1
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2025; 15:1962-1984. [PMID: 39433696 PMCID: PMC12037666 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
Kochs S, Schiewe S, Foerster M, Hillmann K, Blankenstein C, Meinke MC, Kugler J, Kocovic D, Luch A, Blume-Peytavi U, Schreiver I. Tat_BioV: tattoo ink exposure and biokinetics of selected tracers in a short-term clinical study of 24 subjects. Arch Toxicol 2025; 99:1341-1354. [PMID: 39888425 PMCID: PMC11968518 DOI: 10.1007/s00204-025-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
About one-fifth of people in industrialised countries are tattooed, potentially putting them at risk of exposure to possible carcinogenic or otherwise harmful substances. This study aims to determine the exposure to soluble tattoo ink ingredients and their excretion within 24 h after tattooing. In this clinical study, 24 subjects were tattooed with black or red tattoo ink to which the 3 tracer substances, potassium iodide, 4-aminobenzoic acid (PABA) and 2-phenoxyethanol (PEtOH), had been added to mimic known substances found in tattoo inks. Tracers and their metabolites were quantified in blood, urine, ink and consumables pre- and post-tattooing. Tattooed skin area was determined using picture analysis. PABA metabolism upon tattooing was compared to peroral administration. Skin fibroblasts and macrophages were tested in vitro for their ability to metabolise PABA. All tracers or their metabolites were identified in urine; iodide and the PABA metabolite 4-acetamidobenzoic acid (ACD) were identified in plasma. The worst-case scenario for systemic ink exposure was estimated to be 0.31 g ink per tattoo session (75th percentile). Peroral administration resulted in lower levels of ACD than tattooing. Fibroblasts and macrophages were capable of converting PABA into ACD. Our results are the first human in vivo data on soluble tattoo ink ingredients and suggest that the overall exposure might be lower than the estimates previously used for regulatory purposes. In addition, the first-pass effect by skin metabolism leads to an altered metabolite profile compared to oral exposure. Skin metabolism might also contribute to detoxification of certain carcinogenic substances through N-acetylation.
Collapse
Affiliation(s)
- Susanne Kochs
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sandra Schiewe
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Milena Foerster
- International Agency for Research On Cancer (IARC), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Kathrin Hillmann
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Claudia Blankenstein
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Josephine Kugler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - David Kocovic
- Center for Inspection Supervision and Market Control, Institute for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ulrike Blume-Peytavi
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
3
|
Špičáková A, Horáčková Z, Kopel P, Anzenbacher P. In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450. Pharmaceuticals (Basel) 2024; 17:1194. [PMID: 39338356 PMCID: PMC11434749 DOI: 10.3390/ph17091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Two copper(II) mixed ligand complexes with dicarboxylate bridges were prepared and studied, namely [Cu2(μ-fu)(pmdien)2(H2O)2](ClO4)2 (complex No. 5) and [Cu2(μ-dtdp)(pmdien)2(H2O)2](ClO4)2 (complex No. 6), where H2fu = fumaric acid, pmdien = N,N,N',N″,N″ pentamethyldiethylenetriamine, and H2dtdp = 3,3'-dithiodipropionic acid. The copper atoms are coordinated in the same mode by the tridentate pmdien ligand and oxygen of water molecules, and they only differ in the dicarboxylate bridge. This work is focused on the study of the inhibitory effect of these potential antimicrobial drugs on the activity of the most important human liver drug-metabolizing enzymes, cytochromes P450 (CYP), especially their forms CYP2C8, CYP2C19, and CYP3A4. The obtained results allow us to estimate the probability of potential drug interactions with simultaneously administrated drugs that are metabolized by these CYP enzymes. In conclusion, the presence of adverse effects due to drug-drug interactions with concomitantly used drugs cannot be excluded, and hence, topical application may be recommended as a relatively safe approach.
Collapse
Affiliation(s)
- Alena Špičáková
- Department of Pharmacology, Faculty of Medicine, Palacký University Olomouc, Hněvotínská 3, 779 00 Olomouc, Czech Republic;
| | - Zuzana Horáčková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78 371 Olomouc, Czech Republic;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine, Palacký University Olomouc, Hněvotínská 3, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
4
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
5
|
Cho T, Hayes A, Henderson JT, Uetrecht J. The use of PD-1 functional knockout rats to study idiosyncratic adverse reactions to nevirapine. Toxicol Sci 2024; 200:382-393. [PMID: 38767978 DOI: 10.1093/toxsci/kfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Idiosyncratic drug reactions (IDRs) are associated with significant patient morbidity/mortality and lead to considerable drug candidate attrition in drug development. Their idiosyncratic nature makes the study of IDRs difficult. In particular, nevirapine is associated with a relatively high risk of serious skin rash and liver injury. We previously found that nevirapine causes a similar skin rash in female Brown Norway rats, but these animals do not develop significant liver injury. Programmed cell death protein-1 (PD-1) is an immune checkpoint involved in immune tolerance, and anti-PD-1 antibodies have been used to treat cancer. However, they increase the risk of liver injury caused by co-administered drugs. We found that PD-1-/- mice are more susceptible to drug-induced liver injury, but PD-1-/- mice are not a good model for all drugs. In particular, they do not develop a skin rash when treated with nevirapine, at least in part because they lack the sulfotransferase in their skin that forms the reactive metabolite responsible for the rash. Therefore, we developed a PD-1 mutant (PD-1m/m) rat, with an excision in the ligand-binding domain of PD-1, to test whether nevirapine would cause a more serious skin rash in these animals. The PD-1m/m rat was based on a Sprague Dawley background, which has a lower incidence of skin rash than Brown Norway rats. The treated PD-1m/m rats developed more severe liver injury than PD-1-/- mice, but in contrast to expectations, they did not develop a skin rash. Functional knockouts provide a unique tool to study the mechanisms of IDRs.
