1
|
Munhoz-Garcia GV, Takeshita V, de Oliveira JL, Dalla Vecchia B, Nalin D, Pinácio CDW, Oliveira ALCD, Cintra Cardoso B, Tornisielo VL, Fraceto LF. Nanobased Natural Polymers as a Carrier System for Glyphosate: An Interesting Approach Aimed at Sustainable Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1097-1111. [PMID: 39748152 PMCID: PMC11741110 DOI: 10.1021/acs.jafc.4c08328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis. Nanosystem size, surface charge, polydispersity index, encapsulation efficiency, toxicity to weed species (Amaranthus hybridus, Ipomoea grandifolia, and Eleusine indica), and Roundup Ready (RR) crops, soil respiration, and enzyme activity were evaluated. The most stable system was the combination of ZN with the cross-linker poloxamer (PL), with higher weed control efficacy (90-96%) for A. hybridus, compared to commercial glyphosate (40%). No improvement was observed for I. grandifolia and E. indica. No glyphosate toxicity was observed in RR crops, soil respiration, or soil enzymes, indicating no toxic effects of the nanoformulation in these models. ZN-PL systems can be a promising alternative for glyphosate delivery, using environmentally friendly materials, with improved efficiency for weed control in agriculture.
Collapse
Affiliation(s)
| | - Vanessa Takeshita
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
- Institute
of Science and Technology, Sao Paulo State
University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Jhones Luiz de Oliveira
- Institute
of Science and Technology, Sao Paulo State
University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Bruno Dalla Vecchia
- Superior
School of Agriculture “Luiz de Queiroz”, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Daniel Nalin
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Camila de Werk Pinácio
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Ana Laura Camachos de Oliveira
- Superior
School of Agriculture “Luiz de Queiroz”, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Brian Cintra Cardoso
- Superior
School of Agriculture “Luiz de Queiroz”, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Valdemar Luiz Tornisielo
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute
of Science and Technology, Sao Paulo State
University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
2
|
Lewicka K, Smola-Dmochowska A, Dobrzyński P, Śmigiel-Gac N, Jelonek K, Musiał-Kulik M, Rychter P. Microspheres Based on Blends of Chitosan Derivatives with Carrageenan as Vitamin Carriers in Cosmeceuticals. Polymers (Basel) 2024; 16:1815. [PMID: 39000669 PMCID: PMC11244320 DOI: 10.3390/polym16131815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Chitosan (CS) has a natural origin and is a biodegradable and biocompatible polymer with many skin-beneficial properties successfully used in the cosmetics and pharmaceutical industry. CS derivatives, especially those synthesized via a Schiff base reaction, are very important due to their unique antimicrobial activity. This study demonstrates research results on the use of hydrogel microspheres made of [chitosan-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan)], [chitosan-2-pyridinecarboxaldehyde-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan), and chitosan-sodium-4-formylbenzene-1,3-disulfonate-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan) as innovative vitamin carriers for cosmetic formulation. A permeation study of retinol (vitamin A), L-ascorbic acid (vitamin C), and α-tocopherol (vitamin E) from the cream through a human skin model by the Franz Cell measurement system was presented. The quantitative analysis of the release of the vitamins added to the cream base, through the membrane, imitating human skin, showed a promising profile of its release/penetration, which is promising for the development of a cream with anti-aging properties. Additionally, the antibacterial activity of the polymers from which the microspheres are made allows for the elimination of preservatives and parabens as cosmetic formulation ingredients.
Collapse
Affiliation(s)
- Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Piotr Dobrzyński
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
3
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
4
|
Kumar R, Kumar N, Rajput VD, Mandzhieva S, Minkina T, Saharan BS, Kumar D, Sadh PK, Duhan JS. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223964. [PMID: 36432250 PMCID: PMC9692690 DOI: 10.3390/nano12223964] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Pesticides are essential to contemporary agriculture and are required to safeguard plants from hazardous pests, diseases, and weeds. In addition to harming the environment, overusing these pesticides causes pests to become resistant over time. Alternative methods and agrochemicals are therefore required to combat resistance. A potential solution to pesticide resistance and other issues may be found in nanotechnology. Due to their small size, high surface-area-to-volume ratio, and ability to offer novel crop protection techniques, nanoformulations, primarily biopolymer-based ones, can address specific agricultural concerns. Several biopolymers can be employed to load pesticides, including starch, cellulose, chitosan, pectin, agar, and alginate. Other biopolymeric nanomaterials can load pesticides for targeted delivery, including gums, carrageenan, galactomannans, and tamarind seed polysaccharide (TSP). Aside from presenting other benefits, such as reduced toxicity, increased stability/shelf life, and improved pesticide solubility, biopolymeric systems are also cost-effective; readily available; biocompatible; biodegradable; and biosafe (i.e., releasing associated active compounds gradually, without endangering the environment) and have a low carbon footprint. Additionally, biopolymeric nanoformulations support plant growth while improving soil aeration and microbial activity, which may favor the environment. The present review provides a thorough analysis of the toxicity and release behavior of biopolymeric nanopesticides for targeted delivery in precision crop protection.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Naresh Kumar
