1
|
Morgan AB, Fan Y, Inman DM. The ketogenic diet and hypoxia promote mitophagy in the context of glaucoma. Front Cell Neurosci 2024; 18:1409717. [PMID: 38841201 PMCID: PMC11150683 DOI: 10.3389/fncel.2024.1409717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondrial homeostasis includes balancing organelle biogenesis with recycling (mitophagy). The ketogenic diet protects retinal ganglion cells (RGCs) from glaucoma-associated neurodegeneration, with a concomitant increase in mitochondrial biogenesis. This study aimed to determine if the ketogenic diet also promoted mitophagy. MitoQC mice that carry a pH-sensitive mCherry-GFP tag on the outer mitochondrial membrane were placed on a ketogenic diet or standard rodent chow for 5 weeks; ocular hypertension (OHT) was induced via magnetic microbead injection in a subset of control or ketogenic diet animals 1 week after the diet began. As a measure of mitophagy, mitolysosomes were quantified in sectioned retina immunolabeled with RBPMS for RGCs or vimentin for Müller glia. Mitolysosomes were significantly increased as a result of OHT and the ketogenic diet (KD) in RGCs. Interestingly, the ketogenic diet increased mitolysosome number significantly higher than OHT alone. In contrast, OHT and the ketogenic diet both increased mitolysosome number in Müller glia to a similar degree. To understand if hypoxia could be a stimulus for mitophagy, we quantified mitolysosomes after acute OHT, finding significantly greater mitolysosome number in cells positive for pimonidazole, an adduct formed in cells exposed to hypoxia. Retinal protein analysis for BNIP3 and NIX showed no differences across groups, suggesting that these receptors were equivocal for mitophagy in this model of OHT. Our data indicate that OHT and hypoxia stimulate mitophagy and that the ketogenic diet is an additive for mitophagy in RGCs. The different response across RGCs and Müller glia to the ketogenic diet may reflect the different metabolic needs of these cell types.
Collapse
Affiliation(s)
| | | | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
2
|
Amankwa CE, Acha LG, Dibas A, Chavala SH, Roth S, Mathew B, Acharya S. Neuroprotective and Anti-Inflammatory Activities of Hybrid Small-Molecule SA-10 in Ischemia/Reperfusion-Induced Retinal Neuronal Injury Models. Cells 2024; 13:396. [PMID: 38474360 PMCID: PMC10931063 DOI: 10.3390/cells13050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1β and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.
Collapse
Affiliation(s)
- Charles E. Amankwa
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Lorea Gamboa Acha
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Adnan Dibas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sai H. Chavala
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
4
|
López-Ramírez O, González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front Physiol 2023; 14:1194948. [PMID: 37389121 PMCID: PMC10300344 DOI: 10.3389/fphys.2023.1194948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Acid Sensing Ion Channels (ASIC) are proton sensors involved in several physiological and pathophysiological functions including synaptic plasticity, sensory systems and nociception. ASIC channels have been ubiquitously localized in neurons and play a role in their excitability. Information about ASIC channels in cardiomyocyte function is limited. Evidence indicates that ASIC subunits are expressed in both, plasma membrane and intracellular compartments of mammalian cardiomyocytes, suggesting unrevealing functions in the cardiomyocyte physiology. ASIC channels are expressed in neurons of the peripheral nervous system including the nodose and dorsal root ganglia (DRG), both innervating the heart, where they play a dual role as mechanosensors and chemosensors. In baroreceptor neurons from nodose ganglia, mechanosensation is directly associated with ASIC2a channels for detection of changes in arterial pressure. ASIC channels expressed in DRG neurons have several roles in the cardiovascular function. First, ASIC2a/3 channel has been proposed as the molecular sensor of cardiac ischemic pain for its pH range activation, kinetics and the sustained current. Second, ASIC1a seems to have a critical role in ischemia-induced injury. And third, ASIC1a, 2 and 3 are part of the metabolic component of the exercise pressure reflex (EPR). This review consists of a summary of several reports about the role of ASIC channels in the cardiovascular system and its innervation.