Collapse
Affiliation(s)
- Tiffany Cho
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Anthony Hayes
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jeffrey T Henderson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
6
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
7
|
Silva IMD, Vacario BGL, Okuyama NCM, Barcelos GRM, Fuganti PE, Guembarovski RL, Cólus IMDS, Serpeloni JM. Polymorphisms in drug-metabolizing genes and urinary bladder cancer susceptibility and prognosis: Possible impacts and future management. Gene 2024; 907:148252. [PMID: 38350514 DOI: 10.1016/j.gene.2024.148252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.
Collapse
Affiliation(s)
- Isabely Mayara da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Beatriz Geovana Leite Vacario
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil; Center of Health Sciences, State University of West Paraná (UNIOESTE), Francisco Beltrão-Paraná, 85605-010, Brazil.
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute for Health and Society, Federal University of São Paulo (UNIFESP), Santos 11.060-001, Brazil.
| | | | - Roberta Losi Guembarovski
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
8
|
Makihara H, Maezawa M, Kaiga K, Satake T, Muto M, Tsunoda Y, Shimada T, Akase T. mRNA expression levels of cytochrome P450 CYP1A2, CYP3A4, and CYP3A5 in the epidermis: a focus on individual differences among Japanese individuals. Xenobiotica 2024; 54:226-232. [PMID: 38646717 DOI: 10.1080/00498254.2024.2344664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Various cytochrome P450 enzymes (CYPs) that contribute to drug metabolism are expressed in the skin. However, variation among individuals in CYP expression profiles is not well-understood.To investigate CYPs related to the metabolism of transdermal preparations in Japan, multiple skin tissue specimens of individuals of Japanese descent were prepared, and the mRNA expression levels of CYP1A2, CYP3A4, and CYP3A5 were measured. Associations between the expression patterns of these CYPs and body mass index (BMI) were also investigated.There were considerable individual differences in epidermal CYP1A2 mRNA expression levels, and CYP1A2 showed a weak positive correlation with CYP3A4 mRNA expression levels. In contrast to previous results for other organs, epidermal CYP3A4 mRNA expression levels showed a weak positive correlation with BMI.CYP3A4 in the epidermis may have been locally enhanced as a defence mechanism against xenobiotics in response to impaired barrier function. These differences in mRNA expression in the skin may affect the transdermal absorption of drugs, such as lidocaine and fentanyl, which are metabolised by multiple overlapping CYPs.Our study provides new insights into drug metabolism in the skin. These results are valuable for predicting drug effects and transdermal drug transfer rates in Japanese patients.
Collapse
Affiliation(s)
- Hiroko Makihara
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Mika Maezawa
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazusa Kaiga
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshihiko Satake
- Department of Plastic, Reconstructive and Aesthetic Surgery, Toyama University Hospital, Toyama, Toyama, Japan
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Mayu Muto
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Yui Tsunoda
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Akase
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Chen Q, Wang T, Wu X, Yuan H, Wei Y, Xiao Y. The role of the cytochrome P450 superfamily in the skin. Expert Rev Mol Med 2024; 26:e15. [PMID: 38621674 PMCID: PMC11140544 DOI: 10.1017/erm.2024.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 02/22/2024] [Indexed: 04/17/2024]
Abstract
In mammals, the skin acts as a barrier to prevent harmful environmental stimuli from entering the circulation. CYP450s are involved in drug biotransformation, exogenous and endogenous substrate metabolism, and maintaining the normal physiological function of the skin, as well as facilitating homeostasis of the internal environment. The expression pattern of CYP450s in the skin is tissue-specific and thus differs from the liver and other organs. The development of skin topical medications, and knowledge of the toxicity and side effects of these medications require a detailed understanding of the expression and function of skin-specific CYP450s. Thus, we summarized the expression of CYP450s in the skin, their function in endogenous metabolic physiology, aberrant CYP450 expression in skin diseases and the influence of environmental variables and medications. This information will serve as a crucial foundation for future studies on the skin, as well as for the design and development of new drugs for skin diseases including topical medications.
