1
|
Lyu B, Manna B, Zhou X, Leung IKH, Singhal N. Microbial metabolic enzymes, pathways and microbial hosts for co-metabolic degradation of organic micropollutants in wastewater. WATER RESEARCH 2025; 276:123229. [PMID: 39914059 DOI: 10.1016/j.watres.2025.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Organic micropollutants (OMPs) in wastewater present significant environmental challenges, but effective removal strategies are hindered by our limited understanding of their co-metabolic biodegradation. We aim to elucidate the microbial enzymes, metabolic pathways, and community members involved in OMP co-metabolic degradation, thereby paving the way for more effective wastewater treatment strategies. We integrated multi-omics (metagenomics, metaproteomics, and metabolomics) and functional group analysis to investigate 24 OMPs under three aeration conditions. Our findings reveal that oxidoreductases, particularly cytochrome P450s and peroxidases, are crucial for recalcitrant OMPs containing halogen groups (-Cl, -F) like fluoxetine and diuron. Hydrolases, including amidases, are instrumental in targeting amide-containing (-CONH₂) OMPs such as bezafibrate and carbamazepine. Regarding microbial metabolism involved in OMP co-metabolic degradation, we found that amino acid metabolism is crucial for degrading amine-containing (-NH₂) OMPs like metoprolol and citalopram. Lipid metabolism, particularly for fatty acids, contributes to the degradation of carboxylic acid (-COOH) containing OMPs such as bezafibrate and naproxen. Finally, with Actinobacteria, Bacteroidetes, and Proteobacteria emerging as primary contributors to these functionalities, we established connections between OMP functional groups, degradation enzymes, metabolic pathways, and microbial phyla. Our findings provide generalized insights into structure-function relationships in OMP co-metabolic degradation, offering the potential for improved wastewater treatment strategies.
Collapse
Affiliation(s)
- Boyu Lyu
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand; Water Research Centre, The University of Auckland, Auckland 1142, New Zealand
| | - Bharat Manna
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand; Water Research Centre, The University of Auckland, Auckland 1142, New Zealand
| | - Xueyang Zhou
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand; Water Research Centre, The University of Auckland, Auckland 1142, New Zealand
| | - Ivanhoe K H Leung
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand; Water Research Centre, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Tang Z, Liu H, Wang Y, Wang Q, Zhang L, An F, Chen Y. Impacts of cefalexin on nitrite accumulation, antibiotic degradation, and microbial community structure in nitrification systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135430. [PMID: 39178773 DOI: 10.1016/j.jhazmat.2024.135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
The intensive use of various antibiotics for clinical and agricultural purposes has resulted in their widespread use in wastewater treatment plants. However, little research has been conducted on the effects of antibiotics on nitrite accumulation, antibiotic degradation pathways, or the microbial community structure in nitrification systems. In this study, a laboratory-scale sequencing batch reactor was used to treat wastewater containing cefalexin (CFX) at different doses (5, 10, 15, and 20 mg/L). The results showed that the nitrification performance was gradually inhibited with increasing CFX concentration. Ammonia-oxidizing bacteria (AOB) are more tolerant to CFX than nitrite-oxidizing bacteria (NOB). Under 15 mg/L of CFX, NOB were completely suppressed, whereas AOB were partially inhibited, as evidenced by an ammonium removal efficiency of 60 % and a 90 % of nitrite accumulation ratio. The partial nitritation was achieved. CFX can be degraded into 2-hydroxy-3phenylpyrazine and cyclohexane through bacterial co-metabolism, and CFX degradation gradually diminishes with decreasing nitrification performance. The abundance of Nitrospira gradually decreased with increasing CFX concentration. Ferruginibacter, Hydrogenophaga, Thauera, and Pseudoxanthomonas were detected at relative abundances of 13.2 %, 0.4 %, 0.9 %, and 1.3 %, respectively, indicating their potential roles in antibiotic degradation. These findings provide insight into the interactions between antibiotics and microbial communities, which are beneficial for a better understanding of antibiotic degradation in nitrification systems.