Collapse
Affiliation(s)
- Omar López-Ramírez
- Instituto de Oftalmología Fundación de Asistencia Privada Conde de Valenciana, I.A.P., Mexico City, Mexico
| | - Antonia González-Garrido
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
5
|
Claes M, Moons L. Retinal Ganglion Cells: Global Number, Density and Vulnerability to Glaucomatous Injury in Common Laboratory Mice. Cells 2022; 11:2689. [PMID: 36078097 PMCID: PMC9454702 DOI: 10.3390/cells11172689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
How many RBPMS+ retinal ganglion cells (RGCs) does a standard C57BL/6 laboratory mouse have on average and is this number substrain- or sex-dependent? Do RGCs of (European) C57BL/6J and -N mice show a different intrinsic vulnerability upon glaucomatous injury? Global RGC numbers and densities of common laboratory mice were previously determined via axon counts, retrograde tracing or BRN3A immunohistochemistry. Here, we report the global RGC number and density by exploiting the freely available tool RGCode to automatically count RGC numbers and densities on entire retinal wholemounts immunostained for the pan-RGC marker RBPMS. The intrinsic vulnerability of RGCs from different substrains to glaucomatous injury was evaluated upon introduction of the microbead occlusion model, followed by RBPMS counts, retrograde tracing and electroretinography five weeks post-injury. We demonstrate that the global RGC number and density varies between substrains, yet is not sex-dependent. C57BL/6J mice have on average 46K ± 2K RBPMS+ RGCs per retina, representing a global RGC density of 3268 ± 177 RGCs/mm2. C57BL/6N mice, on the other hand, have on average less RBPMS+ RGCs (41K ± 3K RGCs) and a lower density (3018 ± 189 RGCs/mm2). The vulnerability of the RGC population of the two C57BL/6 substrains to glaucomatous injury did, however, not differ in any of the interrogated parameters.
Collapse
Affiliation(s)
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Majagi S, Mangat S, Chu XP. Commentary: Pharmacological Validation of ASIC1a as a Druggable Target for Neuroprotection in Cerebral Ischemia Using an Intravenously Available Small Molecule Inhibitor. Front Pharmacol 2022; 13:938748. [PMID: 35865964 PMCID: PMC9294732 DOI: 10.3389/fphar.2022.938748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
|
7
|
Alasmari F, Sari DB, Alhaddad H, Al-Rejaie SS, Sari Y. Interactive role of acid sensing ion channels and glutamatergic system in opioid dependence. Neurosci Biobehav Rev 2022; 135:104581. [PMID: 35181397 DOI: 10.1016/j.neubiorev.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation in glutamatergic receptors and transporters has been found to mediate drugs of abuse, including morphine. Among glutamate receptors, ionotropic glutamate receptors (iGluRs) are altered with exposure to drugs of abuse. Acid-sensing ion channels (ASICs) are ligand (H+)-gated channels, which are expressed at the excitatory synaptic clefts and play a role in drug dependence. Overexpression of a specific ASIC subtype, ASIC1a, attenuated reinstatement of cocaine. ASICs are revealed to be involved in cocaine and morphine seeking behaviors, and these effects are mediated through modulation of glutamatergic receptors. In this review, we discussed the interactive role of ASICs and glutamate receptors, mainly iGluRs, in opioid dependence. ASICs are also expressed in astrocytes and are suggested to be involved on regulating glutamate uptake. However, little is known about the coupling between ASICs and the astroglial glutamate transporters. In addition, this review discussed the role of nitric oxide in the modulation of ASIC function and potentially opioid dependence. We also discussed the role of ASICs in the modulation of the function of both glutamatergic receptors in post-synaptic neurons and glutamatergic transporters in astrocytes in animals exposed to drugs of abuse.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Deen B Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Yang S, Wu Y, Wang C, Jin X. Ocular Surface Ion-Channels Are Closely Related to Dry Eye: Key Research Focus on Innovative Drugs for Dry Eye. Front Med (Lausanne) 2022; 9:830853. [PMID: 35308542 PMCID: PMC8927818 DOI: 10.3389/fmed.2022.830853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abundant ion-channels, including various perceptual receptors, chloride channels, purinergic receptor channels, and water channels that exist on the ocular surface, play an important role in the pathogenesis of dry eye. Channel-targeting activators or inhibitor compounds, which have shown positive effects in in vivo and in vitro experiments, have become the focus of the dry eye drug research and development, and individual compounds have been applied in clinical experimental treatment. This review summarized various types of ion-channels on the ocular surface related to dry eye, their basic functions, and spatial distribution, and discussed basic and clinical research results of various channel receptor regulatory compounds. Therefore, further elucidating the relationship between ion-channels and dry eye will warrant research of dry eye targeted drug therapy.