Collapse
Affiliation(s)
- Qianqian Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Tuan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Wu
- Dermatology Department, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Huipu Yuan
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Macchione M, Yoshizaki K, Frias DP, Maier K, Smelan J, Prado CM, Mauad T. Fragrances as a trigger of immune responses in different environments. Toxicol In Vitro 2024; 96:105769. [PMID: 38142785 DOI: 10.1016/j.tiv.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Fragrances can cause allergic skin reactions, expressed as allergic contact dermatitis and reactions in the respiratory tract that range from acute temporary upper airway irritation to obstructive lung disease. These adverse health effects may result from the stimulation of a specific (adaptive) immune response. Th1 cells, which essentially produce interleukin-2 (IL-2) and interferon-γ (IFN-γ), play a key role in allergic contact dermatitis and also on allergic sensitization to common allergens (e.g., nickel and fragrance). It has been shown that fragrance allergy leads to Th2/Th22 production of IL-4, IL-5 and IL-13, controlling the development of IgE and mediating hypersensitivity reactions in the lung, such as asthma. Cytokines released during immune response modulate the expression of cytochrome P450 (CYPs) proteins, which can result in alterations of the pharmacological effects of substances in inflammatory diseases. The mechanisms linking environment and immunity are still not completely understood but it is known that aryl hydrocarbon receptor (AhR) is a sensor with conserved ligand-activated transcription factor, highly expressed in cells that controls complex transcriptional programs which are ligand and cell type specific, with CYPs as targeted genes. This review focuses on these important aspects of immune responses of the skin and respiratory tract cells, describing some in vitro models applied to evaluate the mechanisms involved in fragrance-induced allergy.
Collapse
Affiliation(s)
- M Macchione
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil.
| | - K Yoshizaki
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - D P Frias
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - K Maier
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - J Smelan
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - C M Prado
- Federal University of Sao Paulo, Santos, Brazil
| | - T Mauad
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| |
Collapse
|
11
|
Shkrigunov TS, Vavilov NE, Samenkova NF, Kisrieva YS, Rusanov AL, Romashin DD, Karuzina II, Lisitsa AV, Petushkova NA. Identification of protein components of the transformation system in the cell line of immortalized human keratinocytes HaCaT exposed to surfactants. BIOMEDITSINSKAIA KHIMIIA 2024; 70:61-68. [PMID: 38450682 DOI: 10.18097/pbmc20247001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Using the method of shotgun mass spectrometry, we have evaluated changes in the proteomic profile of HaCat cells in response to the treatment with sodium dodecyl sulfate (anionic surfactant) and Triton-X100 (non-ionic surfactant) in two concentrations (12.5 µg/ml and 25.0 µg/ml). The study revealed induction of orphan CYP2S1 (biotransformation phase I) in response to Triton-X100. We have identified proteins of II (glutathione-S-transferases, GSTs) and III (solute carrier proteins, SLCs) biotransformation phases, as well as antioxidant proteins (peroxiredoxins, PRDXs; catalase, CAT; thioredoxin, TXN). Thus, proteins of all three xenobiotic detoxification phases were detected. The presented results suggest a new prospect of using HaCaT keratinocytes as a model of human epidermis for studying the metabolism of drugs/toxicants in human skin in vitro.
Collapse
Affiliation(s)
| | - N E Vavilov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - A L Rusanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Romashin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
12
|
Cao Y, Bairam A, Liu MC, Uetrecht J. Potential Involvement of Sulfotransferase in the Mechanism of Lamotrigine-induced Skin Rash. Chem Res Toxicol 2023; 36:1711-1716. [PMID: 37922508 PMCID: PMC10664754 DOI: 10.1021/acs.chemrestox.3c00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
The mechanism of drug-induced skin rash is not well understood. Circumstantial evidence suggests that the covalent binding of a reactive metabolite is involved in the mechanism of most idiosyncratic drug reactions. However, there is a limited quantity of drug metabolizing enzymes in the skin, except for sulfotransferases. It is possible that some drugs are metabolized to reactive sulfate metabolites that are responsible for skin rashes. For example, nevirapine-induced skin rash involves metabolism of nevirapine to 12-hydroxy-nevirapine, which is further metabolized by sulfotransferase in the skin to a reactive benzylic sulfate that covalently binds to proteins. The working hypothesis is that lamotrigine, valdecoxib, and sertraline skin rashes involve the formation of reactive sulfate in the skin. Lamotrigine-N-oxide, hydroxy-valdecoxib, and hydroxy-sertraline were tested as substrates with known human sulfotransferases. Hydroxy-valdecoxib and the benzylic alcohol metabolite of sertraline were not substrates for human sulfotransferases. Therefore, this pathway is presumably not involved in the mechanism by which they cause skin rashes. In contrast, lamotrigine-N-oxide is a substrate for several human sulfotransferases and the sulfate is chemically reactive. Furthermore, lamotrigine-N-sulfate not only alkylates proteins as we described previously but also forms the sulfate of tyrosine, suggesting another possible mechanism for protein modification. This study has further added to the understanding of the potential of the sulfotransferase pathways and protein sulfation to play a role in drug-induced skin rash.