Collapse
Affiliation(s)
- Zhiqiang Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Yunxia Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Li Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Fangjiao An
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China.
| |
Collapse
|
3
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
4
|
Ye Y, Peng C, Zhu D, Yang R, Deng L, Wang T, Tang Y, Lu L. Identification of sulfamethazine degraders in swine farm-impacted river and farmland: A comparative study of aerobic and anaerobic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169299. [PMID: 38104834 DOI: 10.1016/j.scitotenv.2023.169299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sulfonamides (SAs) are extensively used antibiotics in the prevention and treatment of animal diseases, leading to significant SAs pollution in surrounding environments. Microbial degradation has been proposed as a crucial mechanism for removing SAs, but the taxonomic identification of microbial functional guilds responsible for SAs degradation in nature remain largely unexplored. Here, we employed 13C-sulfamethazine (SMZ)-based DNA-stable isotope probing (SIP) and metagenomic sequencing to investigate SMZ degraders in three distinct swine farm wastewater-receiving environments within an agricultural ecosystem. These environments include the aerobic riparian wetland soil, agricultural soil, and anaerobic river sediment. SMZ mineralization activities exhibited significant variation, with the highest rate observed in aerobic riparian wetland soil. SMZ had a substantial impact on the microbial community compositions across all samples. DNA-SIP analysis demonstrated that Thiobacillus, Auicella, Sphingomonas, and Rhodobacter were dominant active SMZ degraders in the wetland soil, whereas Ellin6067, Ilumatobacter, Dongia, and Steroidobacter predominated in the agricultural soil. The genus MND1 and family Vicinamibacteraceae were identified as SMZ degrader in both soils. In contrast, anaerobic SMZ degradation in the river sediment was mainly performed by genera Microvirga, Flavobacterium, Dechlorobacter, Atopostipes, and families Nocardioidaceae, Micrococcaceae, Anaerolineaceae. Metagenomic analysis of 13C-DNA identified key SAs degradation genes (sadA and sadC), and various of dioxygenases, and aromatic hydrocarbon degradation-related functional genes, indicating their involvement in degradation of SMZ and its intermediate products. These findings highlight the variations of indigenous SAs oxidizers in complex natural habitats and emphasize the consideration of applying these naturally active degraders in future antibiotic bioremediation.
Collapse
Affiliation(s)
- Yuqiu Ye
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruiyu Yang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Linjie Deng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Tao Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yun Tang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
5
|
Hou R, Zhang S, Huang Q, Lin L, Li H, Li J, Liu S, Sun C, Xu X. Role of Gastrointestinal Microbiota from Crucian Carp in Microbial Transformation and Estrogenicity Modification of Novel Plastic Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11476-11488. [PMID: 37462611 DOI: 10.1021/acs.est.3c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Ingestion is a major exposure route for hydrophobic organic pollutants in fish, but the microbial transformation and estrogenic modification of the novel plastic additives by the gut microbiota of fish remain obscure. Using an in vitro approach, we provide evidence that structure-related transformation of various plastic additives by the gastric and intestinal (GI) microbiota from crucian carp, with the degradation ratio of bisphenols and triphenyl phosphate faster than those of brominated compounds. The degradation kinetics for these pollutants could be limited by oxygen and cometabolic substrates (i.e., glucose). The fish GI microbiota could utilize the vast majority of carbon sources in a Biolog EcoPlate, suggesting their high metabolic potential and ability to transform various organic compounds. Unique microorganisms associated with transformation of the plastic additives including genera of Citrobacter, Klebsiella, and some unclassified genera in Enterobacteriaceae were identified by combining high-throughput genetic analyses and metagenomic analyses. Through identification of anaerobic transformation products by high-resolution mass spectrometry, alkyl-cleavage was found the common transformation mechanism, and hydrolysis was the major pathway for ester-containing pollutants. After anaerobic incubation, the estrogenic activities of triphenyl phosphate and bisphenols A, F, and AF declined, whereas that of bisphenol AP increased.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| |