Collapse
Affiliation(s)
| | | | | | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Praveen Kumar P, D. M, Siva Sankar Reddy L, Dastagiri Reddy Y, Somasekhar G, Sirisha N, Nagaraju K, Shouib M, Rizwaan A. A new cerebral ischemic injury model in rats, preventive effect of gallic acid and in silico approaches. Saudi J Biol Sci 2021; 28:5204-5213. [PMID: 34466098 PMCID: PMC8381014 DOI: 10.1016/j.sjbs.2021.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.
Collapse
Affiliation(s)
- P. Praveen Kumar
- Santhiram College of Pharmacy, Nandyal, Kurnool, Andhra Pradesh, India
| | - Madhuri D.
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | | | | | - G. Somasekhar
- SKU College of Pharmaceutical Sciences, Anantapur, Andhra Pradesh, India
| | - N.V.L. Sirisha
- Nitte College of Pharmaceutical Sciences, Banglaore, Karnataka, India
| | - K. Nagaraju
- C.R Reddy College of Pharmacy, Eluru, West Godavari, Andhra Pradesh, India
| | - M.S. Shouib
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - A.S. Rizwaan
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| |
Collapse
|
10
|
Acid-Sensing Ion Channels in Zebrafish. Animals (Basel) 2021; 11:ani11082471. [PMID: 34438928 PMCID: PMC8388743 DOI: 10.3390/ani11082471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present review collects data regarding the presence of ASICs (acid-sensing ion channels) in zebrafish, which have become, over several years, an important experimental model for the study of various diseases. ASICs are a family of ion channels involved in the perception of different types of stimuli. They are excitatory receptors for extracellular H+ involved in synaptic transmission, the peripheral perception of pain and in chemical or mechanosensation. Abstract The ASICs, in mammals as in fish, control deviations from the physiological values of extracellular pH, and are involved in mechanoreception, nociception, or taste receptions. They are widely expressed in the central and peripheral nervous system. In this review, we summarized the data about the presence and localization of ASICs in different organs of zebrafish that represent one of the most used experimental models for the study of several diseases. In particular, we analyzed the data obtained by immunohistochemical and molecular biology techniques concerning the presence and expression of ASICs in the sensory organs, such as the olfactory rosette, lateral line, inner ear, taste buds, and in the gut and brain of zebrafish.