Collapse
Affiliation(s)
- Yanshan Cao
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada M5S 3M2
| | - Ahsan Bairam
- Department
of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, Ohio 43614, United States
| | - Ming-Cheh Liu
- Department
of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, Ohio 43614, United States
| | - Jack Uetrecht
- Leslie
Dan Faculty of Pharmacy and Faculty of Medicine, University of Toronto, Toronto, Canada M5S 3M2
| |
Collapse
|
13
|
Sabbagh F, Kim BS. Ex Vivo Transdermal Delivery of Nicotinamide Mononucleotide Using Polyvinyl Alcohol Microneedles. Polymers (Basel) 2023; 15:polym15092031. [PMID: 37177177 PMCID: PMC10181269 DOI: 10.3390/polym15092031] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide mononucleotide (NMN), which has recently been spotlighted as an anti-aging agent, is a precursor of the coenzyme nicotinamide adenine dinucleotide that plays an important role in intracellular redox reactions. NMN capsules for oral administration currently on the market have a problem in that they are almost fully metabolized in the stomach and liver and excreted as nicotinamide. Therefore, there is a need to develop a patient-friendly delivery method that can improve the bioavailability of NMN. For this purpose, various polyvinyl alcohol (PVA)-based microneedle patches were fabricated to develop a transdermal delivery system for NMN. First, the molecular weight effect of PVA on the shape and microstructure of microneedles was studied. After selecting the optimal molecular weight PVA, the swelling of the microneedles and the ex vivo release of NMN were studied. The effect of carboxymethyl cellulose (CMC) and dimethyl sulfoxide on NMN release was also investigated. The highest NMN release of 91.94% in 18 h was obtained using a 9.5 kDa molecular weight PVA microneedle containing NMN and CMC.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Beom-Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
14
|
Thakkar Y, Moustakas H, Moelijker N, Hendriks G, Brandsma I, Pfuhler S, Api AM. Utility of ToxTracker in animal alternative testing strategy for fragrance materials. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:234-243. [PMID: 36762970 DOI: 10.1002/em.22532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 05/03/2023]
Abstract
To determine the utility of the ToxTracker assay in animal alternative testing strategies, the genotoxic potential of four fragrance materials (2-octen-4-one, lauric aldehyde, veratraldehyde, and p-methoxy cinnamaldehyde) were tested in the ToxTracker assay. These materials have been previously evaluated in an in vitro as well as in vivo micronucleus assay, conducted as per OECD guidelines. In addition to these studies, reconstructed human skin micronucleus studies were conducted on all four materials. All four materials were positive in an in vitro micronucleus assay but were negative in both in vivo and 3D skin micronucleus assays. The ToxTracker assay, in combination with in silico methods to predict metabolism was used to identify mechanisms for the misleading positive outcomes observed in the in vitro micronucleus assays. The results show that the ToxTracker assay, in conjunction with in silico predictions, can provide the information needed to aid in the identification of an appropriate animal alternative follow-up assay, for substances with positive results in the standard in vitro test battery. Thus, the ToxTracker assay is a valuable tool to identify the genotoxic potential of fragrance materials and can aid with replacing animal-based follow-up testing with appropriate animal alternative assay(s).
Collapse
Affiliation(s)
- Yax Thakkar
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, New Jersey, USA
| | - Holger Moustakas
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, New Jersey, USA
| | | | | | | | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio, USA
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, New Jersey, USA
| |
Collapse
|
15
|
Leena K, Gummadi SN, Chadha A. Candida parapsilosis carbonyl reductase as a tool for preliminary screening of inhibitors for alcohol dehydrogenase induced skin sensitization. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
17
|
Obringer C, Lester C, Karb M, Smith A, Ellison CA. Impact of chemical structure on the in vitro hydrolysis of fatty esters of 2-ethylhexanoic acid or 2-ethylhexanol and extrapolation to the in vivo situation. Regul Toxicol Pharmacol 2022; 137:105315. [PMID: 36494001 DOI: 10.1016/j.yrtph.2022.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fatty esters of 2-ethylhexanoic acid (EHA) and 2-ethylhexanol (EH) are commonly used in cosmetics. Human liver and skin S9 and human plasma were used to determine the in vitro rates of clearance (CLint) of a series of compounds, with a range of 2-11 carbons on the acid or alcohol moiety and branching at the C2 position. The impact of carbon chain length on in vitro CLint was most prominent for the liver metabolism of esters of EH, while for in vitro skin metabolism it was greater for esters of EHA. The position of the branching also impacted the liver hydrolysis rates, especially for the C3, C4, and C5 esters with lower CLint in vitro rates for esters of EHA relative to those of EH. When the in vitro intrinsic clearance rates were scaled to in vivo rates of hepatic clearance, all compounds approximated the rate for hepatic blood flow, mitigating this dependence of metabolism on structure. This work shows how structural changes to the molecule can affect in vitro metabolism and, furthermore, allows for an estimation of the in vivo metabolism.