Collapse
|
6
|
Wang Y, Lin R, Cao Y, Li S, Cui R, Guo W, Ho SH, Kit Leong Y, Lee DJ, Chang JS. Simultaneous Removal of Sulfamethoxazole during Fermentative Production of Short-Chain Fatty Acids. BIORESOURCE TECHNOLOGY 2023:129317. [PMID: 37315625 DOI: 10.1016/j.biortech.2023.129317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Rongrong Lin
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Yushuang Cao
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rong Cui
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
7
|
Bai L, Liu X, Hua K, Tian L, Wang C, Jiang H. Microbial processing of autochthonous organic matter controls the biodegradation of 17α-ethinylestradiol in lake sediments under anoxic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118760. [PMID: 34971738 DOI: 10.1016/j.envpol.2021.118760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The decay of algal biomass and aquatic plants in freshwater lakes leads to the overproduction of autochthonous organic matter (OM) and the exhaustion of dissolved oxygen, impacting the microbial community and subsequent biodegradation of emerging contaminants in sediment. This study explored how the microbial processing of aquatic plant- and algal-derived OM (POM and AOM) mediates 17α-ethinylestradiol (EE2) biodegradation in the anoxic sediments of Lake Taihu in China. In four months of microcosm incubations, the increased concentrations of protein-like substances in AOM and POM exhibited temporary activation on microbial metabolic enzyme activity (fluorescein diacetate hydrolase and dehydrogenase) and significantly promoted the carbon mineralization with iron reduction (P < 0.001). These in turn increased the EE2 biodegradation efficiency to 77-90 ng g-1 in the anoxic sediment. However, a higher EE2 biodegradation of 109 ng g-1 was achieved with the humic acid augmentation containing more quinone-like compounds, showing a weaker substrate-priming effect but accelerated redox cycling of iron and organic substrates in the later period of incubation. The microbial analysis further revealed that the quinone-like compounds in OM were more closely associated with microbial electron transfer and strengthened their interspecies syntrophic cooperation favorable to contaminant biodegradation, even though the connective members exposed to protein-like components upregulated more functional genes related to organic carbon and xenobiotics metabolism and biodegradation. Our findings will help predict the fate of estrogens in various sedimentary environments under increasing eutrophication and further climate change scenarios.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke Hua
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
8
|
Langbehn RK, Michels C, Soares HM. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116603. [PMID: 33578315 DOI: 10.1016/j.envpol.2021.116603] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In this critical review, we explored the most recent advances about the fate of antibiotics on biological wastewater treatment plants (WWTP). Although the occurrence of these pollutants in wastewater and natural streams has been investigated previously, some recent publications still expose the need to improve the detection strategies and the lack of information about their transformation products. The role of the antibiotic properties and the process operating conditions were also analyzed. The pieces of evidence in the literature associate several molecular properties to the antibiotic removal pathway, like hydrophobicity, chemical structure, and electrostatic interactions. Nonetheless, the influence of operating conditions is still unclear, and solid retention time stands out as a key factor. Additionally, the efficiencies and pathways of antibiotic removals on conventional (activated sludge, membrane bioreactor, anaerobic digestion, and nitrogen removal) and emerging bioprocesses (bioelectrochemical systems, fungi, and enzymes) were assessed, and our concern about potential research gaps was raised. The combination of different bioprocess can efficiently mitigate the impacts generated by these pollutants. Thus, to plan and design a process to remove and mineralize antibiotics from wastewater, all aspects must be addressed, the pollutant and process characteristics and how it is the best way to operate it to reduce the impact of antibiotics in the environment.