Collapse
|
11
|
Conti F, Romano GL, Eandi CM, Toro MD, Rejdak R, Di Benedetto G, Lazzara F, Bernardini R, Drago F, Cantarella G, Bucolo C. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front Pharmacol 2021; 12:705405. [PMID: 34366858 PMCID: PMC8333612 DOI: 10.3389/fphar.2021.705405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Mario Damiano Toro
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Kobayashi-Otsugu M, Orihara K, Nakajima E, Shearer TR, Azuma M. Activation of Cytosolic Calpain, Not Caspase, Is Underlying Mechanism for Hypoxic RGC Damage in Human Retinal Explants. Invest Ophthalmol Vis Sci 2021; 61:13. [PMID: 33156340 PMCID: PMC7671854 DOI: 10.1167/iovs.61.13.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Activation of proteolytic enzymes, calpains and caspases, have been observed in many models of retinal disease. We previously demonstrated calpain activation in monkey retinal explants cultured under hypoxia. However, cellular responses are often species-specific. The purpose of the present study was to determine whether calpains or caspase-3 was involved in retinal ganglion cell (RGC) damage caused by hypoxia/reoxygenation in human retinal explants. The explant model was improved by use of an oxygen-controlled chamber. Methods Human and monkey retinal explants were cultured under hypoxic conditions in an oxygen-controlled chamber and then reoxygenated. Calpain inhibitor SNJ-1945 was maintained throughout the culture period. Immunohistochemistry and immunoblotting were performed for calpains 1 and 2, calpastatin, α-spectrin, calpain-specific α-spectrin breakdown product at 150 kDa (SBDP150), caspase-3, and apoptosis-inducing factor (AIF). Propidium iodide (PI) staining measured membrane disruption, and TUNEL staining detected DNA fragmentation. Results Activation of calpains in nerve fibers and increases of PI-positive RGCs were observed in retinal explants incubated for 16-hour hypoxia/8-hour reoxygenation. Except for autolysis of calpain 2, SNJ-1945 ameliorated these changes. In longer incubations under 24-hour hypoxia/16-hour reoxygenation, TUNEL-positive cells appeared, although activated caspase-3 and truncated AIF were not observed. DNA fragmentation was inhibited by SNJ-1945. Conclusions An improved human retinal explant model showed that calpains, not caspase-3, were involved in cell damage induced by hypoxia/reoxygenation. This finding could be relevant for patient treatment with a calpain inhibitor if calpain activation is documented in human retinal ischemic diseases.
Collapse
Affiliation(s)
- Momoko Kobayashi-Otsugu
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Portland, Oregon, United States.,Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Kana Orihara
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Portland, Oregon, United States.,Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Emi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Portland, Oregon, United States.,Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Thomas R Shearer
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Mitsuyoshi Azuma
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Portland, Oregon, United States.,Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
13
|
Masin L, Claes M, Bergmans S, Cools L, Andries L, Davis BM, Moons L, De Groef L. A novel retinal ganglion cell quantification tool based on deep learning. Sci Rep 2021; 11:702. [PMID: 33436866 PMCID: PMC7804414 DOI: 10.1038/s41598-020-80308-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a disease associated with the loss of retinal ganglion cells (RGCs), and remains one of the primary causes of blindness worldwide. Major research efforts are presently directed towards the understanding of disease pathogenesis and the development of new therapies, with the help of rodent models as an important preclinical research tool. The ultimate goal is reaching neuroprotection of the RGCs, which requires a tool to reliably quantify RGC survival. Hence, we demonstrate a novel deep learning pipeline that enables fully automated RGC quantification in the entire murine retina. This software, called RGCode (Retinal Ganglion Cell quantification based On DEep learning), provides a user-friendly interface that requires the input of RBPMS-immunostained flatmounts and returns the total RGC count, retinal area and density, together with output images showing the computed counts and isodensity maps. The counting model was trained on RBPMS-stained healthy and glaucomatous retinas, obtained from mice subjected to microbead-induced ocular hypertension and optic nerve crush injury paradigms. RGCode demonstrates excellent performance in RGC quantification as compared to manual counts. Furthermore, we convincingly show that RGCode has potential for wider application, by retraining the model with a minimal set of training data to count FluoroGold-traced RGCs.