- Regional Forensic Science Laboratory, Mandi 175002, India
| | - Vishnu D. Rajput
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
5
|
Melo da Costa MP, Rabelo K, Ferreira ILDM, Cruz MTDM. Sodium alginate/chitosan/glyphosate superabsorbent bio‐foam as a release system for herbicide. J Appl Polym Sci 2022. [DOI: 10.1002/app.51776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kíssila Rabelo
- Instituto de Biologia Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
6
|
Kumar R, Najda A, Duhan JS, Kumar B, Chawla P, Klepacka J, Malawski S, Kumar Sadh P, Poonia AK. Assessment of Antifungal Efficacy and Release Behavior of Fungicide-Loaded Chitosan-Carrageenan Nanoparticles against Phytopathogenic Fungi. Polymers (Basel) 2021; 14:41. [PMID: 35012063 PMCID: PMC8747246 DOI: 10.3390/polym14010041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Biopolymeric Chitosan-Carrageenan nanocomposites 66.6-231.82 nm in size containing the chemical fungicide mancozeb (nano CSCRG-M) were synthesized following a green chemistry approach. The physicochemical study of nanoparticles (NPs) was accomplished using a particle size analyzer, SEM and FTIR. TEM exhibited clover leaf-shaped nanoparticles (248.23 nm) with mancozeb on the inside and entrapped outside. Differential scanning calorimetry and TGA thermogravimetry exhibited the thermal behaviour of the nanoform. Nano CSCRG-1.5 at 1.5 ppm exhibited 83.1% inhibition against Alternaria solani in an in vitro study and performed as well as mancozeb (84.6%). Complete inhibition was exhibited in Sclerotinia sclerotiorum at 1.0 and 1.5 ppm with the nanoformulation. The in vivo disease control efficacy of mancozeb-loaded nanoparticles against A. solani in pathogenized plants was found to be relatively higher (79.4 ± 1.7) than that of commercial fungicide (76 ± 1.1%) in pot conditions. Nanomancozeb showed superior efficacy for plant growth parameters, such as germination percentage, root-shoot ratio and dry biomass. The nanoformulation showed higher cell viability compared to mancozeb in Vero cell cultures at 0.25 and 0.50 mg/mL in the resazurin assay. CSCRG-0.5 showed slow-release behavior up to 10 h. Thus, these green nano-based approaches may help combat soil and water pollution caused by harmful chemical pesticides.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, Haryana, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland;
| | - Seweryn Malawski
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Głęboka Street, 20-400 Lublin, Poland;
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Anil Kumar Poonia
- Department of Molecular Biology, Biotechnology & Bioinformatics, CCS HAU, Hisar 125004, Haryana, India;
| |
Collapse
|
7
|
Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biotic, abiotic stresses and their unpredictable combinations severely reduce plant growth and crop yield worldwide. The different chemicals (pesticides, fertilizers, phytoregulators) so far used to enhance crop tolerance to multistress have a great environmental impact. In the search of more eco-friendly systems to manage plant stresses, chitin, a polysaccharide polymer composed of N-acetyl-D-glucosamine and D-glucosamine and its deacetylated derivative chitosan appear as promising tools to solve this problem. In fact, these molecules, easily obtainable from crustacean shells and from the cell wall of many fungi, are non-toxic, biodegradable, biocompatible and able to stimulate plant productivity and to protect crops against pathogens. In addition, chitin and chitosan can act as bioadsorbents for remediation of contaminated soil and water. In this review we summarize recent results obtained using chitin- and chitosan-based derivatives in plant protection against biotic and abiotic stresses and in recovery of contaminated soil and water.
Collapse
|
8
|
Mujtaba M, Khawar KM, Camara MC, Carvalho LB, Fraceto LF, Morsi RE, Elsabee MZ, Kaya M, Labidi J, Ullah H, Wang D. Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. Int J Biol Macromol 2020; 154:683-697. [PMID: 32194112 DOI: 10.1016/j.ijbiomac.2020.03.128] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023]
Abstract
Chitosan has been termed as the most well-known among biopolymers, receiving widespread attention from researchers in various fields mainly, agriculture, food, and health. Chitosan is a deacetylated derivative of chitin, mainly isolated from waste shells of the phylum Arthropoda after their consumption as food. Chitosan molecules can be easily modified for adsorption and slow release of plant growth regulators, herbicides, pesticides, and fertilizers, etc. Chitosan as a carrier and control release matrix that offers many benefits including; protection of biomolecules from harsh environmental conditions such as pH, light, temperatures and prolonged release of active ingredients from its matrix consequently protecting the plant's cells from the hazardous effects of burst release. In the current review, tends to discuss the recent advances in the area of chitosan application as a control release system. Also, future recommendations will be made in light of current advancements and major gaps.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - Khalid Mahmood Khawar
- Ankara University, Faculty of Agriculture, Department of Field Crops, 06100 Ankara, Turkey
| | - Marcela Candido Camara
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Lucas Bragança Carvalho
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Rania E Morsi
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt; EPRI-Nanotechnology Center, Egyptian Petroleum Research Institute, 11727 Cairo, Egypt
| | - Maher Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, 12613 Cairo, Egypt
| | - Murat Kaya
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar, 23561 Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|