Collapse
Affiliation(s)
- Cindy Obringer
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Cathy Lester
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Michael Karb
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Alex Smith
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | | |
Collapse
|
18
|
Champmartin C, Chedik L, Marquet F, Cosnier F. Occupational exposure assessment with solid substances: choosing a vehicle for in vitro percutaneous absorption experiments. Crit Rev Toxicol 2022; 52:294-316. [PMID: 36125048 DOI: 10.1080/10408444.2022.2097052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Percutaneous occupational exposure to industrial toxicants can be assessed in vitro on excised human or animal skins. Numerous factors can significantly influence skin permeation of chemicals and the flux determination. Among them, the vehicle used to solubilize the solid substances is a tricky key step. A "realistic surrogate" that closely matches the exposure scenario is recommended in first intention. When direct transposition of occupational exposure conditions to in vitro experiments is impossible, it is recommended that the vehicle used does not affect the skin barrier (in particular in terms of structural integrity, composition, or enzymatic activity). Indeed, any such effect could alter the percutaneous absorption of substances in a number of ways, as we will see. Potential effects are described for five monophasic vehicles, including the three most frequently used: water, ethanol, acetone; and two that are more rarely used, but are realistic: artificial sebum and artificial sweat. Finally, we discuss a number of criteria to be verified and the associated tests that should be performed when choosing the most appropriate vehicle, keeping in mind that, in the context of occupational exposure, the scientific quality of the percutaneous absorption data provided, and how they are interpreted, may have long-range consequences. From the narrative review presented, we also identify and discuss important factors to consider in future updates of the OECD guidelines for in vitro skin absorption experiments.
Collapse
Affiliation(s)
- Catherine Champmartin
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre-les-Nancy Cedex, France
| | - Lisa Chedik
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre-les-Nancy Cedex, France
| | - Fabrice Marquet
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre-les-Nancy Cedex, France
| | - Frédéric Cosnier
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre-les-Nancy Cedex, France
| |
Collapse
|
19
|
Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022; 8:e08938. [PMID: 35198788 PMCID: PMC8851252 DOI: 10.1016/j.heliyon.2022.e08938] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022] Open
Abstract
The skin is a complex and multifunctional organ, in which the static versus dynamic balance is responsible for its constant adaptation to variations in the external environment that is continuously exposed. One of the most important functions of the skin is its ability to act as a protective barrier, against the entry of foreign substances and against the excessive loss of endogenous material. Human skin imposes physical, chemical and biological limitations on all types of permeating agents that can cross the epithelial barrier. For a molecule to be passively permeated through the skin, it must have properties, such as dimensions, molecular weight, pKa and hydrophilic-lipophilic gradient, appropriate to the anatomy and physiology of the skin. These requirements have limited the number of commercially available products for dermal and transdermal administration of drugs. To understand the mechanisms involved in the drug permeation process through the skin, the approach should be multidisciplinary in order to overcome biological and pharmacotechnical barriers. The study of the mechanisms involved in the permeation process, and the ways to control it, can make this route of drug administration cease to be a constant promise and become a reality. In this work, we address the physicochemical and biopharmaceutical aspects encountered in the pathway of drugs through the skin, and the potential added value of using solid lipid nanoparticles (SLN) and nanostructured lipid vectors (NLC) to drug permeation/penetration through this route. The technology and architecture for obtaining lipid nanoparticles are described in detail, namely the composition, production methods and the ability to release pharmacologically active substances, as well as the application of these systems in the vectorization of various pharmacologically active substances for dermal and transdermal applications. The characteristics of these systems in terms of dermal application are addressed, such as biocompatibility, occlusion, hydration, emollience and the penetration of pharmacologically active substances. The advantages of using these systems over conventional formulations are described and explored from a pharmaceutical point of view.
Collapse
|
20
|
Li M, Vora LK, Peng K, Donnelly RF. Trilayer microneedle array assisted transdermal and intradermal delivery of dexamethasone. Int J Pharm 2022; 612:121295. [PMID: 34785356 DOI: 10.1016/j.ijpharm.2021.121295] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Dexamethasone is a synthesised glucocorticoid that is widely used in the treatment of various inflammatory skin conditions. Novel trilayer dissolving microneedle arrays were manufactured to assist dexamethasone delivery via the skin. Both transdermal delivery and intradermal delivery of dexamethasone can be achieved this way. Additionally, we proposed a novel strategy of co-formulating dexamethasone and its pro-drug dexamethasone sodium phosphate into the same dissolving microneedle array, with a view to achieving a fast onset of action and also sustained treatment. Here, a 3D-printing technique was employed, for the first time, to fabricate a baseplate for these microneedle arrays. The 3D-printed baseplates provided strong support to aid the insertion of the drug-encapsulated tips. A simple and rapid HPLC method was developed, and validated, to separate and quantify dexamethasone and dexamethasone sodium phosphate in the same sample. Ex-vivo studies found that these trilayer dissolving microneedle arrays could achieve a delivery efficiency of over 40% in intradermal delivery and over 50% in transdermal delivery. Trilayer microneedle-assisted delivery of this glucocorticoid provided a promising alternative to oral and parenteral routes of dexamethasone administration.
