1
|
Fakeri M, Shakoul F, Yaghoubi SM, Koulaeizadeh S, Haghi M. Comprehensive insights into circular RNAs, miRNAs, and lncRNAs as biomarkers in retinoblastoma. Ophthalmic Genet 2025; 46:122-132. [PMID: 39849678 DOI: 10.1080/13816810.2025.2456607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Retinoblastoma (RB) is a common and potentially lethal cancer that primarily affects young children worldwide, with survival rates significantly varying between high- and low-income countries. This review aims to identify essential diagnostic markers for early diagnosis by investigating the molecular pathways associated with RB. The prevalence of RB cases is notably concentrated in Asia and Africa, contributing to a global survival rate estimate of less than 30%. Current management strategies involve complex, individualized treatment plans that consider cultural nuances, genetic abnormalities, staging, and the availability of medical resources. Recent studies suggest that circular RNAs (circRNAs) may serve as predictive and diagnostic biomarkers in the etiology of RB. This review examines the roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circRNAs in RB, with the goal of improving survival rates, particularly in low- and middle-income countries. A deeper understanding of the molecular pathways of RB may facilitate the development of personalized treatment plans and targeted therapies. Elevated expression of circRNAs has been observed in most patient cases, and studies indicate that reducing specific circRNA production can inhibit tumor cell development and progression. Investigating the roles and mechanisms of circular RNAs in RB holds promise for future treatment approaches.
Collapse
Affiliation(s)
- Mahsa Fakeri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Shakoul
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shabnam Koulaeizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Lou J, Liu X, Xie Y, Wu M, Mao W, Ying X. MiR-301b-3p promotes breast cancer development through inhibiting the expression of transforming growth factor-beta receptor 2. PeerJ 2024; 12:e18324. [PMID: 39525474 PMCID: PMC11546148 DOI: 10.7717/peerj.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Breast cancer (BC) is a serious health threat to the patients. The present work explored the mechanism of miR-301b-3p and transforming growth factor-beta receptor 2 (TGFBR2 ) in affecting BC progression. Methods The miR-301b-3p-inhibitor and si-TGFBR2 solution were added to the DEME/F12 medium to culture the BC and normal breast epithelial cell lines to prepare negative control, miR-301b-3p-IN and miR-301b-3p-IN+si-TGFBR2 in the two types of cell lines. The relative expression of target genes and the interference effect were analyzed by quantitative real-time PCR (qRT- PCR). Cell viability was detected applying cell counting kit-8 (CCK-8) assay. Transwell and wound healing assay were conducted to evaluate the invasion and migration of BC cells after miR-301b-3p inhibition. Additionally, cell apoptosis and the expression STAT protein were measured by flow cytometry and Western blot, respectively. Results The qRT-PCR results showed that miR-301b-3p were high-expressed but the level of TGFBR2 was significantly inhibited in BC cells. The miR-301b-3p-inhibitor significantly downregulated the expression of miR-301b-3p and upregulated that of TGFBR2. Meanwhile, inhibition of miR-301b-3p suppressed the cell viability, invasion, and migration of BC cells, which, however, were restored by the inhibition of TGFBR2. MiR-301b-3p conferred anti-apoptosis ability to BC cells, while TGFBR2 promoted apoptosis of BC cells through producing an antagonistic effect with miR-301b-3p. We found that miR-301b-3p played a crucial role in the phosphorylation of STAT1 and STAT3 to promote BC progression. Conclusion The present findings demonstrated that miR-301b-3p played a crucial role in promoting BC cell growth, invasion and migration and anti-apoptosis, and that targeting TGFBR2 could inhibit the tumor-promoting effect of miR-301b-3p.
Collapse
Affiliation(s)
- Jian Lou
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Xueni Liu
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Yanru Xie
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Minhua Wu
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Weibo Mao
- Pathology Department, Lishui Central Hospital, Lishui, China
| | - Xiaozhen Ying
- Tumor Center, Lishui Central Hospital, Lishui, China
| |
Collapse
|
3
|
Zhu Y, Meng X, Zhu X, Zhang J, Lv H, Wang F, Wang J, Chen C, Chen M, Wang D, Jin W, Tian R, Wang R. Circular RNA MKLN1 promotes epithelial-mesenchymal transition in pulmonary fibrosis by regulating the miR-26a/b-5p/CDK8 axis in human alveolar epithelial cells and mice models. Arch Toxicol 2024; 98:1399-1413. [PMID: 38460002 PMCID: PMC10965569 DOI: 10.1007/s00204-024-03700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Xian Zhu
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Jiaxiang Zhang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Hui Lv
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Feiyao Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Jinfeng Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Cheng Chen
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Mengting Chen
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Dapeng Wang
- Department of Intensive Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214021, Jiangsu, China
| | - Wei Jin
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Rui Tian
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Ruilan Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 650 Xinsongjiang Road, Shanghai, 201620, China.
