1
|
Hennessey M, Alarcon P, Samanta I, Fournié G, Paleja H, Papaiyan K, Gautham M. Formulating antibiotic policy: Analysis of India's ban on colistin use in food producing animals. Prev Vet Med 2025; 240:106534. [PMID: 40273740 DOI: 10.1016/j.prevetmed.2025.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Antibiotics remain key tools for maintaining human health, and in many settings, food production. However, emergence of antibiotic resistance has become a global challenge, one that has resulted in multi-national calls for policy to improve antibiotic use. One such call has been to restrict the use of antibiotics deemed critically important for human health, such as colistin, during the production of food producing animals. Between 2016 and 2019 numerous countries, including India, implemented policies to heavily restricted the use of colistin in livestock. While this represents a key shift in the antibiotic policy landscape, other classes of critically important antibiotics continue to be used during food production. This paper provides a policy analysis of India's 2019 colistin ban to provide insight into how this came to be and to identify factors which could shape the development of future legislation. The analysis revealed that while antibiotic reform in food production had been in the background of India's policy agenda for some time, it took key-focusing events to shift the policy climate into a period of action. These focusing events included reporting of mobile colistin resistance genes in bacteria isolated from pigs in China and colistin resistant bacteria isolated from food samples in India. Consistent narratives had been built around colistin's role as a last resort antibiotic which, together with relatively low proportion of colistin resistance in bacteria isolated from human patients, framed legislation as a worthwhile endeavour for policy makers. In addition, India acted as a global player in antibiotic stewardship and followed the precedent set by several other countries in restricting colistin use during food production. As most colistin for animal use was imported into India from China, and viable alternative animal treatments existed, there was limited industry opposition that could block legislation. We suggest evaluation of these five critical factors (focusing events, consistent narratives, worthwhile endeavour, precedent for change, and industry opposition) should be part of the policy formulation process for legislation regarding the use of other critically important antibiotics in food production.
Collapse
Affiliation(s)
- Mathew Hennessey
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, UK.
| | - Pablo Alarcon
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, UK
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Guillaume Fournié
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, WOAH Collaborating Centre in Risk Analysis and Modelling, Royal Veterinary College, London, UK; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France; Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - Haidaruliman Paleja
- Department of Veterinary Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, India
| | - Kumaravel Papaiyan
- Dean, Veterinary College and Research Institute, Udumalpet, TANUVAS, India
| | - Meenakshi Gautham
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Pellegrini JL, González MDLÁ, Lösch LS, Merino LA, Di Conza JA. Colistin-resistant Escherichia coli mediated by the mcr-1 gene from pigs in northeastern Argentina. Rev Argent Microbiol 2025:S0325-7541(25)00007-0. [PMID: 39984394 DOI: 10.1016/j.ram.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 12/27/2024] [Indexed: 02/23/2025] Open
Abstract
The emergence and spread of multidrug-resistant Escherichia coli carrying mcr-1 is recognized as a threat to public health. The aim of this study was to determine the prevalence of the mcr-1 gene in colistin-resistant E. coli isolates from commercial pig farms in Chaco, Argentina from 2020 to 2021. A total of 140 rectal swab samples were collected from pigs in six different pig production farms. Antimicrobial susceptibility was determined by broth microdilution. mcr-1 to mcr-5 genes were identified by multiplex PCR and clonality was assessed by ERIC and REP-PCR. The prevalence of mcr-1 was 16.4% and mcr-2, mcr-3, mcr-4 and mcr-5 genes were not detected. Colistin MIC values showed a bimodal distribution with a MIC50, MIC90 and a range of 4, 8 and 4-8μg/ml, respectively. The resistance profile to other antimicrobials was: ampicillin, 87% (20); ampicillin-sulbactam, 47.8% (11); amoxicillin-clavulanic, 13% (3); chloramphenicol, 82.6% (19); ciprofloxacin, 60.9% (14); minocycline, 26.1% (5) and trimethoprim/sulfamethoxazole, 43.5% (10). Eighty-seven percent (87%) of the strains were categorized as MDR and 12 phenotypic resistance patterns with different clonality profiles were observed. A high prevalence of mcr-1 is demonstrated in colistin-free pig farms from Chaco, Argentina. The mcr-1 positive E. coli isolates showed an alarming level of multidrug resistance and high clonal diversity. It is necessary to continuously monitor the presence of the mcr-1 gene not only in pig production, but also in humans and the environment.
Collapse
Affiliation(s)
- Juan Leandro Pellegrini
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727 CP 3500, Resistencia, Chaco, Argentina.
| | - María de Los Ángeles González
- Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nac. N° 89 Km 227, CP 3722, Las Breñas, Chaco, Argentina
| | - Liliana Silvina Lösch
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727 CP 3500, Resistencia, Chaco, Argentina
| | - Luis Antonio Merino
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727 CP 3500, Resistencia, Chaco, Argentina
| | - José Alejandro Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP: C1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP: C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Commensal Escherichia coli Isolates from Chickens in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2024; 13:1175. [PMID: 39766565 PMCID: PMC11672764 DOI: 10.3390/antibiotics13121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Widespread use of antibiotics has led to a global increase in resistance. The Escherichia coli bacterium is a facultative pathogen that often develops antibiotic resistance and is easily transmitted, not only in animal health but also in public health. Within the poultry sector, domestic fowl is widespread and one of the most dynamically growing sectors, which is why regular, extensive monitoring is crucial. Among economically important livestock, poultry as a major source of animal protein for humans is a frequent carrier of Escherichia coli, also with sporadically detected clinical disease. Methods: Our research evaluates the susceptibility of commensal Escherichia coli strains, isolated from large domestic fowl flocks in Hungary, to antibiotics of animal and public health importance, by determining the minimum inhibitory concentration value. Results: A total of 410 isolates were tested, with the highest level of resistance being found for florfenicol (62.7%). Particularly alarming are the resistance rates to enrofloxacin (52.9%), colistin (30.7%), and ceftriaxone (23.9%). We also found a resistance of 56.1% to amoxicillin and 22.2% to amoxicillin-clavulanic acid, which suggests that the majority of strains are β-lactamase-producing. When compared with the national human resistance data, we found with similar values for amoxicillin and amoxicillin-clavulanic acid, but the resistance rates of aminoglycosides, fluoroquinolones, and potency sulfonamide were worse in animal health. Conclusions: In conclusion, our results suggest that periodic surveys should be carried out and that long-term trends can be established that allow the monitoring of resistance patterns over time. For multidrug-resistant strains, new generation sequencing can be used to investigate the genetic background of resistance.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
4
|
Bourdo K, Fadel C, Giorgi M, Gajda A, Bilecka M, Poapolathep A, Łebkowska-Wieruszewska B. Pharmacokinetics and tissue residues of colistin following intravenous, and single and repeated oral dosing in domestic geese (Anser anser domesticus). Vet J 2024; 308:106245. [PMID: 39306270 DOI: 10.1016/j.tvjl.2024.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Colistin, also known as polymyxin E, is a member of the polymyxin group of antibiotics. It is approved in Europe to treat enteric infections caused by Gram-negative bacteria, such as Escherichia coli, in poultry, although the similarity of infections between species make it likely used off-label in geese as well.This study investigated the pharmacokinetics and tissue residues of colistin in geese through in vivo experiments. The study involved longitudinal open studies on 16 healthy adult male geese, divided into three phases separated by one-month washout period. Geese were administered colistin via intravenous (IV, 1 mg/kg), single oral (PO, 30 mg/kg), and multiple oral (SID, 2.5 mg/kg for five consecutive days) routes, with blood samples drawn at specific intervals. Tissue samples were also collected at pre-assigned times for subsequent analysis. Colistin levels in geese plasma were quantified using a fully validated UHPLC-MS/MS method. Plasma concentrations could be quantified up to 24 h for the single PO (n= 2) and IV (n= 4) routes, and up to 10 h (n= 6) from the last dose administered for the multiple PO route (n=6). The bioavailability was significantly low, averaging 3 %. The terminal half-life in geese was 2.18 h following IV administration, similar to values found in other avian species. Following IV administration, clearance and volume of distribution values were 0.11 mL⋅h⁻¹⋅g⁻¹ and 0.41 mL⋅g⁻¹, respectively. The body extraction ratio was low at 0.2 %, indicating minimal hepatic and renal elimination of colistin. Multiple oral doses showed no plasma accumulation, and tissue levels consistently remained below the maximum residue limit (MRL) set for food-producing animals. This study highlights the minimal systemic bioavailability and tissue penetration of colistin in geese, consistent with findings in other poultry and mammals. Future research should focus on intestinal colistin content in geese to optimize dosing strategies and minimize anti-microbial resistance.
Collapse
Affiliation(s)
- Krzysztof Bourdo
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, Poland.
| | - Charbel Fadel
- Department of Veterinary Medicine, Lebanese University, Beirut, Lebanon; Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Institute-National Research Institute in Puławy, Poland.
| | - Magdalena Bilecka
- Department of Pharmacology and Toxicology, National Veterinary Institute-National Research Institute in Puławy, Poland.
| | - Amnart Poapolathep
- Department of Veterinary Pharmacology, Kasetsart University, Bangkok, Thailand.
| | - Beata Łebkowska-Wieruszewska
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
5
|
Hasan B, Ali MZ, Rawlin G. Avian Pathogenic Escherichia coli Isolated in Poultry Farms in Bangladesh that Use Antibiotics Extensively. Microb Drug Resist 2024; 30:468-475. [PMID: 39501835 DOI: 10.1089/mdr.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024] Open
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is causing economic losses to the global poultry industry. Increased prevalence of antibiotic resistance in APEC is the leading cause for increased indiscriminate use of various antimicrobial compounds in farms. The study aimed to investigate the presence of phenotypic and genotypic markers for antibiotic resistance, metals, and biocides in APEC from Bangladeshi poultry and details about the antimicrobials used in poultry farms. In total, 55 APEC were isolated from hearts or liver samples of 86 sick or dead chickens using culture on agar plate and biochemical testing. APEC isolates were tested for antibiotic susceptibility to 14 antimicrobial agents according to the European Committee on Antimicrobial Susceptibility Testing. A series of PCRs was performed to screen the presence of genes for quinolones, colistin, aminoglycosides, ESBL, metals, and biocides. Detailed information regarding antibiotic use was collected from farmers during clinical investigations. Resistance was found to 10 antibiotics and prevalence was as follows: ampicillin (86%), ciprofloxacin (86%), trimethoprim-sulphamethoxazole (73%), chloramphenicol (33%), mecillinam (13%), gentamicin (11%), cefoxitin (11%), cefotaxime (9%), tigecycline (2%), and nitrofurantoin (2%). The most common multiresistance phenotype was CIP-AMP-SXT, and 35% of isolates were multidrug resistant. Genotypic analysis confirmed the presence of quinolone resistance genes [qnrS1 and aac-(6')-lb-cr], silver-resistant genes (silE), and mercury-resistant genes (merA) but not others. In total, 88% farmers were using different antimicrobial compounds, and, of them, 56% were using antimicrobials without prescriptions from veterinarians. Ciprofloxacin was most extensively used followed by oxytetracycline. Critically important antibiotics like ciprofloxacin, colistin, and gentamicin are extensively used in the farms. This study confirmed the presence of antibiotics, metals, and biocide-resistant APEC in poultry farms in Bangladesh. Increased resistance to quinolones is a serious ongoing problem. The indiscriminate use of antibiotics in poultry farms is alarming and should be stopped.