Collapse
Affiliation(s)
- Mingshan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Farjami A, Salatin S, Jafari S, Mahmoudian M, Jelvehgari M. The Factors Determining the Skin Penetration and Cellular Uptake of Nanocarriers: New Hope for Clinical Development. Curr Pharm Des 2021; 27:4315-4329. [PMID: 34779364 DOI: 10.2174/1381612827666210810091745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
The skin provides a protective barrier against toxic environments and also offers a valuable route for topical drug delivery. The stratum corneum (SC) is the outermost layer of the skin and serves as the major barrier to chemical transfer through the skin. The human skin barrier is particularly difficult to overcome because of the complex composition and structure of the SC. Nanoparticulate carriers have gained widespread attention in topical drug delivery due to their tunable and versatile properties. The present review summarizes the main factors involved in skin penetration of nanocarriers containing the drug. Employment of nanotechnology in topical delivery has grown progressively during recent years; however, it is important to monitor the skin penetration of nanocarriers prior to their use to avoid possible toxic effects. Nanocarriers can act as a means to increase skin permeation of drugs by supporting direct interaction with the SC and increasing the period of permanence on the skin. Skin penetration is influenced by the physicochemical characteristics of nanocarriers such as composition, size, shape, surface chemistry, as well as skin features. Considering that the target of topical systems based on nanocarriers is the penetration of therapeutic agents in the skin layers, so a detailed understanding of the factors influencing skin permeability of nanocarriers is essential for safe and efficient therapeutic applications.
Collapse
Affiliation(s)
- Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahmoudian
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Downs TR, Arlt VM, Barnett BC, Posgai R, Pfuhler S. Effect of 2-acetylaminofluorene and its genotoxic metabolites on DNA adduct formation and DNA damage in 3D reconstructed human skin tissue models. Mutagenesis 2021; 36:63-74. [PMID: 31816077 PMCID: PMC8081378 DOI: 10.1093/mutage/gez044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
In vitro genotoxicity assays utilising human skin models are becoming important tools for the safety assessment of chemicals whose primary exposure is via the dermal route. In order to explore metabolic competency and inducibility of CYP450 activating enzymes, 3D reconstructed human skin tissues were topically treated with 2-acetylaminofluorene (2-AAF) and its genotoxic metabolites, N-hydroxy-2-acetylaminofluorene (N-OH-2-AAF) and N-hydroxy-2-aminofluorene (N-OH-2-AF), which primarily cause DNA damage by forming DNA adducts. 2-AAF did not increase DNA damage measured in the reconstructed skin micronucleus (RSMN) assay when administered in multiple applications at 24 h intervals but was detected in the skin comet assay in the presence of the DNA polymerase inhibitor aphidicolin (APC). Similarly, no increase was found with N-OH-2-AAF in the RSMN assay after multiple treatments whereas a single 3 h exposure to N-OH-2-AAF caused a large dose-related increase in the skin comet assay. A significant increase in the RSMN assay was only obtained with the highly reactive N-OH-2-AF metabolite after multiple treatments over 72 h, whereas N-OH-2-AF caused a strong increase after a single 3 h exposure in the skin comet assay. In support of these results, DNA adduct formation, measured by the 32P-postlabelling assay, was examined. Adduct levels after 2-AAF treatment for 3 h were minimal but increased >10-fold after multiple exposures over 48 h, suggesting that enzyme(s) that metabolise 2-AAF are induced in the skin models. As expected, a single 3 h exposure to N-OH-2-AAF and N-OH-2-AF resulted in adduct levels that were at least 10-fold greater than those after multiple exposures to 2-AAF despite ~100-fold lower tested concentrations. Our results demonstrate that DNA damage caused by 2-AAF metabolites is more efficiently detected in the skin comet assay than the RSMN assay and after multiple exposures and enzyme induction, 2-AAF-induced DNA damage can be detected in the APC-modified comet assay.
Collapse
Affiliation(s)
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | | | | | - Stefan Pfuhler
- Procter & Gamble, Mason, OH, USA
- To whom correspondence should be addressed. Tel: +1 513 622 1163; E-mail:
| |
Collapse
|
23
|
Somayaji MR, Das D, Garimella HT, German CL, Przekwas AJ, Simon L. An Integrated Biophysical Model for Predicting the Clinical Pharmacokinetics of Transdermally Delivered Compounds. Eur J Pharm Sci 2021; 167:105924. [PMID: 34289340 DOI: 10.1016/j.ejps.2021.105924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
The delivery of therapeutic drugs through the skin is a promising alternative to oral or parenteral delivery routes because dermal drug delivery systems (D3S) offer unique advantages such as controlled drug release over sustained periods and a significant reduction in first-pass effects, thus reducing the required dosing frequency and level of patient noncompliance. Furthermore, D3S find applications in multiple therapeutic areas, including drug repurposing. This article presents an integrated biophysical model of dermal absorption for simulating the permeation and absorption of compounds delivered transdermally. The biophysical model is physiologically/biologically inspired and combines a holistic model of healthy skin with whole-body physiology-based pharmacokinetics through dermis microcirculation. The model also includes the effects of chemical penetration enhancers and hair follicles on transdermal transport. The model-predicted permeation and pharmacokinetics of select compounds were validated using in vivo data reported in the literature. We conjecture that the integrated model can be used to gather insights into the permeation and systemic absorption of transdermal formulations (including cosmetic products) released from novel depots and optimize delivery systems. Furthermore, the model can be adapted to diseased skin with parametrization and structural adjustments specific to skin diseases.