| |
Collapse
|
4
|
Zhou L, Tong Y, Ho BM, Li J, Chan HYE, Zhang T, Du L, He JN, Chen LJ, Tham CC, Yam JC, Pang CP, Chu WK. Etiology including epigenetic defects of retinoblastoma. Asia Pac J Ophthalmol (Phila) 2024; 13:100072. [PMID: 38789041 DOI: 10.1016/j.apjo.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoblastoma (RB), originating from the developing retina, is an aggressive intraocular malignant neoplasm in childhood. Biallelic loss of RB1 is conventionally considered a prerequisite for initiating RB development in most RB cases. Additional genetic mutations arising from genome instability following RB1 mutations are proposed to be required to promote RB development. Recent advancements in high throughput sequencing technologies allow a deeper and more comprehensive understanding of the etiology of RB that additional genetic alterations following RB1 biallelic loss are rare, yet epigenetic changes driven by RB1 loss emerge as a critical contributor promoting RB tumorigenesis. Multiple epigenetic regulators have been found to be dysregulated and to contribute to RB development, including noncoding RNAs, DNA methylations, RNA modifications, chromatin conformations, and histone modifications. A full understanding of the roles of genetic and epigenetic alterations in RB formation is crucial in facilitating the translation of these findings into effective treatment strategies for RB. In this review, we summarize current knowledge concerning genetic defects and epigenetic dysregulations in RB, aiming to help understand their links and roles in RB tumorigenesis.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yan Tong
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Man Ho
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiahui Li
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tian Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lin Du
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
5
|
Yang J, Tan C, Wang Y, Zong T, Xie T, Yang Q, Wu M, Liu Y, Mu T, Wang X, Yao Y. The circRNA MKLN1 regulates autophagy in the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166839. [PMID: 37549719 DOI: 10.1016/j.bbadis.2023.166839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Diabetic retinopathy (DR) is a common complication in patients with diabetes and has become an important cause of blindness in working-age people. However, the mechanisms involved have not been fully elucidated. Circular RNAs (circRNAs) can play an important role in DR, and they can accurately regulate the expression of target genes through a new regulatory model: the competing endogenous RNA (ceRNA) model. We isolated total RNA from extracellular vesicles in the serum of healthy individuals (Con) and individuals with diabetes mellitus without DR (DM), nonproliferative DR (NPDR), or proliferative DR (PDR) and subjected them to deep sequencing. We found aberrantly high expression of circMKLN1. In a streptozotocin (STZ)-induced mice model of diabetes, the inhibition of circMKLN1 with AAV2 transduction markedly ameliorated retinal acellular vessels and vascular leakage, which was reversed by intravitreal injection of rapamycin, a potent autophagy inducer. In addition, circMKLN1 adsorbs miR-26a-5p as a molecular sponge and mediates high glucose (HG)/methylglyoxal (MG)-induced autophagy in hRMECs. CircMKLN1-silencing treatment reduces HG/MG-related reactive autophagy and inflammation. In addition, miR-26a-5p targeting by circMKLN1 plays an important role in the regulation of Rab11a expression. Thus, either new biomarkers or new therapeutic targets may be identified with the translation of these findings.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| |
Collapse
|
6
|
Karami Fath M, Pourbagher Benam S, Kouhi Esfahani N, Shahkarami N, Shafa S, Bagheri H, Shafagh SG, Payandeh Z, Barati G. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target? Clin Transl Oncol 2023:10.1007/s12094-023-03144-2. [PMID: 37000290 DOI: 10.1007/s12094-023-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through "microRNA sponges". The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Negar Shahkarami
- School of Allied Medical Sciences, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bagheri
- Faculty of Medicine, Islamic Azad University of Tehran Branch, Tehran, Iran
| | | | - Zahra Payandeh
- Division Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
7
|
Abstract