Collapse
Affiliation(s)
- Badrul Hasan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Agribio, Agriculture Victoria Research, Bundoora, Australia
| | - Md Zulfekar Ali
- Animal Health Research Division, Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Grant Rawlin
- Agribio, Agriculture Victoria Research, Bundoora, Australia
| |
Collapse
|
6
|
Bandaranayake S, Williamson S, Stewart J, Payne M, Kaur S, Wang Q, Sintchenko V, Pavic A, Lan R. Genomic diversity of Salmonella enterica serovar Typhimurium isolated from chicken processing facilities in New South Wales, Australia. Front Microbiol 2024; 15:1440777. [PMID: 39206360 PMCID: PMC11349623 DOI: 10.3389/fmicb.2024.1440777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Contamination of poultry products by Salmonella enterica serovar Typhimurium (STm) is a major cause of foodborne infections and outbreaks. This study aimed to assess the diversity and antimicrobial resistance (AMR) carriage of STm in three chicken processing plants using genomic sequencing. It also aimed to investigate whether any particular strain types were associated with cases of human illness. Multilevel genome typing (MGT) was used to analyze 379 STm isolates from processed chicken carcasses. The diversity of chicken STm sequence types (STs) increased from MGT1 (2 STs) to MGT9 (257 STs). STs at MGT5 to MGT9 levels that were unique to one processing plant and shared among the processing plants were identified, likely reflecting the diversity of STm at their farm source. Fifteen medium resolution MGT5 STs matched those from human infections in Australia and globally. However, no STs matched between the chicken and human isolates at high resolution levels (MGT8 or MGT9), indicating the two STm populations were phylogenetically related but were unlikely to be directly epidemiologically linked. AMR genes were rare, with only a bla TEM-1 gene carried by a 95 kb IncI1 Alpha plasmid being identified in 20 isolates. In conclusion, subpopulations that were widespread in processing plants and had caused human infections were described using MGT5 STs. In this STM population, AMR was rare with only sporadic resistance to a single drug class observed. The genomic analysis of STm from chicken processing plants in this study provided insights into STm that contaminate meat chickens early in the food production chain.
Collapse
Affiliation(s)
- Samitha Bandaranayake
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Jack Stewart
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Birling Laboratories, Bringelly, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Habib I, Mohamed MYI, Elbediwi M, Ghazawi A, Khan M, Abdalla A, Lakshmi GB. Genomics Characterization of Colistin Resistant Escherichia coli from Chicken Meat-the First Report in the United Arab Emirates. Foodborne Pathog Dis 2024; 21:521-524. [PMID: 38804146 DOI: 10.1089/fpd.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Plasmid-mediated colistin resistance is an emerging One Health challenge at the human-food-environment interface. In this study, 12 colistin-resistant Escherichia coli carrying mcr-1.1 gene were characterized using whole-genome sequencing. This is the first report from locally produced chicken meat in the United Arab Emirates. The characterized isolates harbored virulence-associated factors ranging from 4 to 17 genes per isolate. The multilocus sequence type 1011 was identified in 5 (41.6%) isolates. Six (50.0%) of the isolates harbored blaCTX-M-55. All of the E. coli isolates contained Incl2 plasmids. This study highlights for the first time chicken meat as a potential reservoir of mcr-1.1 carrying E. coli in the UAE. This study has implications for food safety and underscores the need for comprehensive surveillance strategies to monitor the spread of colistin resistance. Results presented in this short communication address knowledge gaps on the epidemiology of plasmid-mediated colistin resistance in the Middle East food production chain.
Collapse
Affiliation(s)
- Ihab Habib
- Department of Veterinary Medicine, Veterinary Public Health Research Laboratory, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, Veterinary Public Health Research Laboratory, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Animal Health Research Institute, Agriculture Research Centre, Cairo, Egypt
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mushtaq Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Abdalla
- Department of Veterinary Medicine, Veterinary Public Health Research Laboratory, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Glindya Bhagya Lakshmi
- Department of Veterinary Medicine, Veterinary Public Health Research Laboratory, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Resci I, Zavatta L, Piva S, Mondo E, Guerra I, Nanetti A, Bortolotti L, Cilia G. Using honey bee colonies to monitor phenotypic and genotypic resistance to colistin. CHEMOSPHERE 2024; 362:142717. [PMID: 38944352 DOI: 10.1016/j.chemosphere.2024.142717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Colistin is a polymyxin antimicrobic mainly used to treat infection caused by multi-drug resistant Gram-negative bacteria. Mechanisms of colistin resistance are linked to the mobile colistin resistance (mcr) genes, which are transferable within mobile plasmids. Currently, there is limited research on the environmental dissemination of these genes. The behavioural and morphological characteristics of Apis mellifera L. make honey bees effective environmental bioindicators for assessing the prevalence of antimicrobial-resistant bacteria. This study aims to evaluate the colistin phenotypic and genotypic resistance in environmental Gram-negative bacteria isolated from foraging honey bees, across a network of 33 colonies distributed across the Emilia-Romagna region in Italy. Phenotypic resistances were determined through a microdilution assay using the minimum inhibitory concentration (MIC) with dilutions ranging from 0.5 μg/ml to 256 μg/ml. Strains with MIC values gather than 2 μg/ml were classified as resistant. Also, the identification of the nine mcr genes was carried out using two separate multiplex PCR assays. The study found that 68.5% of isolates were resistant and the genus with the higher resistance rates observed in Enterobacter spp. (84.5%). At least one mcr gene was found in 137 strains (53.3%). The most detected gene was mcr5 (35.3%), which was the most frequently detected gene in the seven provinces, while the least observed was mcr4 (4.8%), detected only in two provinces. These results suggested the feasibility of detecting specific colistin resistance genes in environmentally spread bacteria and understanding their distribution at the environmental level, despite their restricted clinical use. In a One-Health approach, this capability enables valuable environmental monitoring, considering the significant role of colistin in the context of public health.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy; Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; DISTAL-Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy
| | - Elisabetta Mondo
- Department of Veterinary Sciences, University of Bologna, Ozzano Dell'Emilia (BO), Italy
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy.
| |
Collapse
|
9
|
Bleischwitz S, Winkelmann TS, Pfeifer Y, Fischer MA, Pfennigwerth N, Hammerl JA, Binsker U, Hans JB, Gatermann S, Käsbohrer A, Werner G, Kreienbrock L. Antimicrobial Resistance Surveillance: Data Harmonisation and Data Selection within Secondary Data Use. Antibiotics (Basel) 2024; 13:656. [PMID: 39061338 PMCID: PMC11273461 DOI: 10.3390/antibiotics13070656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Resistance to last-resort antibiotics is a global threat to public health. Therefore, surveillance and monitoring systems for antimicrobial resistance should be established on a national and international scale. For the development of a One Health surveillance system, we collected exemplary data on carbapenem and colistin-resistant bacterial isolates from human, animal, food, and environmental sources. We pooled secondary data from routine screenings, hospital outbreak investigations, and studies on antimicrobial resistance. For a joint One Health evaluation, this study incorporates epidemiological metadata with phenotypic resistance information and molecular data on the isolate level. To harmonise the heterogeneous original information for the intended use, we developed a generic strategy. By defining and categorising variables, followed by plausibility checks, we created a catalogue for prospective data collections and applied it to our dataset, enabling us to perform preliminary descriptive statistical analyses. This study shows the complexity of data management using heterogeneous secondary data pools and gives an insight into the early stages of the development of an AMR surveillance programme using secondary data.
Collapse
Affiliation(s)
- Sinja Bleischwitz
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, 30559 Hanover, Germany; (S.B.); (T.S.W.)
| | - Tristan Salomon Winkelmann
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, 30559 Hanover, Germany; (S.B.); (T.S.W.)
| | - Yvonne Pfeifer
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antimicrobial Resistances, Robert Koch Institute, 38855 Wernigerode, Germany; (Y.P.); (M.A.F.); (G.W.)
| | - Martin Alexander Fischer
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antimicrobial Resistances, Robert Koch Institute, 38855 Wernigerode, Germany; (Y.P.); (M.A.F.); (G.W.)
| | - Niels Pfennigwerth
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department Medical Microbiology, Ruhr-University Bochum, 44801 Bochum, Germany; (N.P.); (J.B.H.); (S.G.)
| | - Jens André Hammerl
- Division of Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, Federal Institute for Risk Assessment, 12277 Berlin, Germany; (J.A.H.); (U.B.); (A.K.)
| | - Ulrike Binsker
- Division of Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, Federal Institute for Risk Assessment, 12277 Berlin, Germany; (J.A.H.); (U.B.); (A.K.)
| | - Jörg B. Hans
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department Medical Microbiology, Ruhr-University Bochum, 44801 Bochum, Germany; (N.P.); (J.B.H.); (S.G.)
| | - Sören Gatermann
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department Medical Microbiology, Ruhr-University Bochum, 44801 Bochum, Germany; (N.P.); (J.B.H.); (S.G.)
| | - Annemarie Käsbohrer
- Division of Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, Federal Institute for Risk Assessment, 12277 Berlin, Germany; (J.A.H.); (U.B.); (A.K.)
| | - Guido Werner
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antimicrobial Resistances, Robert Koch Institute, 38855 Wernigerode, Germany; (Y.P.); (M.A.F.); (G.W.)