Collapse
Affiliation(s)
- Luca Masin
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Marie Claes
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Steven Bergmans
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lien Cools
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lien Andries
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Benjamin M. Davis
- grid.83440.3b0000000121901201Glaucoma and Retinal Neurodegenerative Disease Research Group, Institute of Ophthalmology, University College London, London, UK ,grid.496779.2Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire UK
| | - Lieve Moons
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- grid.5596.f0000 0001 0668 7884Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Zhu Y, Pan X, Du N, Li K, Hu Y, Wang L, Zhang J, Liu Y, Zuo L, Meng X, Hu C, Wu X, Jin J, Wu W, Chen X, Wu F, Huang Y. ASIC1a regulates miR‐350/SPRY2 by N
6
‐methyladenosine to promote liver fibrosis. FASEB J 2020; 34:14371-14388. [DOI: 10.1096/fj.202001337r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Yueqin Zhu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Xuesheng Pan
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Na Du
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Kuayue Li
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yamin Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Lili Wang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Jin Zhang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yanyi Liu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Longquan Zuo
- Department of Pharmacy Hospital of Armed Police of Anhui Province Hefei230041China
| | - Xiaoming Meng
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Chengmu Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - xian Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei230032China
| | - Wenyong Wu
- 4Department of General Surgery First Affiliated Hospital of Anhui Medical University Hefei230022China
| | - Xiangtao Chen
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Fanrong Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| |
Collapse
|
15
|
Histidine Residues Are Responsible for Bidirectional Effects of Zinc on Acid-Sensing Ion Channel 1a/3 Heteromeric Channels. Biomolecules 2020; 10:biom10091264. [PMID: 32887365 PMCID: PMC7565092 DOI: 10.3390/biom10091264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channel (ASIC) subunits 1a and 3 are highly expressed in central and peripheral sensory neurons, respectively. Endogenous biomolecule zinc plays a critical role in physiological and pathophysiological conditions. Here, we found that currents recorded from heterologously expressed ASIC1a/3 channels using the whole-cell patch-clamp technique were regulated by zinc with dual effects. Co-application of zinc dose-dependently potentiated both peak amplitude and the sustained component of heteromeric ASIC1a/3 currents; pretreatment with zinc between 3 to 100 µM exerted the same potentiation as co-application. However, pretreatment with zinc induced a significant inhibition of heteromeric ASIC1a/3 channels when zinc concentrations were over 250 µM. The potentiation of heteromeric ASIC1a/3 channels by zinc was pH dependent, as zinc shifted the pH dependence of ASIC1a/3 currents from a pH50 of 6.54 to 6.77; whereas the inhibition of ASIC1a/3 currents by zinc was also pH dependent. Furthermore, we systematically mutated histidine residues in the extracellular domain of ASIC1a or ASIC3 and found that histidine residues 72 and 73 in both ASIC1a and ASIC3, and histidine residue 83 in the ASIC3 were responsible for bidirectional effects on heteromeric ASIC1a/3 channels by zinc. These findings suggest that histidine residues in the extracellular domain of heteromeric ASIC1a/3 channels are critical for zinc-mediated effects.
Collapse
|
16
|
Chu Y, Qiu P, Yu R. Centipede Venom Peptides Acting on Ion Channels. Toxins (Basel) 2020; 12:toxins12040230. [PMID: 32260499 PMCID: PMC7232367 DOI: 10.3390/toxins12040230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Centipedes are among the oldest venomous arthropods that use their venom to subdue the prey. The major components of centipede venom are a variety of low-molecular-weight peptide toxins that have evolved to target voltage-gated ion channels to interfere with the central system of prey and produce pain or paralysis for efficient hunting. Peptide toxins usually contain several intramolecular disulfide bonds, which confer chemical, thermal and biological stability. In addition, centipede peptides generally have novel structures and high potency and specificity and therefore hold great promise both as diagnostic tools and in the treatment of human disease. Here, we review the centipede peptide toxins with reported effects on ion channels, including Nav, Kv, Cav and the nonselective cation channel polymodal transient receptor potential vanilloid 1 (TRPV1).