miRNAs are a type of small endogenous noncoding RNA composed of 20-22 nucleotides that can regulate gene expression by targeting the 3' untranslated region of mRNA. Many investigations have discovered that miRNAs have a role in the development and progression of human cancer. Several aspects of tumor development are affected by miR-425, including growth, apoptosis, invasion, migration, epithelial-mesenchymal transition, and drug resistance. In this article, we discuss the properties and research development of miR-425, focusing on the regulation and function of miR-425 in various cancers. Furthermore, we discuss the clinical implications of miR-425. This review may broaden our horizon for better understanding the role of miR-425 as biomarkers and therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Galardi A, Colletti M, Palma A, Di Giannatale A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2022; 11:biomedicines11010036. [PMID: 36672544 PMCID: PMC9856195 DOI: 10.3390/biomedicines11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded closed noncoding RNA molecules which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, only recently there appeared an increased interest in the understanding of their regulatory importance. Among their most relevant characteristics are high stability, abundance and evolutionary conservation among species. CircRNAs are implicated in several cellular functions, ranging from miRNA and protein sponges to transcriptional modulation and splicing. Additionally, circRNAs' aberrant expression in pathological conditions is bringing to light their possible use as diagnostic and prognostic biomarkers. Their use as indicator molecules of pathological changes is also supported by their peculiar covalent closed cyclic structure which bestows resistance to RNases. Their regulatory role in cancer pathogenesis and metastasis is supported by studies involving human tumors that have investigated different expression profiles of these molecules. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion and they arouse great consideration as potential therapeutic biomarkers and targets for cancer. In this review, we describe the most recent findings on circRNAs in the most common pediatric solid cancers (such as brain tumors, neuroblastomas, and sarcomas) and in more rare ones (such as Wilms tumors, hepatoblastomas, and retinoblastomas).
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
10
|
Li F, Yin YK, Zhang JT, Gong HP, Hao XD. Role of circular RNAs in retinoblastoma. Funct Integr Genomics 2022; 23:13. [PMID: 36547723 DOI: 10.1007/s10142-022-00942-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Retinoblastoma (RB), the most common malignant retinal tumor among children under 3 years old, is lethal if left untreated. Early diagnosis, together with timely and effective treatment, is important to improve retinoblastoma-related outcomes. Circular RNAs (circRNAs), a new class of non-coding RNAs with the capacity to regulate cellular activities, have great potential in retinoblastoma diagnosis and treatment. Recent studies have identified circular RNAs that regulate multiple cellular processes involved in retinoblastoma, including cell viability, proliferation, apoptosis, autophagy, migration, and invasion. Six circular RNAs (circ-FAM158A, circ-DHDDS, circ-E2F3, circ-TRHDE, circ-E2F5, and circ-RNF20) promote disease progression and metastasis in retinoblastoma and function as oncogenic factors. Other circular RNAs, such as circ-TET1, circ-SHPRH, circ-MKLN1, and circ-CUL2, play tumor suppressive roles in retinoblastoma. At present, the studies on the regulatory mechanism of circular RNAs in retinoblastoma are not very clear. The purpose of this review is to summarize recent studies on the functional roles and molecular mechanisms of circular RNAs in retinoblastoma and highlight novel strategies for retinoblastoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Fei Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yi-Ke Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Ji-Tao Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hai-Pai Gong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
11
|
Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol 2022; 12:963780. [PMID: 36408154 PMCID: PMC9670800 DOI: 10.3389/fonc.2022.963780] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma (Rb), the most frequent malignant intraocular tumor in childhood, is caused by mutations in the retinoblastoma gene (RB1) situated on chromosome 13q14.2. The incidence of retinoblastoma is approximately 1 in 17,000 live births with approximately 8,000 new cases diagnosed each year worldwide. Rb is the prototypical hereditary cancer in humans. Autosomal dominant inheritance is seen in 30-40% of cases whereas the non-inherited sporadic type accounts for the remaining 60-70%. Rb arises due to inactivation of both alleles of the Rb tumor suppressor gene, which results in a defective Rb protein (pRB) with subsequent cell cycle impairment and uncontrolled cell proliferation. Patients with Rb have survival rates higher than 95-98% in industrialized countries but mortality remains high in developing countries. For example, the mortality rate in Africa is 70%. In all cases of intraocular and extraocular retinoblastoma, there is a need for new therapies that are more effective and carry less risk of toxicity. The Bruckner test is a practical and easy test for the detection of Rb, this test consists of assessing the fundus reflex through the pupil (red reflex) in both eyes simultaneously with a bright coaxial light produced with the direct ophthalmoscope. Rb can be detected by the Bruckner test showing a pupil that shines white or “Leukocoria”. Although the diagnosis of Rb remains essentially clinical, the newly identified biomarkers could contribute to early molecular detection, timely detection of micrometastases and establish new therapeutic options for Rb.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Gálvez