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine, 30559 Hanover, Germany; (S.B.); (T.S.W.)
| |
Collapse
|
10
|
Pereira A, Sidjabat HE, Davis S, Vong da Silva PG, Alves A, Dos Santos C, Jong JBDC, da Conceição F, Felipe NDJ, Ximenes A, Nunes J, Fária IDR, Lopes I, Barnes TS, McKenzie J, Oakley T, Francis JR, Yan J, Ting S. Prevalence of Antimicrobial Resistance in Escherichia coli and Salmonella Species Isolates from Chickens in Live Bird Markets and Boot Swabs from Layer Farms in Timor-Leste. Antibiotics (Basel) 2024; 13:120. [PMID: 38391506 PMCID: PMC10885974 DOI: 10.3390/antibiotics13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid emergence of antimicrobial resistance is a global concern, and high levels of resistance have been detected in chicken populations worldwide. The purpose of this study was to determine the prevalence of antimicrobial resistance in Escherichia coli and Salmonella spp. isolated from healthy chickens in Timor-Leste. Through a cross-sectional study, cloacal swabs and boot swabs were collected from 25 live bird markets and two layer farms respectively. E. coli and Salmonella spp. from these samples were tested for susceptibility to six antimicrobials using a disk diffusion test, and a subset was tested for susceptibility to 27 antimicrobials using broth-based microdilution. E. coli and Salmonella spp. isolates showed the highest resistance towards either tetracycline or ampicillin on the disk diffusion test. E. coli from layer farms (odds ratio:5.2; 95%CI 2.0-13.1) and broilers (odds ratio:18.1; 95%CI 5.3-61.2) were more likely to be multi-drug resistant than those from local chickens. Based on the broth-based microdilution test, resistance to antimicrobials in the Timor-Leste Antimicrobial Guidelines for humans were low, except for resistance to ciprofloxacin in Salmonella spp. (47.1%). Colistin resistance in E. coli was 6.6%. Although this study shows that antimicrobial resistance in chickens was generally low in Timor-Leste, there should be ongoing monitoring in commercial chickens as industry growth might be accompanied with increased antimicrobial use.
Collapse
Affiliation(s)
- Abrao Pereira
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Hanna E Sidjabat
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Steven Davis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Paulo Gabriel Vong da Silva
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Amalia Alves
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Cristibela Dos Santos
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Joanita Bendita da Costa Jong
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Felisiano da Conceição
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Natalino de Jesus Felipe
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Augusta Ximenes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Junilia Nunes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Isménia do Rosário Fária
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | - Isabel Lopes
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili, Timor-Leste
| | | | - Joanna McKenzie
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Tessa Oakley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Joshua R Francis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Jennifer Yan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| | - Shawn Ting
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Dili, Timor-Leste
| |
Collapse
|
11
|
Li Y, Shen D, Wang K, Xue Y, Liu J, Li S, Li X, Li C. Mogroside V ameliorates broiler pulmonary inflammation via modulating lung microbiota and rectifying Th17/Treg dysregulation in lipopolysaccharides-induced lung injury. Poult Sci 2023; 102:103138. [PMID: 37862871 PMCID: PMC10590742 DOI: 10.1016/j.psj.2023.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023] Open
Abstract
The dysbiosis of lung microbiota and inflammatory factors play a crucial role in the occurrence of lipopolysaccharides (LPS)-induced lung injury. Recently, mogroside V (MGV) has received increasing attention due to its potential health benefits in pneumonia, but its complex mechanism needs further experimental elucidation. In this study, we established an LPS-induced chicken lung injury model to investigate the protective effect of MGV on LPS-induced acute lung injury in broiler and its related mechanisms. A total of 192 one-day-old white-finned broilers were randomly assigned into 4 groups with 6 replicates: 1) control group: basal diet (d 1-44), saline (d 43); 2) LPS group: basal diet (d 1-44), LPS (d 43); 3) MGV group: basal diet + 0.2% MGV (d 1-44), saline (d 43); 4) MGV-LPS group: basal diet + 0.2% MGV (d 1-44), LPS (d 43). The results showed that pathological examination showed that lung tissue inflammation infiltration was reduced after MGV treatment. In addition, MGV can promote the balance of Th17 and Treg cell cytokines, significantly inhibit the expression of proinflammatory cytokines (IL-1β (P < 0.01), IL-6 (P < 0.001), IL-17F (P < 0.05)), and decrease immunosuppressive target expression (PD-L1 (P < 0.01), PD-1 (P < 0.001), RORα (P < 0.001)), activating the immune system. Furthermore, 16S rRNA sequencing analysis showed that MGV treatment could increase the abundance of beneficial bacteria in the lung and reduce the abundance of bacteria associated with inflammation. Generally, MGV intervention has a preventive effect on the pathological damage induced by lipopolysaccharides. Its mechanism is related to inhibiting the inflammatory response, regulating the Th17/Treg balance, and maintaining the stability of lung microbiota.
Collapse
Affiliation(s)
- Yuan Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Xue
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Junze Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Materon IC, Palzkill T. Structural biology of MCR-1-mediated resistance to polymyxin antibiotics. Curr Opin Struct Biol 2023; 82:102647. [PMID: 37399693 PMCID: PMC10527939 DOI: 10.1016/j.sbi.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Polymyxins, a last resort antibiotic, target the outer membrane of pathogens and are used to address the increasing prevalence of multidrug-resistant Gram-negative bacteria. The plasmid-encoded enzyme MCR-1 confers polymyxin resistance to bacteria by modifying the outer membrane. Transferable resistance to polymyxins is a major concern; therefore, MCR-1 is an important drug target. In this review, we discuss recent structural and mechanistic aspects of MCR-1 function, its variants and homologs, and how they are relevant to polymyxin resistance. Specifically, we discuss work on polymyxin-mediated disruption of the outer and inner membranes, computational studies on the catalytic mechanism of MCR-1, mutagenesis and structural analysis concerning residues important for substrate binding in MCR-1, and finally, advancements in inhibitors targeting MCR-1.
Collapse
Affiliation(s)
- Isabel Cristina Materon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Hassan IZ, Qekwana DN, Naidoo V. Do Pathogenic Escherichia coli Isolated from Gallus gallus in South Africa Carry Co-Resistance Toward Colistin and Carbapenem Antimicrobials? Foodborne Pathog Dis 2023; 20:388-397. [PMID: 37471208 DOI: 10.1089/fpd.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Colistin and carbapenems are critically important antimicrobials often used as a last resort to manage multidrug-resistant bacterial infections in humans. With limited alternatives, resistance to these antimicrobials is of concern as organisms could potentially spread horizontally rendering treatments ineffective. The aim of this study was to investigate co-resistance to colistin and carbapenems among Escherichia coli isolated from poultry in South Africa. Forty-six E. coli strains obtained from clinical cases of breeder and broiler chickens were used. In addition to other antibiotics, all the isolates were tested against colistin and carbapenems using broth microdilution. Multiplex polymerase chain reactions were used to investigate the presence of colistin (mcr-1 to 5) and carbapenem (blaOXA-48, blaNDM-1, and blaVIM) resistance genes. Isolates exhibiting colistin resistance (>2 μg/mL) underwent a whole-genome sequencing analysis. Resistance to colistin (10.9%) and cefepime (6.5%) was noted with all colistin-resistant strains harboring the mcr-1 gene. None of the E. coli isolates were resistant to carbapenems nor carried the other resistant genes (mcr-2 to 5, blaOXA-48, blaNDM-1, and blaVIM). The mcr-1-positive strains belonged to sequence types ST117 and ST156 and carried virulence genes ompA, aslA, fdeC, fimH, iroN, iutA, tsh, pic, ast A and set 1A/1B. In conclusion, clinical E. coli strains from chickens in this study possessed mobile resistance genes for colistin and several other clinically relevant antimicrobials but not carbapenems. Additionally, they belonged to sequence types in addition to carrying virulence factors often associated with human extraintestinal pathogenic E. coli infections. Thus, the potential risk of transmitting these strains to humans cannot be underestimated especially if sick birds are dispatched into the thriving poorly regulated Cornish hen industry. The need for routine veterinary surveillance and monitoring of antimicrobial resistance, antimicrobial use and the importance of strengthening regulations guiding the informal poultry sector remains important.
Collapse
Affiliation(s)
- Ibrahim Zubairu Hassan
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Daniel N Qekwana
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
14
|
Huang YT, Mao YC, Tseng CH, Liu CW, Liu PY. Identification of combinatorial mutations associated with colistin resistance in Shewanella algae. Microbes Infect 2023; 25:105143. [PMID: 37085044 DOI: 10.1016/j.micinf.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Colistin is a last-resort antibiotic used to treat infections caused by drug-resistant gram-negative bacteria. However, the genetic mechanisms underlying colistin resistance in Shewanella algae are not well understood. In this study, we sequenced and compared the genomes of 23 mcr-negative colistin-resistant and sensitive S. algae samples from various sources. We applied a computational approach to identify combinatorial mutations associated with colistin resistance. Our analysis revealed a combination of three mutations (PmrB 451, PmrE168, PmrH292) that were strongly associated with colistin resistance in S. algae. This study provides insights into the genetic mechanisms of colistin resistance in S. algae and demonstrates the utility of a computational approach for identifying epistatic interactions among mutations. Identifying the genetic mutations responsible for colistin resistance in S. algae can inform the development of new treatments or strategies to combat infections caused by this emerging pathogen.
Collapse
Affiliation(s)
- Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Daxue Road Section 1, Minxiong Township, Chiayi County 62102, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Xitun District, Taichung 40705, Taiwan
| | - Chien-Hao Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Xitun District, Taichung 40705, Taiwan
| | - Chia-Wei Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Xitun District, Taichung 40705, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Xitun District, Taichung 40705, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 145 Xingda Rd, South District, Taichung 40227, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, 145 Xingda Rd, South District, Taichung 40227, Taiwan; Department of Post-Baccalaureate Medicine, National Chung Hsing University, 145 Xingda Rd, South District, Taichung 40227, Taiwan; Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4. Xitun District, Taichung 40705, Taiwan.
| |
Collapse
|
15
|
Sarrami Z, Sedghi M, Mohammadi I, Bedford M, Miranzadeh H, Ghasemi R. Effects of bacteriophage on Salmonella Enteritidis infection in broilers. Sci Rep 2023; 13:12198. [PMID: 37500690 PMCID: PMC10374914 DOI: 10.1038/s41598-023-38791-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteriophages (BP) are viruses that can infect bacteria. The present study evaluated the effect of BP on Salmonella infected broilers. A number of 150 day-old broilers were used in a completely randomized design with five treatments that included: (1) basal diet from day 0 to 28; (2) basal diet + 0.3 g/kg of colistin from day 0 to 28; (3) basal diet from day 1 to 13, and basal diet + 0.4 g/kg of colistin from day 14 to 28; (4) basal diet + 1 g/kg of BP from day 0 to 28; (5) basal diet + 1.5 g/kg of BP from day 0 to 28. On day 13, 15 chickens from each treatment were challenged by Salmonella Enteritidis (SE), while fifteen from each treatment were not; instead, they were kept in the same cage with the challenged chickens (exposed chickens). At 7 and 14 days post-challenge, the number of SE and coliform bacteria in the cecum and liver of colistin and BP-fed birds was lower than the control treatment. In exposed and challenged chickens, the height and surface area of villus were greater in the BP and colistin-supplemented groups. Serum concentrations of aspartate aminotransferase and alanine transaminase were greater, while serum albumin and triglycerides concentrations were lower in the control treatment. The liver of the challenged chickens had more pathological lesions than exposed birds. BP significantly decreased PPARγ gene expression in exposed chickens. In the challenged and exposed chickens, TLR4 gene expression was lower in BP and colistin-treated birds as compared to the control. In conclusion, adding BP to the diet from the day of age prevents the spread of Salmonella.