Collapse
Affiliation(s)
- Mahadevabharath R Somayaji
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States.
| | - Debarun Das
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Harsha Teja Garimella
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Carrie L German
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Andrzej J Przekwas
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Laurent Simon
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
24
|
Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In recent times, a considerable amount of evidence has come to light regarding the effect that air pollution has on skin conditions. The human skin is the chief protection we have against environmental harm, whether biological, chemical, or physical. The stress from these environmental factors, along with internal influences, can be a cause of skin aging and enlarged pores, thinner skin, skin laxity, wrinkles, fine lines, dryness, and a more fragile dermal layer. This knowledge has led to greater demand for skin cosmetics and a requirement for natural raw ingredients with a high degree of safety and efficiency in combating skin complications. Recent developments in green technology have made the employment of naturally occurring bioactive compounds more popular, and novel extraction methods have ensured that the use of these compounds has greater compatibility with sustainable development principles. Thus, there is a demand for investigations into efficient non-harmful naturally occurring raw ingredients; compounds derived from algae could be beneficial in this area. Algae, both macroalgae and microalgae, consists of waterborne photosynthetic organisms that are potentially valuable as they have a range of bioactive compounds in their composition. Several beneficial metabolites can be obtained from algae, such as antioxidants, carotenoids, mycosporine-like amino acids (MAA), pigments, polysaccharides, and scytonemin. Various algae strains are now widely employed in skincare products for various purposes, such as a moisturizer, anti-wrinkle agent, texture-enhancing agents, or sunscreen. This research considers the environmental stresses on human skin and how they may be mitigated using cosmetics created using algae; special attention will be paid to external factors, both generally and specifically (amongst them light exposure and pollutants).
Collapse
Affiliation(s)
- Ayesha Aslam
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Rabia Liaquat
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Adeel Waqas
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohammed Zwawi
- Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
25
|
Abstract
GENERAL PURPOSE To provide wound care information that considers the specific physiology of neonates. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will:1. Differentiate the use of hydrocolloids, hydrogels, foam dressings, and barrier creams in the neonatal population.2. Identify issues related to the use of solvents, alginates, collagen dressings, and negative-pressure wound therapy in neonates. ABSTRACT OBJECTIVETo discuss what is known about the wound milieu in premature and full-term neonates, including the unique challenges pediatric clinicians face, the therapies that have proven effective, and the therapies contraindicated for use in neonatal wound healing to guide treatment that accounts for the specific physiological characteristics of this often overlooked population. DATA SOURCES Data were collected on neonatal wound healing from a wide variety of sources, including PubMed, Google Scholar, journals, and textbooks. STUDY SELECTION Selection criteria included publications focused on the differences and nuances of wound healing in neonates in comparison with all other age groups. DATA EXTRACTION Data were extracted based on articles covering wound healing therapies with proven effectiveness in neonates. Terms for neonatal wound care were compiled, and then a comprehensive literature search was performed by the authors. DATA SYNTHESIS Although many therapies are safe for treatment of older children and adolescents, most have not been explicitly tested for neonatal use. This article reviews therapies with proven effectiveness and/or specific concerns in the neonatal population. CONCLUSION This review sheds light on the advantages and disadvantages of current standards of care regarding wound healing for neonates to direct researchers and clinicians toward developing treatments specifically for this delicate population.
Collapse
|
26
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Heard CM. An ex vivo skin model to probe modulation of local cutaneous arachidonic acid inflammation pathway. J Biol Methods 2020; 7:e138. [PMID: 33204741 PMCID: PMC7666330 DOI: 10.14440/jbm.2020.319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023] Open
Abstract
There is a need for inexpensive and reliable means to determine the modulation of cutaneous inflammation. The method outlined in this article draws together a number of scientific techniques and makes use of generally unwanted biological tissues as a means of determining skin inflammation ex vivo, and focuses on probing aspects of the arachidonic acid inflammation pathway. Freshly excised skin contains elevated levels of short-lived inducible cyclooxygenase-2 (COX-2) and, under viable conditions, COX-2 and its eicosanoid products will continue to be produced until tissue necrosis, providing a window of time in which relative levels can be probed to determine exacerbation due to an upregulating factor or downregulation due the presence of an agent exerting anti-inflammatory activity. Ex vivo porcine skin, mounted in Franz diffusion cells, is dosed topically with the xenobiotic challenge and then techniques such as Western blotting and immunohistochemistry can then be used to probe relative COX-2 levels on a semi-quantitative or qualitative level. Enzyme-linked immunosorbent assay or LCMS can be used to determine relative prostaglandin E-2 (PGE-2) levels. Thus far, the technique has been used to examine the effects of topically applied anti-inflammatories (betamethasone, ibuprofen, ketoprofen and methotrexate), natural products (fish oil, Devil’s claw extract and pomegranate rind extract) and drug delivery vehicle (polyNIPAM nanogels). Topically applied xenobiotics that modulate factors such as COX-2 and PGE-2 must penetrate the intact skin, and this provides direct evidence of overcoming the "barrier function" of the stratum corneum in order to target the viable epidermis in sufficient levels to be able to elicit such effects. This system has particular potential as a pre-clinical screening tool for those working on the development of topical delivery systems, and has the additional advantage of being in line with 3 Rs philosophy.