Collapse
Affiliation(s)
- YanYan Chu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Correspondence: (Y.C.); (R.Y.)
| | - PeiJu Qiu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - RiLei Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Correspondence: (Y.C.); (R.Y.)
| |
Collapse
|
17
|
Stankowska DL, Dibas A, Li L, Zhang W, Krishnamoorthy VR, Chavala SH, Nguyen TP, Yorio T, Ellis DZ, Acharya S. Hybrid Compound SA-2 is Neuroprotective in Animal Models of Retinal Ganglion Cell Death. Invest Ophthalmol Vis Sci 2019; 60:3064-3073. [PMID: 31348824 DOI: 10.1167/iovs.18-25999] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Determine the toxicity, bioavailability in the retina, and neuroprotective effects of a hybrid antioxidant-nitric oxide donor compound SA-2 against oxidative stress-induced retinal ganglion cell (RGC) death in neurodegenerative animal models. Methods Optic nerve crush (ONC) and ischemia reperfusion (I/R) injury models were used in 12-week-old C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mice were treated intravitreally with either vehicle or SA-2. Retinal thickness was measured by spectral-domain optical coherence tomography (SD-OCT). The electroretinogram and pattern ERG (PERG) were used to assess retinal function. RGC survival was determined by counting RBPMS-positive RGCs and immunohistochemical analysis of superoxide dismutase 1 (SOD1) levels was carried out in the retina sections. Concentrations of SA-2 in the retina and choroid were determined using HPLC and MS. In addition, the direct effect of SA-2 treatment on RGC survival was assessed in ex vivo rat retinal explants under hypoxic (0.5% O2) conditions. Results Compound SA-2 did not induce any appreciable change in retinal thickness, or in a- or b-wave amplitude in naive animals. SA-2 was found to be bioavailable in both the retina and choroid after a single intravitreal injection (2% wt/vol). An increase in SOD1 levels in the retina of mice subjected to ONC and SA-2 treatment, suggests an enhancement in antioxidant activity. SA-2 provided significant (P < 0.05) RGC protection in all three of the tested RGC injury models in rodents. PERG amplitudes were significantly higher in both I/R and ONC mouse eyes following SA-2 treatment (P ≤ 0.001) in comparison with the vehicle and control groups. Conclusions Compound SA-2 was effective in preventing RGC death and loss of function in three different rodent models of acute RGC injury: ONC, I/R, and hypoxia.
Collapse
Affiliation(s)
- Dorota L Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Adnan Dibas
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Linya Li
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Wei Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Vignesh R Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Sai H Chavala
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Tam Phung Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, United States
| | - Thomas Yorio
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
18
|
Song N, Lu Z, Zhang J, Shi Y, Ning Y, Chen J, Jin S, Shen B, Fang Y, Zou J, Teng J, Chu XP, Shen L, Ding X. Acid-sensing ion channel 1a is involved in ischaemia/reperfusion induced kidney injury by increasing renal epithelia cell apoptosis. J Cell Mol Med 2019; 23:3429-3440. [PMID: 30793492 PMCID: PMC6484315 DOI: 10.1111/jcmm.14238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Acidic microenvironment is commonly observed in ischaemic tissue. In the kidney, extracellular pH dropped from 7.4 to 6.5 within 10 minutes initiation of ischaemia. Acid‐sensing ion channels (ASICs) can be activated by pH drops from 7.4 to 7.0 or lower and permeates to Ca2+entrance. Thus, activation of ASIC1a can mediate the intracellular Ca2+ accumulation and play crucial roles in apoptosis of cells. However, the role of ASICs in renal ischaemic injury is unclear. The aim of the present study was to test the hypothesis that ischaemia increases renal epithelia cell apoptosis through ASIC1a‐mediated calcium entry. The results show that ASIC1a distributed in the proximal tubule with higher level in the renal tubule ischaemic injury both in vivo and in vitro. In vivo, Injection of ASIC1a inhibitor PcTx‐1 previous to ischaemia/reperfusion (I/R) operation attenuated renal ischaemic injury. In vitro, HK‐2 cells were pre‐treated with PcTx‐1 before hypoxia, the intracellular concentration of Ca2+, mitochondrial transmembrane potential (∆ψm) and apoptosis was measured. Blocking ASIC1a attenuated I/R induced Ca2+ overflow, loss of ∆ψm and apoptosis in HK‐2 cells. The results revealed that ASIC1a localized in the proximal tubular and contributed to I/R induced kidney injury. Consequently, targeting the ASIC1a may prove to be a novel strategy for AKI patients.