Collapse
Affiliation(s)
- Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Hadi Miranzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Razie Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
16
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
17
|
Seethalakshmi PS, Rajeev R, Prabhakaran A, Kiran GS, Selvin J. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiol Res 2023; 270:127316. [PMID: 36812837 DOI: 10.1016/j.micres.2023.127316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
18
|
Hamame A, Davoust B, Hasnaoui B, Mwenebitu DL, Rolain JM, Diene SM. Screening of colistin-resistant bacteria in livestock animals from France. Vet Res 2022; 53:96. [DOI: 10.1186/s13567-022-01113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractColistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.
Collapse
|
19
|
Ferreira M, Leão C, Clemente L, Albuquerque T, Amaro A. Antibiotic Susceptibility Profiles and Resistance Mechanisms to β-Lactams and Polymyxins of Escherichia coli from Broilers Raised under Intensive and Extensive Production Systems. Microorganisms 2022; 10:microorganisms10102044. [PMID: 36296320 PMCID: PMC9608943 DOI: 10.3390/microorganisms10102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
The intensive and extensive broiler production systems imply different veterinary interventions, including the use of antimicrobials. This study aimed to compare the antimicrobial susceptibility profiles of Escherichia coli isolated from both systems, characterize resistance mechanisms to β-lactams and polymyxins, and identify genetic elements such as integrons. E. coli isolates recovered from broiler cecal samples were assayed for antimicrobial susceptibility through the broth microdilution technique. The molecular characterization of acquired resistance mechanisms to β-lactams and colistin and the detection of integrons was performed by a multiplex PCR. For most antibiotics tested, the prevalence of reduced susceptibility is higher in commensal and extended-spectrum β-lactamases (ESBL)/AmpC producers from broilers raised in the intensive system, compared with those raised under extensive conditions. SHV-12 was the most common ESBL enzyme found in both production systems. Other ESBL variants such as CTX-M-1, CTX-M-55, CTX-M-14, CTX-M-32, CTX-M-9, TEM-52, and plasmid-encoded AmpC enzyme CMY-2 were also present. MCR-1 was identified in a colistin-resistant isolate from broilers raised under the intensive system. This study highlights the differences in E. coli antibiotic susceptibility from both production types and emphasizes that a great deal of work remains to decrease consumption and antimicrobial resistance levels.
Collapse
Affiliation(s)
- Mariana Ferreira
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- University of Évora, 7004-516 Évora, Portugal
| | - Célia Leão
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Teresa Albuquerque
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
20
|
Bastard J, Nhung NT, Hien VB, Kiet BT, Temime L, Opatowski L, Carrique‐Mas J, Choisy M. Modelling the impact of antimicrobial use and external introductions on commensal E. coli colistin resistance in small-scale chicken farms of the Mekong delta of Vietnam. Transbound Emerg Dis 2022; 69:e2185-e2194. [PMID: 35419995 PMCID: PMC9790599 DOI: 10.1111/tbed.14558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
Colistin is a critically important antimicrobial for human medicine, and colistin-resistant Escherichia coli are commonly found in poultry and poultry products in Southeast Asia. Here, we aim at disentangling the within-farm and outside-farm drivers of colistin resistance in small-scale chicken farms of the Mekong delta of Vietnam. Nineteen Vietnamese chicken farms were followed up along a whole production cycle, during which weekly antimicrobial use data were recorded. At the beginning, middle and end of each production cycle, commensal E. coli samples from birds were collected, pooled and tested for colistin resistance. Twelve models were fitted to the data using an expectation-maximization algorithm and compared. We further tested the spatial clustering of the occurrence of resistance importations from external sources using the local Moran's I statistic. In the best model, colistin resistance in E. coli from chickens was found to be mostly affected by importations of resistance, and, to a lesser extent, by the use of antimicrobials in the last 1.73 weeks [0.00; 2.90], but not by the use of antimicrobials in day-olds, nor their colistin resistance carriage from hatchery. The occurrence of external source importations proved to be sometimes spatially clustered, suggesting a role of local environmental sources of colistin resistance.
Collapse
Affiliation(s)
- Jonathan Bastard
- Université Paris‐Saclay, UVSQ, Univ. Paris‐Sud, Inserm, CESP, Anti‐Infective Evasion and Pharmacoepidemiology TeamMontigny‐le‐BretonneuxFrance
- Institut PasteurEpidemiology and Modelling of Antibiotic Evasion UnitParisFrance
- MESuRS laboratoryConservatoire national des arts et métiersParisFrance
- PACRI unitInstitut PasteurConservatoire national des arts et métiersParisFrance
| | | | - Vo Be Hien
- Sub‐Department of Animal Health and Production, Dong ThapVietnam
| | - Bach Tuan Kiet
- Sub‐Department of Animal Health and Production, Dong ThapVietnam
| | - Laura Temime
- MESuRS laboratoryConservatoire national des arts et métiersParisFrance
- PACRI unitInstitut PasteurConservatoire national des arts et métiersParisFrance
| | - Lulla Opatowski
- Université Paris‐Saclay, UVSQ, Univ. Paris‐Sud, Inserm, CESP, Anti‐Infective Evasion and Pharmacoepidemiology TeamMontigny‐le‐BretonneuxFrance
- Institut PasteurEpidemiology and Modelling of Antibiotic Evasion UnitParisFrance
| | - Juan Carrique‐Mas
- Oxford University Clinical Research UnitHo Chi MinhVietnam
- Centre for Tropical Medicine and Global HealthOxford UniversityOxfordUK
| | - Marc Choisy
- Oxford University Clinical Research UnitHo Chi MinhVietnam
- Centre for Tropical Medicine and Global HealthOxford UniversityOxfordUK
| |
Collapse
|
21
|
Calarga AP, Gontijo MTP, de Almeida LGP, de Vasconcelos ATR, Nascimento LC, de Moraes Barbosa TMC, de Carvalho Perri TM, Dos Santos SR, Tiba-Casas MR, Marques EGL, Ferreira CM, Brocchi M. Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000-2019). Braz J Microbiol 2022; 53:1249-1262. [PMID: 35446010 PMCID: PMC9433476 DOI: 10.1007/s42770-022-00748-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
Abstract
Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000-2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and β-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum β-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6')-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as β-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.
Collapse
Affiliation(s)
- Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| | - Marco Tulio Pardini Gontijo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil
| | | | | | - Leandro Costa Nascimento
- Central Laboratory for High Performance Technologies (LaCTAD), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-886, Brazil
| | | | | | - Silvia Regina Dos Santos
- Division of Clinical Laboratory of the University Hospital of São Paulo, University of São Paulo (USP), São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Cleide Marques Ferreira
- Adolfo Lutz Institute, Regional Laboratory Center Campinas III, Campinas, São Paulo, 13035-420, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| |
Collapse
|
22
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
23
|
Sarrami Z, Sedghi M, Mohammadi I, Kim WK, Mahdavi AH. Effects of bacteriophage supplement on the growth performance, microbial population, and PGC-1α and TLR4 gene expressions of broiler chickens. Sci Rep 2022; 12:14391. [PMID: 35999253 PMCID: PMC9399175 DOI: 10.1038/s41598-022-18663-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Bacteriophages (BP) are viruses that invade bacteria and propagate inside them, leading to the lysis of the bacterial cells. The aim of this study was to investigate the effect of adding BP to the broiler's diet and its effect on the performance, morphology and bacterial population of the gut, some immune responses and expression of some intestinal genes. Accordingly, dietary treatments were as follows: basal diet (control), and control + 0.3 g/kg colistin or 0.5, 1 and 1.5 g BP/kg of diet. BP increased the body weight gain and reduced the feed conversion ratio (FCR), as compared to the colistin treatment, in the finisher and overall period (P < 0.05). European efficiency factor was significantly higher in 1.5 g BP-fed birds, as compared to the control and colistin treatments. meanwhile, bacteriophage and colistin-fed birds had higher Lactobacillus and lowered coliform bacteria counts, as compared to the control treatment (P < 0.05). Cecal concentrations of propionate in the 1.5 g BP-fed birds were higher than those in the control treatment (P < 0.05). BP-fed birds had a significantly increased villus height to crypt depth ratio, as compared to the control treatment. BP increased the serum concentrations of the total antibody, immunoglobulin (Ig) M, and IgG, as compared to the control treatment (P < 0.05). In the ileum, the expression of the Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) gene was decreased by dietary BP supplementation (P < 0.05). Furthermore, Toll-like receptor 4 (TLR4) gene expression was down-regulated in the BP-fed birds, whereas Interleukin 10 (IL-10) gene expression was up-regulated (P < 0.05). Overall, the use of BP may be a promising alternative to growth-promoting antibiotics in broilers by altering the gastrointestinal tract microbiota, enhancing immunological responses and improving the gut's morphology.
Collapse
Affiliation(s)
- Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
24
|
Escherichia coli Isolated from Organic Laying Hens Reveal a High Level of Antimicrobial Resistance despite No Antimicrobial Treatments. Antibiotics (Basel) 2022; 11:antibiotics11040467. [PMID: 35453218 PMCID: PMC9027956 DOI: 10.3390/antibiotics11040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The present study investigated the resistance characteristics of E. coli isolates originating from 18 organic laying hen flocks. E. coli was isolated from different organs at three different time points, resulting in 209 E. coli isolates. The antibiotic susceptibility was determined by applying a microdilution assay. General, a high resistance rate was found. The antibiotic susceptibility was independent from the presence of pathological lesions, the isolation site, or the affiliation to a pathogenic serogroup. The majority of the isolates proved to be multi-drug-resistant (95.70%), of which 36.84% could be categorized as extensively drug-resistant. All isolates were resistant to oxacillin and tylosin. Resistance rates to amoxicillin (67.94%), cefoxitin (55.98%), ceftazidime (82.30%), colistin (73.68%), nalidixic acid (91.87%), streptomycin (42.58%), tetracycline (53.59%), and sulfamethoxazole (95.22%) were high. None of the isolates revealed pan-drug-resistance. A great heterogeneity of resistance profiles was found between isolates within a flock or from different organs of the same bird, even when isolates originated from the same organ. An increase in antimicrobial resistance was found to be correlated with the age of the birds. The fact, that no antibiotic treatment was applied except in two flocks, indicates that resistant bacteria circulating in the environment pose a threat to organic systems.