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan Carlos Ordaz-Favila
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
| | | | | | - Vanessa Bosch-Canto
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
- *Correspondence: Vanessa Bosch-Canto,
| |
Collapse
|
12
|
Asadi MR, Moslehian MS, Sabaie H, Sharifi-Bonab M, Hakimi P, Hussen BM, Taheri M, Rakhshan A, Rezazadeh M. CircRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. Front Oncol 2022; 12:910470. [PMID: 35865469 PMCID: PMC9294360 DOI: 10.3389/fonc.2022.910470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoblastoma (RB) is one of the most common childhood cancers caused by RB gene mutations (tumor suppressor gene in various patients). A better understanding of molecular pathways and the development of new diagnostic approaches may lead to better treatment for RB patients. The number of studies on ceRNA axes is increasing, emphasizing the significance of these axes in RB. Circular RNAs (circRNAs) play a vital role in competing endogenous RNA (ceRNA) regulatory axes by sponging microRNAs and regulating gene expression. Because of the broadness of ceRNA interaction networks, they may assist in investigating treatment targets in RB. This study conducted a systematic scoping review to evaluate verified loops of ceRNA in RB, focusing on the ceRNA axis and its relationship to circRNAs. This scoping review was carried out using a six-step strategy and the Prisma guideline, and it involved systematically searching the publications of seven databases. Out of 363 records, sixteen articles were entirely consistent with the defined inclusion criteria and were summarized in the relevant table. The majority of the studies focused on the circRNAs circ_0000527, circ_0000034, and circTET1, with approximately two-fifths of the studies focusing on a single circRNA. Understanding the many features of this regulatory structure may help elucidate RB's unknown causative factors and provide novel molecular potential therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Azadeh Rakhshan
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| |
Collapse
|
13
|
Yang G, Zhang Y, Lin H, Liu J, Huang S, Zhong W, Peng C, Du L. CircRNA circ_0023984 promotes the progression of esophageal squamous cell carcinoma via regulating miR-134-5p/cystatin-s axis. Bioengineered 2022; 13:10578-10593. [PMID: 35440286 PMCID: PMC9161969 DOI: 10.1080/21655979.2022.2063562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies have shown that circRNAs can act as oncogenic factors or tumor suppressors by sponging microRNAs (miRNAs). The upregulation of circ_0023984 was reported in esophageal squamous cell carcinoma (ESCC). However, its functional role in ESCC remain unclear. In the present study, circ_0023984 expression in ESCC cells and tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). Subcellular fraction experiment was performed to determine relative nuclear-cytoplasmic localization. The loss-of-function effects of circ_0023984 in ESCC cell lines were investigated by shRNA-mediated knockdown. Functional assays including cell Counting Kit-8 (CCK-8), 5-Ethynyl-2’-deoxyuridine (EDU) incorporation, colony formation and Transwell migration assays were conducted to assess the malignant phenotype. The interaction between the two molecules was analyzed by RNA pull-down, luciferase reporter assay and RNA immunoprecipitation (RIP). The subcutaneous tumor model in nude mice was used to assess the role of circ-0023984 in tumorigenesis. We found that ESCC patients with high circ_0023984 expression was associated with a poor prognosis. The knockdown of circ_0023984 suppressed cell growth, invasion, and migration in ESCC cells. Circ_0023984 interacted with miR-134-5p and inhibited its activity, which promoted the expression of CST4 (Cystatin-S). Circ_0023984 also regulated tumorigenesis in a CST4-dependent manner. Together, our study indicates that the oncogenic role of Circ_0023984 is mediated by miR-134-5p/CST4 Axis in ESCC, which could serve as potential targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Ge Yang
- Department of Clinical Laboratory, Affiliated Neijiang Second People's Hospital of Southwest Medical University, Neijiang, P.R, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, China Neijiang
| | - Yu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, China Neijiang
| | - Hongni Lin
- Scientific research department, Sichuan Neijiang Health Vocational College, China Neijiang
| | - Jinnbo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, China Neijiang
| | - Shengjie Huang
- Scientific research department, Sichuan Neijiang Health Vocational College, China Neijiang
| | - Wei Zhong
- Nuclear medicine department, Affiliated Neijiang Second People's Hospital of Southwest Medical University, Neijiang, P.R, China
| | - Chao Peng
- Department of intestine surgery, Affiliated Neijiang Second People's Hospital of Southwest Medical University, Neijiang, P.R, China
| | - Lin Du
- Scientific research department, Sichuan Neijiang Health Vocational College, China Neijiang
| |
Collapse
|