Collapse
Affiliation(s)
- Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Zhihui Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri -Kansas City, Missouri
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
19
|
Dibas J, Al-Saad H, Dibas A. Basics on the use of acid-sensing ion channels' inhibitors as therapeutics. Neural Regen Res 2019; 14:395-398. [PMID: 30539804 PMCID: PMC6334597 DOI: 10.4103/1673-5374.245466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Since the discovery of acid-sensing ion channels in 1997, their importance in the health of neurons and other non-neuronal cells has gained significant importance. Acid-sensing ion channels play important roles in mediating pain sensation during diseases such as stroke, inflammation, arthritis, cancer, and recently migraine. More interestingly, acid-sensing ion channels may explain the sex differences in pain between males and females. Also, the ability of acid-sensing ion channel blockers to exert neuroprotective effects in a number of neurodegenerative diseases has added a new dimension to their therapeutic value. The current failure rate of ~45% of new drugs (due to toxicity issues) and saving of up to 7 years in the life span of drug approval makes drug repurposing a high priority. If acid-sensing ion channels’ blockers undergo what is known as “drug repurposing”, there is a great potential to bring them as medications with known safety profiles to new patient populations. However, the route of administration remains a big challenge due to their poor penetration of the blood brain and retinal barriers. In this review, the promise of using acid-sensing ion channel blockers as neuroprotective drugs is discussed.
Collapse
Affiliation(s)
- Jamileh Dibas
- Faculty of Pharmacy, Applied University, Amman, Jordan
| | - Houssam Al-Saad
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Adnan Dibas
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
20
|
Fauzia E, Barbhuyan TK, Shrivastava AK, Kumar M, Garg P, Khan MA, Robertson AAB, Raza SS. Chick Embryo: A Preclinical Model for Understanding Ischemia-Reperfusion Mechanism. Front Pharmacol 2018; 9:1034. [PMID: 30298003 PMCID: PMC6160536 DOI: 10.3389/fphar.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R)-related disorders, such as stroke, myocardial infarction, and peripheral vascular disease, are among the most frequent causes of disease and death. Tissue injury or death may result from the initial ischemic insult, primarily determined by the magnitude and duration of the interruption in blood supply and then by the subsequent reperfusion-induced damage. Various in vitro and in vivo models are currently available to study I/R mechanism in the brain and other tissues. However, thus far, no in ovo I/R model has been reported for understanding the I/R mechanisms and for faster drug screening. Here, we developed an in ovo Hook model of I/R by occluding and releasing the right vitelline artery of a chick embryo at 72 h of development. To validate the model and elucidate various underlying survival and death mechanisms, we employed imaging (Doppler blood flow imaging), biochemical, and blotting techniques and evaluated the cell death mechanism: autophagy and inflammation caused by I/R. In conclusion, the present model is useful in parallel with established in vitro and in vivo I/R models to understand the mechanisms of I/R development and its treatment.
Collapse
Affiliation(s)
- Eram Fauzia
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Tarun Kumar Barbhuyan
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Amit Kumar Shrivastava
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Manish Kumar
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Paarth Garg
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| |
Collapse
|