Collapse
|
25
|
Screening of Colistin-Resistant Bacteria in Domestic Pets from France. Animals (Basel) 2022; 12:ani12050633. [PMID: 35268202 PMCID: PMC8909117 DOI: 10.3390/ani12050633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Zoonotic transmission from pets to their owners is a major health problem, especially when dealing with human pathogens. It is important to determine the reservoir of colistin-resistant bacteria in pets to avoid the risk factors for human transmission. This study investigated the screening of colistin-resistant bacteria in pets in Marseille, France. Overall, cats and dogs have various reservoirs of colistin-resistant bacteria, including naturally colistin-resistant bacteria and mcr gene carriers (n = 14). Pets are the best human companions; therefore, vigilance would be required to avoid zoonotic transmission of colistin-resistant bacteria. Although colistin use is restricted in France, we report here for the first time that cats and dogs have various colistin-resistant bacteria including mcr-1 gene carriers. Abstract Background: Pets are the closest animals to humans with a considerable risk of zoonotic transmission. This study aimed to screen colistin-resistant bacteria from stools of dogs and cats from Marseille, France. Screening of mcr genes in pets has never been reported in France. Methods: Fecal samples (n = 157) were cultivated on the selective Lucie-Bardet Jean-Marc-Rolain medium (LBJMR). Bacteria were identified using Microflex LS MALDI-TOF. The antibiotic resistance phenotype was investigated for several antibiotics (β-lactams, aminoside, cephalosporine, tetracycline, and sulfonamide). PCR techniques were performed to detect mcr genes. Results: A total of 218 bacteria were identified. For cats, intrinsically colistin-resistant bacteria were significantly higher than mcr-1 gene carriers (n = 4). Dogs had more bacteria with the mcr-1 gene (n = 10). Furthermore, cats had a high prevalence of Gram-positive bacteria (GPB), whereas dogs had GNB equal to GPB. The diversity of identified bacteria was due to the constitution of the pets’ microorganisms. Even though colistin use is monitored in France, pets harbor various colistin-resistant bacteria. Additionally, in this geographical area, bacteria bearing mcr-1 gene from dogs and cats were detected for the first time. Conclusions: The current study opens a new perspective: the spread of colistin resistance is independent of colistin use. What are the most factors related to the emergence of colistin resistance? The surveillance of pets must be considered a priority to avoid the spread of mcr genes. It is important to know the contribution that pets make to the pool of multidrug-resistant mcr-1-containing bacteria.
Collapse
|
26
|
Hassan IZ, Wandrag B, Gouws JJ, Qekwana DN, Naidoo V. Antimicrobial resistance and mcr-1 gene in Escherichia coli isolated from poultry samples submitted to a bacteriology laboratory in South Africa. Vet World 2021; 14:2662-2669. [PMID: 34903923 PMCID: PMC8654743 DOI: 10.14202/vetworld.2021.2662-2669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Antimicrobial resistance (AMR) and recently mobilized colistin resistance (mcr-1) associated colistin resistance among Escherichia coli isolates have been attributed to the overuse of antimicrobials in livestock production. E. coli remains an important pathogen, often associated with mortality and low carcass weight in poultry medicine; therefore, the need to use antimicrobials is common. The study aimed to determine the AMR profile and presence of mcr-1 and mcr-2 genes in avian pathogenic E. coli from poultry samples tested at a bacteriology laboratory for routine diagnosis. This is a first step in understanding the effectiveness of mitigation strategies. Materials and Methods Fifty E. coli strains were assessed for resistance against ten antimicrobial drugs using broth microdilution. All isolates with a colistin minimum inhibitory concentration (MIC) of 2 μg/mL were analyzed for the presence of mcr-1 and mcr-2 genes by employing the polymerase chain reaction. For each isolate, the following farm information was obtained: farm location, type of farm, and on-farm use of colistin. Results Sixty-eight percent of the strains were resistant to at least one antimicrobial; 44% were multiple drug-resistant (MDR). Most E. coli isolates were resistant to doxycycline (44%), trimethoprim-sulfamethoxazole (38%), ampicillin (32%), and enrofloxacin (32%). None of the E. coli strains was resistant to colistin sulfate (MIC90 of 2 μg/mL). Only one E. coli isolate held the mcr-1 gene; none carried the mcr-2 gene. Conclusion Resistance among E. coli isolates in this study was fairly high. Resistance to commonly used antimicrobials was observed, such as doxycycline, trimethoprim-sulfamethoxazole, and enrofloxacin. Only a single E. coli strain carried the mcr-1 gene, suggesting that mcr-1 and mcr-2 genes are common among isolates in this study. The prevalence of AMR, however, suggests that farmers must implement standard biosecurity measures to reduce E. coli burden, and antimicrobial use to prolong the efficacy life span of some of these drugs.
Collapse
Affiliation(s)
- Ibrahim Z Hassan
- Department of Paraclinical Sciences, Veterinary Pharmacology/Toxicology Section, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Buks Wandrag
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Johan J Gouws
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Daniel N Qekwana
- Department of Paraclinical Sciences, Veterinary Public Health Section, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Veterinary Pharmacology/Toxicology Section, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Valiakos G, Kapna I. Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. Vet Sci 2021; 8:265. [PMID: 34822638 PMCID: PMC8619609 DOI: 10.3390/vetsci8110265] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue.
Collapse
Affiliation(s)
- George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | | |
Collapse
|
28
|
Barrow PA. Spotlight on avian pathology: Salmonella - new wine and old bottles. Avian Pathol 2021; 50:455-457. [PMID: 34495794 DOI: 10.1080/03079457.2021.1976726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Salmonella enterica remains an important avian and human pathogen. Control has been effective in some countries but the hygiene and biosecurity required may not be possible everywhere. Antibiotic resistance is an increasing problem for both veterinary and human medicine. This short review commentary highlights existing and potential new control measures including legislation, hygiene and biosecurity, use of live and inactivated vaccines, and bacteriophages to tackle intestinal colonization, reduce the prevalence of antibiotic resistance and improve carcass decontamination.
Collapse
Affiliation(s)
- P A Barrow
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
29
|
Mead A, Gillard N, Robert C, Pierret G, Henrottin J, Richez P, Pelligand L. Determination of colistin in luminal and parietal intestinal matrices of chicken by ultra-high-performance liquid chromatography-tandem mass spectrometry. J Vet Pharmacol Ther 2021; 44:982-985. [PMID: 34614207 PMCID: PMC9293311 DOI: 10.1111/jvp.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Justification for continued use of colistin in veterinary medicine, for example medicated water, relies on pharmacokinetic/pharmacodynamic (PK/PD) studies that require accurate measurement of colistin content in the digestive tract. A method for the detection and quantification of colistin in poultry intestinal material was developed and validated. Colistin is not absorbed after oral administration, and the biophase is the gastrointestinal tract. Extraction of colistin from the matrix was achieved using solid‐phase extraction with a methanol:water (1:2; v/v) solution. Polymyxin B was used as an internal standard. Colistin A and colistin B, the main components of colistin, were separated, detected and measured using ultra‐high‐performance liquid chromatography coupled with tandem mass spectrometry (UHPLC‐MS/MS). The method was validated for linearity/quadraticity between 1.1 (LOQ) and 56.7 mg/kg. Mean accuracy was between 82.7% and 107.7% with inter‐ and intra‐day precision lower than 13.3% and 15% respectively. Freeze–thaw, long‐term and bench storage were validated. Incurred samples following colistin treatment in poultry at the approved clinical dose of 75,000 IU/kg in drinking water and oral gavage were quantifiable and in line with expected intestinal transit times. The method is considered appropriately accurate and precise for the purposes of pharmacokinetic analysis in the gastrointestinal tract.
Collapse
|
30
|
Anyanwu MU, Jaja IF, Okpala COR, Jaja CJI, Oguttu JW, Chah KF, Shoyinka VS. Potential sources and characteristic occurrence of mobile colistin resistance ( mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries. PeerJ 2021; 9:e11606. [PMID: 34707919 PMCID: PMC8500085 DOI: 10.7717/peerj.11606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/23/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the sources, prevalence, phenotypic and genotypic characteristics of mcr gene-harbouring bacteria (MGHB) in the poultry sector is crucial to supplement existing information. Through this, the plasmid-mediated colistin resistance (PMCR) could be tackled to improve food safety and reduce public health risks. Therefore, we conducted a literature synthesis of potential sources and characteristic occurrence of MGHB recovered from the poultry sector specific to the high-income countries (HICs). Colistin (COL) is a last-resort antibiotic used for treating deadly infections. For more than 60 years, COL has been used in the poultry sector globally, including the HICs. The emergence and rapid spread of mobile COL resistance (mcr) genes threaten the clinical use of COL. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. By horizontal and vertical transfer, the mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-9 genes have disseminated in the poultry sector in HICs, thus posing a grave danger to animal and human health, as harboured by Escherichia coli, Klebsiella pneumoniae, Salmonella species, and Aeromonas isolates. Conjugative and non-conjugative plasmids are the major backbones for mcr in poultry isolates from HICs. The mcr-1, mcr-3 and mcr-9 have been integrated into the chromosome, making them persist among the clones. Transposons, insertion sequences (IS), especially ISApl1 located downstream and upstream of mcr, and integrons also drive the COL resistance in isolates recovered from the poultry sector in HICs. Genes coding multi-and extensive-drug resistance and virulence factors are often co-carried with mcr on chromosome and plasmids in poultry isolates. Transmission of mcr to/among poultry strains in HICs is clonally unrestricted. Additionally, the contact with poultry birds, manure, meat/egg, farmer's wears/farm equipment, consumption of contaminated poultry meat/egg and associated products, and trade of poultry-related products continue to serve as transmission routes of MGHB in HICs. Indeed, the policymakers, especially those involved in antimicrobial resistance and agricultural and poultry sector stakeholders-clinical microbiologists, farmers, veterinarians, occupational health clinicians and related specialists, consumers, and the general public will find this current literature synthesis very useful.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Ishmael Festus Jaja
- Livestock and Pasture Science, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Chinwe-Juliana Iwu Jaja
- Department of Nursing and Midwifery, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Western Cape, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg, Gauteng, South Africa
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Vincent Shodeinde Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| |
Collapse
|
31
|
Ribeiro S, Mourão J, Novais Â, Campos J, Peixe L, Antunes P. From farm to fork: Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat. Environ Microbiol 2021; 23:7563-7577. [PMID: 34327794 DOI: 10.1111/1462-2920.15689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%-100% - 4 months; 12% - the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.
