using a novel medium throughput device, we investigated the impacts of physiological and aphysiological EFs on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for up to 15 hours. The applied EFs had significant impacts on hBM-MSC morphology and migration; cells displayed varying degrees of conversion to a highly elongated phenotype dependent on the EF strength, consistent perpendicular alignment to the EF vector, and definitive cathodal migration in response to EF strengths ≥0.5 V cm(-1), with the fastest migration speeds observed at between 1.7 and 3 V cm(-1). We observed variability in hBM-MSC donor-to-donor responses and overall tolerances to applied EFs. This study thus confirms hBM-MSCs are responsive to applied EFs, and their rate of migration towards the cathode is controllable depending on the EF strength, providing new insight into the physiology of hBM-MSCs and possibly a significant opportunity for the utilisation of EFs in directed scaffold colonisation in vitro for tissue engineering applications or in vivo post implantation.
Collapse
Affiliation(s)
- T A Banks
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Qld 4072, Australia.
| | | | | | | |
Collapse
|
7
|
Guo L, Xu C, Li D, Zheng X, Tang J, Bu J, Sun H, Yang Z, Sun W, Yu X. Calcium Ion Flow Permeates Cells through SOCs to Promote Cathode-Directed Galvanotaxis. PLoS One 2015; 10:e0139865. [PMID: 26447479 PMCID: PMC4598171 DOI: 10.1371/journal.pone.0139865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2015] [Indexed: 01/31/2023] Open
Abstract
Sensing and responding to endogenous electrical fields are important abilities for cells engaged in processes such as embryogenesis, regeneration and wound healing. Many types of cultured cells have been induced to migrate directionally within electrical fields in vitro using a process known as galvanotaxis. The underlying mechanism by which cells sense electrical fields is unknown. In this study, we assembled a polydimethylsiloxane (PDMS) galvanotaxis system and found that mouse fibroblasts and human prostate cancer PC3 cells migrated to the cathode. By comparing the effects of a pulsed direct current, a constant direct current and an anion-exchange membrane on the directed migration of mouse fibroblasts, we found that these cells responded to the ionic flow in the electrical fields. Taken together, the observed effects of the calcium content of the medium, the function of the store-operated calcium channels (SOCs) and the intracellular calcium content on galvanotaxis indicated that calcium ionic flow from the anode to the cathode within the culture medium permeated the cells through SOCs at the drift velocity, promoting migration toward the cathode. The RTK-PI3K pathway was involved in this process, but the ROCK and MAPK pathways were not. PC3 cells and mouse fibroblasts utilized the same mechanism of galvanotaxis. Together, these results indicated that the signaling pathway responsible for cathode-directed cellular galvanotaxis involved calcium ionic flow from the anode to the cathode within the culture medium, which permeated the cells through SOCs, causing cytoskeletal reorganization via PI3K signaling.
Collapse
Affiliation(s)
- Liang Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Institute of Biomedical Engineering, College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, P.R. China
- Bioinformatics Research Center, College of Automation, Harbin Engineering University, Harbin, Heilongjiang, 150001, P.R. China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jiebing Tang
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jingyi Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhengkai Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenjing Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoguang Yu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- * E-mail:
| |
Collapse
|
8
|
Zhao M, Chalmers L, Cao L, Vieira AC, Mannis M, Reid B. Electrical signaling in control of ocular cell behaviors. Prog Retin Eye Res 2012; 31:65-88. [PMID: 22020127 PMCID: PMC3242826 DOI: 10.1016/j.preteyeres.2011.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications.
Collapse
Affiliation(s)
- Min Zhao
- Department of Dermatology, UC Davis School of Medicine, 2921 Stockton Blvd., Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Yano S, Morino-Koga S, Kondo T, Suico MA, Koga T, Shimauchi Y, Matsuyama S, Shuto T, Sato T, Araki E, Kai H. Glucose Uptake in Rat Skeletal Muscle L6 Cells Is Increased by Low-Intensity Electrical Current Through the Activation of the Phosphatidylinositol-3-OH Kinase (PI-3K) / Akt Pathway. J Pharmacol Sci 2011; 115:94-8. [DOI: 10.1254/jphs.10185sc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Gamboa OL, Pu J, Townend J, Forrester JV, Zhao M, McCaig C, Lois N. Electrical estimulation of retinal pigment epithelial cells. Exp Eye Res 2010; 91:195-204. [DOI: 10.1016/j.exer.2010.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 01/21/2023]
|