Collapse
Affiliation(s)
- Rayane Kunert Langbehn
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Hugo Moreira Soares
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
9
|
Fonseca RF, de Oliveira GHD, Zaiat M. Modeling anaerobic digestion metabolic pathways for antibiotic-contaminated wastewater treatment. Biodegradation 2020; 31:341-368. [PMID: 33040265 DOI: 10.1007/s10532-020-09914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/18/2020] [Indexed: 11/26/2022]
Abstract
Anaerobic digestion has been used to treat antibiotic-contaminated wastewaters. However, it is not always effective, since biodegradation is the main removal mechanism and depends on the compound chemical characteristics and on how microbial metabolic pathways are affected by the reactor operational conditions and hydrodynamic characteristics. The aim of this study was to develop a mathematical model to describe 16 metabolic pathways of an anaerobic process treating sulfamethazine-contaminated wastewater. Contois kinetics and a useful reaction volume term were used to represent the biomass concentration impact on bed porosity in a N continuously stirred tank modeling approach. Two sulfamethazine removal hypotheses were evaluated: an apparent enzymatic reaction and a cometabolic degradation. Additionally, long-term modeling was developed to describe how the operational conditions affected the performance of the process. The best degradation correlations were associated with the consumption of carbohydrates, proteins and it was inversely related to acetic acid production during acidogenesis.
Collapse
Affiliation(s)
- Rafael Frederico Fonseca
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil.
| | - Guilherme Henrique Duarte de Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil
| |
Collapse
|
10
|
Braga JK, de Melo Júnior OM, Rodriguez RP, Sancinetti GP. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1436-1449. [PMID: 32812506 DOI: 10.1080/10934529.2020.1806632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The acid mine drainage (AMD) can causes negative impacts to the environment. Physico-chemical methods to treat AMD can have high operational costs. Through passive biological methods, such as anaerobic reactors, sulfate reduction, and recovery of metals are promoted. This study evaluated the performance of a horizontal anaerobic immobilized biomass (HAIB) reactor for the treatment of synthetic AMD using polyurethane foam as support material, and anaerobic sludge as inoculum. Ethanol was used as an electron donor for sulfate reduction, resulting in an influent chemical oxygen demand (COD) in the range of 500-1,500 mg/L and COD/sulfate ratio at 1. A gradual increase of sulfate and COD concentration was applied that resulted in COD removal efficiencies higher than 78%, and sulfate removal efficiencies of 80%. Higher sulfate and COD concentrations associated with higher hydraulic retention times (36 h) proved to be a better strategy for sulfate removal. The HAIB reactor was able to accommodate an increase in the SLR up to 2.25 g SO42-/L d-1 which achieved the greatest performance on the entire process. Moreover, the reactor proved a suitable alternative for reaching high levels of metal removal (86.95 for Zn, 98.79% for Fe, and 99.59% for Cu).
Collapse
Affiliation(s)
- Juliana Kawanishi Braga
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| | - Omar Mendes de Melo Júnior
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| | - Renata Piacentini Rodriguez
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| | - Giselle Patricia Sancinetti
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| |
Collapse
|
11
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Shan X, Nghiem LD, Nguyen LN. Removal process of antibiotics during anaerobic treatment of swine wastewater. BIORESOURCE TECHNOLOGY 2020; 300:122707. [PMID: 31926473 DOI: 10.1016/j.biortech.2019.122707] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
High concentrations of antibiotics in swine wastewater pose potentially serious risks to the environment, human and animal health. Identifying the mechanism for removing antibiotics during the anaerobic treatment of swine wastewater is essential for reducing the serious damage they do to the environment. In this study, batch experiments were conducted to investigate the biosorption and biodegradation of tetracycline and sulfonamide antibiotics (TCs and SMs) in anaerobic processes. Results indicated that the removal of TCs in the anaerobic reactor contributed to biosorption, while biodegradation was responsible for the SMs' removal. The adsorption of TCs fitted well with the pseudo-second kinetic mode and the Freundlich isotherm, which suggested a heterogeneous chemisorption process. Cometabolism was the main mechanism for the biodegradation of SMs and the process fitted well with the first-order kinetic model. Microbial activity in the anaerobic sludge might be curtailed due to the presence of high concentrations of SMs.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Wang Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xue Shan
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Luong Ngoc Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
12
|
D'Oliveira JC, Minero C, Pelizzetti E, Pichat P. Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates. J Photochem Photobiol A Chem 1993. [DOI: 10.1016/1010-6030(93)80022-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|