Collapse
Affiliation(s)
- Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Mourão
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Joana Campos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,INEB-Institute of Biomedical Engineering, i3S-Institute for Research & Innovation in Health, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, 4150-180, Portugal
| |
Collapse
|
32
|
Mead A, Richez P, Azzariti S, Pelligand L. Pharmacokinetics of Colistin in the Gastrointestinal Tract of Poultry Following Dosing via Drinking Water and Its Bactericidal Impact on Enteric Escherichia coli. Front Vet Sci 2021; 8:698135. [PMID: 34250071 PMCID: PMC8264055 DOI: 10.3389/fvets.2021.698135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Colistin, a last-line antibiotic of major importance in veterinary medicine and of critical importance in human medicine, is authorized to treat gastrointestinal (enteric) infections caused by non-invasive Escherichia coli in multiple veterinary species including poultry. Its use in veterinary medicine has been implicated in the widespread prevalence of mobilized colistin resistance. The objectives of this study were to determine the intestinal content reached in broiler chickens during 72-h treatment with colistin, to evaluate the associated impact on intestinal E. coli density, and to select less susceptible E. coli populations. In this study, 94 broiler chickens were administered a dose of 75,000 IU/kg/day via drinking water. Intestinal samples were collected pre-, during-, and post-dosing. Luminal intestinal content was assessed for colistin content by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and E. coli were isolated and enumerated on UriSelect agar™. Minimum inhibitory concentration (MIC, for eight isolates per intestine per animal) was determined, and when higher than the epidemiological cutoff (ECOFF 2 mg/l), isolates were screened for mobilized colistin resistance (mcr)-1 to 5. Colistin content increased during treatment to a maximum of 5.09 mg/kg. During this time, the total population of E. coli showed an almost 1,000-fold reduction. An apparent increase in the relative abundance of E. coli with an MIC ≥ ECOFF, either mcr-negative (6.25–10.94%) or mcr-1-positive (4.16–31.25%) was observed, although this susceptibility shift was not maintained post-treatment. Indeed, following cessation of dosing, colistin was eliminated from the intestine, and content was below the limit of quantification (LOQ, 1.1 mg/kg) within 4 h, and the median MIC of E. coli isolates returned below baseline thereafter. Few isolates with a lower susceptibility (mcr-1-positive or negative) were however observed at the end of the study period, indicating maintained sub-populations in the chicken gut. The results of this study show a limited impact on long-term maintenance of less susceptible E. coli populations as a direct result of colistin treatment in individual birds.
Collapse
Affiliation(s)
- Andrew Mead
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | | | - Stefano Azzariti
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Ludovic Pelligand
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
33
|
Phenotypic and genotypic characterization of mcr-1-positive multidrug-resistant Escherichia coli ST93, ST117, ST156, ST10, and ST744 isolated from poultry in Poland. Braz J Microbiol 2021; 52:1597-1609. [PMID: 34114111 PMCID: PMC8324725 DOI: 10.1007/s42770-021-00538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Background A plasmid-mediated mechanism of bacterial resistance to polymyxin is a serious threat to public health worldwide. The present study aimed to determine the occurrence of plasmid-mediated colistin resistance genes and to conduct the molecular characterization of mcr-positive Escherichia coli strains isolated from Polish poultry. Methods In this study, 318 E. coli strains were characterized by the prevalence of mcr1–mcr5 genes, antimicrobial susceptibility testing by minimal inhibitory concentration method, the presence of antimicrobial resistance genes was screened by PCR, and the biofilm formation ability was tested using the crystal violet staining method. Genetic relatedness of mcr-1-positive E. coli strains was evaluated by multilocus sequence typing method. Results Among the 318 E. coli isolates, 17 (5.35%) harbored the mcr-1 gene. High antimicrobial resistance rates were observed for ampicillin (100%), tetracycline (88.24%), and chloramphenicol (82.35%). All mcr-1-positive E. coli strains were multidrug-resistant, and as many as 88.24% of the isolates contained the blaTEM gene, tetracycline (tetA and tetB), and sulfonamide (sul1, sul2, and sul3) resistance genes. Additionally, 41.18% of multidrug-resistant, mcr-1-positive E. coli isolates were moderate biofilm producers, while the rest of the strains showed weak biofilm production. Nine different sequence types were identified, and the dominant ST was ST93 (29.41%), followed by ST117 (17.65%), ST156 (11.76%), ST 8979 (11.76%), ST744 (5.88%), and ST10 (5.88%). Moreover, the new ST was identified in this study. Conclusions Our results showed a low occurrence of mcr-1-positive E. coli strains isolated from Polish poultry; however, all the isolated strains were resistant to multiple antimicrobial agents and were able to form biofilms at low or medium level.
Collapse
|
34
|
Anyanwu MU, Marrollo R, Paolucci M, Brovarone F, Nardini P, Chah KF, Shoyinka SVO, Carretto E. Isolation and characterisation of colistin-resistant Enterobacterales from chickens in Southeast Nigeria. J Glob Antimicrob Resist 2021; 26:93-100. [PMID: 34091039 DOI: 10.1016/j.jgar.2021.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Resistance to colistin (CST) mediated by mobile genetic elements has had a broad impact worldwide. There is an intensified call for epidemiological surveillance of mcr in different reservoirs to preserve CST for future generations. In Nigeria, the poultry industry is a key livestock sector. This study was undertaken to screen putative colistin-resistant Enterobacterales (CST-r-E) from poultry birds in Southeast Nigeria and to determine the genetic relatedness of mcr-harbouring isolates. METHODS Faecal and cloacal swab samples (n = 785) were collected from chickens in 17 farms located in three contiguous states in Southeast Nigeria between March-November 2018. Following selective culture, CST-r-E were isolated. Confirmation of CST resistance, antimicrobial susceptibility testing, molecular detection of genes mcr-1 to mcr-10, multilocus sequence typing (MLST) and randomly amplified polymorphic DNA (RAPD) analysis were performed on the isolates. A questionnaire was distributed to investigate the knowledge about CST and its use of chicken farm caretakers. RESULTS Of the 785 samples evaluated, 45 (5.7%) were positive for 48 CST-r-E, among which 23 harboured the mcr-1 gene (22 Escherichia coli and 1 Klebsiella pneumoniae). In two E.coli isolates, a new allelic variant (mcr-1.22) was detected. RAPD analysis allowed the identification of 11 different fingerprints. MLST also revealed 11 STs, with 3 of them being novel. CONCLUSION mcr has significantly spread in poultry birds of Southeast Nigeria, which poses a worrisome risk to veterinary and human health. Strategies to prevent indiscriminate use of CST in farms should be quickly adopted before CST resistance becomes a huge global health issue.
Collapse
Affiliation(s)
- M U Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Enugu State, Nigeria
| | - R Marrollo
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - M Paolucci
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - F Brovarone
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - P Nardini
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - K F Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Enugu State, Nigeria
| | - S V O Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Enugu State, Nigeria
| | - E Carretto
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy.
| |
Collapse
|
35
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
36
|
Homeier-Bachmann T, Heiden SE, Lübcke PK, Bachmann L, Bohnert JA, Zimmermann D, Schaufler K. Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs. Antibiotics (Basel) 2021; 10:antibiotics10050568. [PMID: 34065908 PMCID: PMC8150771 DOI: 10.3390/antibiotics10050568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic-resistant Enterobacteriaceae are regularly detected in livestock. As pathogens, they cause difficult-to-treat infections and, as commensals, they may serve as a source of resistance genes for other bacteria. Slaughterhouses produce significant amounts of wastewater containing antimicrobial-resistant bacteria (AMRB), which are released into the environment. We analyzed the wastewater from seven slaughterhouses (pig and poultry) for extended-spectrum β-lactamase (ESBL)-carrying and colistin-resistant Enterobacteriaceae. AMRB were regularly detected in pig and poultry slaughterhouse wastewaters monitored here. All 25 ESBL-producing bacterial strains (19 E. coli and six K. pneumoniae) isolated from poultry slaughterhouses were multidrug-resistant. In pig slaughterhouses 64% (12 of 21 E. coli [57%] and all four detected K. pneumoniae [100%]) were multidrug-resistant. Regarding colistin, resistant Enterobacteriaceae were detected in 54% of poultry and 21% of pig water samples. Carbapenem resistance was not detected. Resistant bacteria were found directly during discharge of wastewaters from abattoirs into water bodies highlighting the role of slaughterhouses for environmental surface water contamination.
Collapse
Affiliation(s)
- Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Institute of Epidemiology, 17493 Greifswald-Insel Riems, Germany;
- Correspondence: ; Tel.: +49-38351-7-1505
| | - Stefan E. Heiden
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (S.E.H.); (K.S.)
| | - Phillip K. Lübcke
- Friedrich-Loeffler-Institut, Institute of Epidemiology, 17493 Greifswald-Insel Riems, Germany;
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (S.E.H.); (K.S.)
| | - Lisa Bachmann
- Leibniz-Institut für Nutztierbiologie, Institute of Nutritional Physiology “Oskar Kellner”, 18196 Dummerstorf, Germany;
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | | | - Katharina Schaufler
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (S.E.H.); (K.S.)
| |
Collapse
|
37
|
Montoro-Dasi L, Villagra A, Sevilla-Navarro S, Pérez-Gracia MT, Vega S, Marin C. Commensal Escherichia coli Antimicrobial Resistance and Multidrug-Resistance Dynamics during Broiler Growing Period: Commercial vs. Improved Farm Conditions. Animals (Basel) 2021; 11:ani11041005. [PMID: 33916657 PMCID: PMC8066766 DOI: 10.3390/ani11041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary This experiment was designed to evaluate the differences in antimicrobial and multidrug resistance dynamics in broilers reared under two different farm conditions (commercial vs. improved) during the growing period, using Escherichia coli as sentinel bacterium. Although no antibiotics were applied during rearing for two different management conditions tested, high rates of antimicrobial and multidrug-resistant bacteria were observed throughout rearing, with the percentages of resistant bacteria observed being of particular concern in day-old chicks on arrival day and in chickens at the end of the growing period, just before delivery to the slaughterhouse. Abstract New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, 46022 Valencia, Spain;
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain;
| | - Arantxa Villagra
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, 12400 Castellón, Spain;
| | - Sandra Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain;
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
- Correspondence: ; Tel.: +34-657-506-085
| |
Collapse
|
38
|
Al-Mir H, Osman M, Drapeau A, Hamze M, Madec JY, Haenni M. WGS Analysis of Clonal and Plasmidic Epidemiology of Colistin-Resistance Mediated by mcr Genes in the Poultry Sector in Lebanon. Front Microbiol 2021; 12:624194. [PMID: 33763043 PMCID: PMC7982416 DOI: 10.3389/fmicb.2021.624194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Poultry and poultry meat are important contributors to the global antimicrobial burden. Unregulated and illegal use of extended-spectrum cephalosporins (ESC) in this sector has long been identified as a major cause of massive spread of ESC-resistant Escherichia coli, and colistin usage is considered a main driver of plasmid-mediated mcr genes dissemination. In Lebanon, the first mcr-1-positive E. coli found in poultry dates back to 2015, followed by a few reports of mcr-1-positive E. coli in poultry, swine, humans, and the environment. On the contrary, a comprehensive picture of the population structure of mcr-1-positive E. coli and mcr-1-bearing plasmids carrying the mcr-1 gene using whole-genome analysis is largely lacking. This study reports the prevalence of mcr-1-positive E. coli in poultry originating from 32 farms across three Lebanese governorates and slaughtered in the same place. We report 27/32 (84.4%) mcr-1 positive farms, leading to a total of 84 non-duplicate E. coli collected, of which 62 presented the mcr-1 gene. Numerous associated resistances were identified, including to ESC through the presence of bla CTX-M or bla CMY genes. The mcr-1 gene was mostly carried by IncX4 (n = 36) and IncI2 (n = 24) plasmids, which are both known for their efficient transfer capacities. A high genetic diversity was detected, arguing for the lack of contamination during the slaughter process. ST744 and ST1011 were the most widely identified clones, which have been both regularly associated to mcr-1-carrying E. coli and to the poultry sector. The wide dissemination of colistin-resistance, coupled to resistances to ESC and numerous other molecules, should urge authorities to implement efficient guidelines for the use of antibiotics in the poultry sector in Lebanon.
Collapse
Affiliation(s)
- Hiba Al-Mir
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Antoine Drapeau
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Yves Madec
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
39
|
A novel method for measuring phenotypic colistin resistance in Escherichia coli populations from chicken flocks. Appl Environ Microbiol 2021; 87:AEM.02597-20. [PMID: 33355096 PMCID: PMC8090885 DOI: 10.1128/aem.02597-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colistin is extensively used in animal production in many low- and middle-income countries. There is a need to develop methodologies to benchmark and monitor changes in resistance among mixed commensal bacterial populations in farms. We aimed to evaluate the performance of a broth microdilution method based on culturing a pooled Escherichia coli suspension (30-50 organisms) obtained from each sample. To confirm the biological basis and sensitivity of the method, we cultured 16 combinations of one colistin-susceptible and one mcr-1 encoded colistin-resistant E. coli in the presence of 2mg/L colistin. Optical density (OD600nm) readings over time were used to generate a growth curve, and these values were adjusted to the values obtained in the absence of colistin (adjusted Area Under the Curve, AUCadj). The median limit of detection was 1 resistant in 104 susceptible colonies [1st - 3rd quartile, 102:1 -105:1]. We applied this method to 108 pooled faecal samples from 36 chicken flocks from the Mekong Delta (Vietnam), and determined the correlation between this method and the prevalence of colistin resistance in individual colonies harvested from field samples, determined by the Minimum Inhibitory Concentration. The overall prevalence of colistin resistance at sample and isolate level (estimated from the AUCadj) was 38.9% [95%CI, 29.8-48.8%] and 19.4% (SD± 26.3%), respectively. Increased colistin resistance was associated with recent (2 weeks) use of colistin (OR=3.67) and other, non-colistin antimicrobials (OR=1.84). Our method is a sensitive and affordable approach to monitor changes in colistin resistance in E. coli populations from faecal samples over time.IMPORTANCE Colistin (polymyxin E) is an antimicrobial with poor solubility in agar-based media, and therefore broth microdilution is the only available method for phenotypic resistance. However, estimating colistin resistance in mixed Escherichia coli populations is laborious since it requires individual colony isolation, identification and susceptibility testing. We developed a growth-based microdilution method suitable for pooled faecal samples. We validated the method by comparing it with individual MIC of 909 E. coli isolates; we then tested 108 pooled faecal samples from 36 healthy chicken flocks collected over their production cycle. A higher level of resistance was seen in flocks recently treated with colistin in water, although the observed generated resistance was short-lived. Our method is affordable, and may potentially be integrated into surveillance systems aiming at estimating the prevalence of resistance at colony level in flocks/herds. Furthermore, it may also be adapted to other complex biological systems, such as farms and abattoirs.
Collapse
|
40
|
Chaalal N, Touati A, Yahiaoui-Martinez A, Aissa MA, Sotto A, Lavigne JP, Pantel A. Colistin-Resistant Enterobacterales Isolated from Chicken Meat in Western Algeria. Microb Drug Resist 2021; 27:991-1002. [PMID: 33428521 DOI: 10.1089/mdr.2020.0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: In Algeria, colistin is used as a metaphylactic treatment in the poultry industry for the treatment of Gram-negative gastrointestinal infections and also as a feed additive to promote animal growth. The aim of this study was to investigate the importance and genetic characteristics of colistin-resistant Enterobacterales from chicken meat in Western Algeria. Results: A total of 181 samples of chicken meat were collected from three poultry farms across three provinces in Western Algeria. The presence of colistin-resistant Enterobacterales isolates was screened on selective media. Resistance and virulence profiles were characterised by PCR and sequencing. The clonal relatedness of the different mcr positive isolates was studied using repetitive sequence-based PCR (Rep-PCR) and multilocus sequence typing. Transferability and characteristics of plasmids harboring mcr-1 positive gene were performed using conjugation, PCR-based replicon typing, and whole-genome sequencing. A total of 22 isolates with acquired colistin resistance were identified giving an overall prevalence of 12.2% (22/181): 17 Escherichia coli (predominantly ST224 [n = 4, 23.5%]) and 5 Klebsiella pneumoniae (ST17 [n = 2, 40%], ST646 [n = 2, 40%], and ST944 [n = 1, 20%]). mcr-1 gene was exclusively found in 11 E. coli (prevalence of 6.1% [11/181]) and was associated with IncFV (n = 7) and IncFIIK (n = 4) plasmids. All the isolates had a commensal origin (n = 11). One isolate harbored virulence profile, a high colistin resistance (minimum inhibitory concentration = 96 mg/L), with some new mutations in the chromosomic colistin-resistant genes and different pathogenicity islands typically identified in uropathogenic E. coli. Conclusions: This study reports the diffusion of mcr-1 producing Enterobacterales from chicken meat in Western Algeria. This represents a worrisome situation needing continuous monitoring.
Collapse
Affiliation(s)
- Nadia Chaalal
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria.,VBMI, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
| | - Alex Yahiaoui-Martinez
- VBMI, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Mohamed Amine Aissa
- Laboratory of Microbiology, National Institute of Veterinarian Sciences, Tiaret, Algeria
| | - Albert Sotto
- VBMI, INSERM U1047, Department of Infectious Diseases, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Jean-Philippe Lavigne
- VBMI, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Alix Pantel
- VBMI, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| |
Collapse
|
41
|
Nurul Fitri A, Fitriana I, Windraningtyas Rosetyadewi A, Muhtar Pratama A, Ika Septiana A, Cahyo Budi Setiawan D, Dwi Wijayanti A. The Effect of Colistin Administration as Medicated Feed on Alanine Aminotransferase and Creatinine Level in Broiler Infected with Escherichia coli. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213303002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colistin is a decapeptide antibiotic with narrow spectrum activity, mainly used as treatment for Gram negative bacteria. This study aims to scientifically determine the effect of colistin administration as medicated feed on alanine aminotransferase (ALT) and creatinine level in broiler infected with Escherichia coli. KTOP group as positive control, KTON group as negative control, while I, II, and III groups were infected with Escherichia coli 1 x 108 CFU/ml 0.1 ml via intratracheal route. Group I, II, and III were given colistin treatment dosage of 0.3 g/kg food, 0.6 g/kg food, and 1.2 g/kg food. Blood samples were taken through brachial veins for ALT and creatinine examination with a Caretium NB-201 semi-auto chemistry analyzer. Data were examined statistically using IBM SPSS Statistics 24 software and graphically using Microsoft Excel 365. Conclusion of the research by statistical analysis with Kruskal-Wallis test obtained ALT test results P = 0.147 and creatinine test results P = 0.815. Based on the results of this study, the administration of colistin medicated feed did not cause a significant effect on ALT and creatinine level in broiler infected with Escherichia coli, indicating that colistin has low potential toxicity while given as medicated feed.
Collapse
|
42
|
Gray HK, Arora-Williams KK, Young C, Bouwer E, Davis MF, Preheim SP. Contribution of Time, Taxonomy, and Selective Antimicrobials to Antibiotic and Multidrug Resistance in Wastewater Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15946-15957. [PMID: 33258596 PMCID: PMC8463082 DOI: 10.1021/acs.est.0c03803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.
Collapse
Affiliation(s)
- Hannah K Gray
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| | - Keith K Arora-Williams
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| | - Charles Young
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Edward Bouwer
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| | - Meghan F Davis
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, E7612, Baltimore, Maryland 21205, United States
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 313 Ames Hall, Baltimore, Maryland 21218, United States
| |
Collapse
|
43
|
Bean DC, Wigmore SM, Abdul Momin MHF, Wareham DW. Polymyxin Resistant Bacteria in Australian Poultry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.550318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Nobrega DB, Naqvi SA, Dufour S, Deardon R, Kastelic JP, De Buck J, Barkema HW. Critically important antimicrobials are generally not needed to treat nonsevere clinical mastitis in lactating dairy cows: Results from a network meta-analysis. J Dairy Sci 2020; 103:10585-10603. [PMID: 32896405 DOI: 10.3168/jds.2020-18365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/24/2020] [Indexed: 12/09/2022]
Abstract
There is ongoing debate regarding whether critically important antimicrobials (CIA) should be used to treat infections in food-producing animals. In this systematic review, we determined whether CIA and non-CIA have comparable efficacy to treat nonsevere bovine clinical mastitis caused by the most commonly reported bacteria that cause mastitis worldwide. We screened CAB Abstracts, Web of Science, MEDLINE, Scopus, and PubMed for original epidemiological studies that assessed pathogen-specific bacteriological cure rates of antimicrobials used to treat nonsevere clinical mastitis in lactating dairy cows. Network models were fit using risk ratios of bacteriological cure as outcome. A total of 30 studies met inclusion criteria. Comparisons of cure rates demonstrated that CIA and non-CIA had comparable efficacy for treatment of nonsevere clinical mastitis in dairy cattle. Additionally, for cows with nonsevere clinical mastitis caused by Escherichia coli and Klebsiella spp., bacteriological cure rates were comparable for treated versus untreated cows; therefore, there was no evidence to justify treatment of these cases with CIA. Our findings supported that CIA in general are not necessary for treating nonsevere clinical mastitis in dairy cattle, the disease that accounts for the majority of antimicrobial usage in dairy herds worldwide. Furthermore, our findings support initiatives to reduce or eliminate use of CIA in dairy herds.
Collapse
Affiliation(s)
- Diego B Nobrega
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - S Ali Naqvi
- Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Simon Dufour
- Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada; Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Rob Deardon
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
45
|
Koutsianos D, Athanasiou LV, Dimitriou T, Nikolaidis M, Tsadila C, Amoutzias G, Mossialos D, Koutoulis KC. Antibiotic Resistance Patterns and mcr-1 Detection in Avian Pathogenic Escherichia coli Isolates from Commercial Layer and Layer Breeder Flocks Demonstrating Colibacillosis in Greece. Microb Drug Resist 2020; 27:710-720. [PMID: 32955987 DOI: 10.1089/mdr.2020.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives: The aim of this study was to investigate the antimicrobial resistance (AMR) patterns of Escherichia coli strains isolated from poultry flocks suffering from colibacillosis in Greece and to detect the presence of the mcr-1 gene in isolates being phenotypically resistant to colistin. Results: A total of 150 E. coli strains were isolated from commercial layers and layer breeder flocks in Greece and tested for antimicrobial susceptibility. A high level of susceptibility was revealed for cephalosporins, neomycin, and colistin. Susceptibility varied for other antimicrobials (tetracycline, doxycycline, lincospectin, trimethoprim/sulfamethoxazole, enrofloxacin, amoxicillin), whereas no susceptibility was reported for macrolides, tiamulin, lincomycin, oxacillin. Concerning colistin resistance, 20 E. coli strains were found to be phenotypically resistant (13 strains showed intermediate resistance pattern and 7 strains fully resistance trait). Further investigation was performed by PCR, which has revealed the presence of the mcr-1 gene in one phenotypically colistin-resistant isolate. Conclusion: AMR is prevalent in layer poultry production, including resistance against colistin confirmed by the presence of the mcr-1 gene.
Collapse
Affiliation(s)
- Dimitrios Koutsianos
- Department of Poultry Diseases and Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Labrini V Athanasiou
- Department of Medicine, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Tilemachos Dimitriou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Grigorios Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos C Koutoulis
- Department of Poultry Diseases and Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| |
Collapse
|
46
|
Chandler JC, Franklin AB, Bevins SN, Bentler KT, Bonnedahl J, Ahlstrom CA, Bisha B, Shriner SA. Validation of a screening method for the detection of colistin-resistant E. coli containing mcr-1 in feral swine feces. J Microbiol Methods 2020; 172:105892. [DOI: 10.1016/j.mimet.2020.105892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/28/2022]
|
47
|
Kneis D, Berendonk TU, Heß S. High prevalence of colistin resistance genes in German municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133454. [PMID: 31398645 DOI: 10.1016/j.scitotenv.2019.07.260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 05/23/2023]
Abstract
Bacterial resistance against the last-resort antibiotic colistin is of increasing concern on a global scale. Wastewater is suspected to be one of the pathways by which resistant bacteria and the respective genes are disseminated. We employed a metagenomics approach to detect and quantify colistin resistance genes in raw municipal wastewater sampled at 9 locations all over Germany (14 samples in total, collected in 2016/2017). Our data support the findings of earlier studies according to which the prevalence of the colistin resistance gene mcr-1 is still low. However, we were able to demonstrate that the total prevalence of colistin resistance genes is dramatically underestimated if the focus is put on that specific gene alone. In comparison to mcr-1, other gene variants like mcr-3 and mcr-7 proved to be 10 to 100 times more abundant in samples of untreated wastewater. The average relative abundances expressed as copies per 16S rRNA gene copies were 2.3×10-3 for mcr-3, 2.2×10-4 for mcr-4, 3.0×10-4 for mcr-5, and 4.4×10-4 for mcr-7. While these four gene variants were ubiquitous in all 14 samples, mcr-1 was detected only once at a relative abundance of 1.4×10-5. Our results suggest a high risk of increasing incidence of colistin resistance as large amounts of mcr genes are continuously disseminated to diverse microbial communities via the wastewater path.
Collapse
Affiliation(s)
- David Kneis
- Institute of Hydrobiology, TU Dresden, Germany; Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| | | | - Stefanie Heß
- Institute of Hydrobiology, TU Dresden, Germany; Dept. of Microbiology, University of Helsinki, Finland
| |
Collapse
|
48
|
Liu D, Yang Y, Gu J, Tuo H, Li P, Xie X, Ma GX, Liu J, Zhang A. The Yersinia high-pathogenicity island (HPI) carried by a new integrative and conjugative element (ICE) in a multidrug-resistant and hypervirulent Klebsiella pneumoniae strain SCsl1. Vet Microbiol 2019; 239:108481. [PMID: 31767086 DOI: 10.1016/j.vetmic.2019.108481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Multidrug-resistant and hypervirulent Klebsiella pneumoniae (hvKP) poses a significant risk to public health. To better understand the molecular characteristics of multidrug-resistant and hypervirulent K. pneumoniae of animal origin, fifteen K. pneumoniae strains from the liver, blood of sick pigs and chicken feces were collected. All K. pneumoniae isolates were subjected to antimicrobial susceptibility testing, string test, multi-locus sequence typing and whole genome sequencing. Seven K. pneumoniae isolates were found carrying the mcr-1.1 gene. Among them, a multidrug-resistant and hypervirulent K. pneumoniae strain SCsl1 isolated from the liver of a diseased pig was found to harbor 16 resistance genes (e.g., mcr-1.1) and 16 virulence genes including aerobactin. Moreover, a novel integrative and conjugative element, named ICEKpSL1, was identified in SCsl1, which contains a full Yersinia high-pathogenicity island (HPI). This element could be excised from the chromosome to form a circular intermediate, indicating potential transmission of the Yersinia pathogenicity island. The emergence of multidrug-resistance and hypervirulence in K. pneumoniae from animals warrants further surveillance.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Yongqiang Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Ju Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Hongmei Tuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Ping Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Xianjun Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China
| | - Guang-Xu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA, 95616, USA
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, PR China.
| |
Collapse
|
49
|
Abraham S, O’Dea M, Sahibzada S, Hewson K, Pavic A, Veltman T, Abraham R, Harris T, Trott DJ, Jordan D. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLoS One 2019; 14:e0224281. [PMID: 31644602 PMCID: PMC6808415 DOI: 10.1371/journal.pone.0224281] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The World Health Organisation has defined "highest priority critically important antimicrobials" (CIAs) as those requiring the greatest control during food production. Evidence demonstrating that restricted antimicrobial usage prevents the emergence of resistance to CIA's amongst pathogenic and commensal organisms on a production system-wide scale would strengthen international efforts to control antimicrobial resistance (AMR). Therefore, in a designed survey of all major chicken-meat producers in Australia, we investigated the phenotypic AMR of E. coli (n = 206) and Salmonella (n = 53) from caecal samples of chickens at slaughter (n = 200). A large proportion of E. coli isolates (63.1%) were susceptible to all tested antimicrobials. With regards to CIA resistance, only two E.coli isolates demonstrated resistance to fluoroquinolones, attributed to mutations in the quinolone resistance-determining regions of gyrA. Antimicrobial resistance was observed for trimethoprim/sulfamethoxazole (8.7%), streptomycin (9.7%), ampicillin (14.1%), tetracycline (19.4%) and cefoxitin (0.5%). All Salmonella isolates were susceptible to ceftiofur, chloramphenicol, ciprofloxacin, colistin, florfenicol, gentamicin and tetracycline. A low frequency of Salmonella isolates exhibited resistance to streptomycin (1.9%), ampicillin (3.8%), and cefoxitin (11.3%). AMR was only observed among Salmonella Sofia serovars. None of the Salmonella isolates exhibited a multi-class-resistant phenotype. Whole genome sequencing did not identify any known resistance mechanisms for the Salmonella isolates demonstrating resistance to cefoxitin. The results provide strong evidence that resistance to highest priority CIA's is absent in commensal E. coli and Salmonella isolated from Australian meat chickens, and demonstrates low levels of resistance to compounds with less critical ratings such as cefoxitin, trimethoprim/sulfamethoxazole, and tetracycline. Apart from regulated exclusion of CIAs from most aspects of livestock production, vaccination against key bacterial pathogens and stringent biosecurity are likely to have contributed to the favorable AMR status of the Australian chicken meat industry. Nevertheless, industry and government need to proactively monitor AMR and antimicrobial stewardship practices to ensure the long-term protection of both animal and human health.
Collapse
Affiliation(s)
- Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Kylie Hewson
- Australian Chicken Meat Federation, Sydney, New South Wales, Australia
| | - Anthony Pavic
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Taha Harris
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| |
Collapse
|
50
|
Zając M, Sztromwasser P, Bortolaia V, Leekitcharoenphon P, Cavaco LM, Ziȩtek-Barszcz A, Hendriksen RS, Wasyl D. Occurrence and Characterization of mcr-1-Positive Escherichia coli Isolated From Food-Producing Animals in Poland, 2011-2016. Front Microbiol 2019; 10:1753. [PMID: 31440216 PMCID: PMC6694793 DOI: 10.3389/fmicb.2019.01753] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/15/2019] [Indexed: 11/23/2022] Open
Abstract
The emergence of plasmid-mediated colistin resistance (mcr genes) threatens the effectiveness of polymyxins, which are last-resort drugs to treat infections by multidrug- and carbapenem-resistant Gram-negative bacteria. Based on the occurrence of colistin resistance the aims of the study were to determine possible resistance mechanisms and then characterize the mcr-positive Escherichia coli. The research used material from the Polish national and EU harmonized antimicrobial resistance (AMR) monitoring programs. A total of 5,878 commensal E. coli from fecal samples of turkeys, chickens, pigs, and cattle collected in 2011-2016 were screened by minimum inhibitory concentration (MIC) determination for the presence of resistance to colistin (R) defined as R > 2 mg/L. Strains with MIC = 2 mg/L isolated in 2014-2016 were also included. A total of 128 isolates were obtained, and most (66.3%) had colistin MIC of 2 mg/L. PCR revealed mcr-1 in 80 (62.5%) isolates recovered from 61 turkeys, 11 broilers, 2 laying hens, 1 pig, and 1 bovine. No other mcr-type genes (including mcr-2 to -5) were detected. Whole-genome sequencing (WGS) of the mcr-1-positive isolates showed high diversity in the multi-locus sequence types (MLST) of E. coli, plasmid replicons, and AMR and virulence genes. Generally mcr-1.1 was detected on the same contig as the IncX4 (76.3%) and IncHI2 (6.3%) replicons. One isolate harbored mcr-1.1 on the chromosome. Various extended-spectrum beta-lactamase (bla SHV-12, bla CTX-M-1, bla CTX-M-15, bla TEM-30, bla TEM-52, and bla TEM-135) and quinolone resistance genes (qnrS1, qnrB19, and chromosomal gyrA, parC, and parE mutations) were present in the mcr-1.1-positive E. coli. A total of 49 sequence types (ST) were identified, ST354, ST359, ST48, and ST617 predominating. One isolate, identified as ST189, belonged to atypical enteropathogenic E. coli. Our findings show that mcr-1.1 has spread widely among production animals in Poland, particularly in turkeys and appears to be transferable mainly by IncX4 and IncHI2 plasmids spread across diverse E. coli lineages. Interestingly, most of these mcr-1-positive E. coli would remain undetected using phenotypic methods with the current epidemiological cut-off value (ECOFF). The appearance and spread of mcr-1 among various animals, but notably in turkeys, might be considered a food chain, and public health hazard.
Collapse
Affiliation(s)
- Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Paweł Sztromwasser
- Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Valeria Bortolaia
- Research Group for Genomic Epidemiology, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Lina M. Cavaco
- Statens Serum Institute, Copenhagen University, Copenhagen, Denmark
| | - Anna Ziȩtek-Barszcz
- Department of Epidemiology, National Veterinary Research Institute, Puławy, Poland
| | - Rene S. Hendriksen
- Research Group for Genomic Epidemiology, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
- Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|