Collapse
Affiliation(s)
- Charles M Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3 NB Wales, United Kingdom
| |
Collapse
|
28
|
Coleman L, Lian G, Glavin S, Sorrell I, Chen T. In Silico Simulation of Simultaneous Percutaneous Absorption and Xenobiotic Metabolism: Model Development and a Case Study on Aromatic Amines. Pharm Res 2020; 37:241. [DOI: 10.1007/s11095-020-02967-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
|
29
|
Larsen J, Lambert M, Pettersson H, Vifian T, Larsen M, Ollerstam A, Hegardt P, Eskilsson C, Laursen S, Soehoel A, Skak-Nielsen T, Hansen LM, Knudsen NØ, Eirefelt S, Sørensen MD, Stilou TG, Nielsen SF. Discovery and Early Clinical Development of Isobutyl 1-[8-Methoxy-5-(1-oxo-3H-isobenzofuran-5-yl)-[1,2,4]triazolo[1,5-a]pyridin-2-yl]cyclopropanecarboxylate (LEO 39652), a Novel “Dual-Soft” PDE4 Inhibitor for Topical Treatment of Atopic Dermatitis. J Med Chem 2020; 63:14502-14521. [DOI: 10.1021/acs.jmedchem.0c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Santos LL, Swofford NJ, Santiago BG. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. ACTA ACUST UNITED AC 2020; 91:e79. [PMID: 32991075 DOI: 10.1002/cpph.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitro assessment of topical (dermal) pharmacokinetics is a critical aspect of the drug development process for semi-solid products (e.g., solutions, foams, sprays, creams, gels, lotions, ointments), allowing for informed selection of new chemical entities, optimization of prototype formulations during the nonclinical stage, and determination of bioequivalence of generics. It can also serve as a tool to further understand the impact of different excipients on drug delivery, product quality, and formulation microstructure when used in parallel with other techniques, such as analyses of rheology, viscosity, microscopic characteristics, release rate, particle size, and oil droplet size distribution. The in vitro permeation test (IVPT), also known as in vitro skin penetration/permeation test, typically uses ex vivo human skin in conjunction with diffusion cells, such as Franz (or vertical) or Bronaugh (or flow-through) diffusion cells, and is the technique of choice for dermal pharmacokinetics assessment. Successful execution of the IVPT also involves the development and use of fit-for-purpose bioanalytical methods and procedures. The protocols described herein provide detailed steps for execution of the IVPT utilizing flow-through diffusion cells and for key aspects of the development of a liquid chromatography-tandem mass spectrometry method intended for analysis of the generated samples (epidermis, dermis, and receptor solution). © 2020 Wiley Periodicals LLC. Basic Protocol 1: In vitro permeation test Support Protocol: Dermatoming of ex vivo human skin Basic Protocol 2: Bioanalytical methodology in the context of the in vitro permeation test.
Collapse
Affiliation(s)
- Leandro L Santos
- Dermatology Unit, Topical Drug Delivery & DMPK, GlaxoSmithKline, Collegeville, Pennsylvania.,Current affiliation: Incyte Corporation, Inflammation & AutoImmunity, Clinical Research, Wilmington, Delaware
| | - Nathaniel J Swofford
- Dermatology Unit, Topical Drug Delivery & DMPK, GlaxoSmithKline, Collegeville, Pennsylvania.,Current affiliation: Functional Genomics, High-Throughput Biology and Imaging, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Brandon G Santiago
- Dermatology Unit, Topical Drug Delivery & DMPK, GlaxoSmithKline, Collegeville, Pennsylvania.,Current affiliation: Bioanalysis, Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
31
|
Ronco T, Jørgensen NS, Holmer I, Kromann S, Sheikhsamani E, Permin A, Svenningsen SW, Christensen JB, Olsen RH. A Novel Promazine Derivative Shows High in vitro and in vivo Antimicrobial Activity Against Staphylococcus aureus. Front Microbiol 2020; 11:560798. [PMID: 33101232 PMCID: PMC7555839 DOI: 10.3389/fmicb.2020.560798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
The emergence of multidrug-resistant bacteria constitutes a significant public health issue worldwide. Consequently, there is an urgent clinical need for novel treatment solutions. It has been shown in vitro that phenothiazines can act as adjuvants to antibiotics whereby the minimum inhibitory concentration (MIC) of the antibiotic is decreased. However, phenothiazines do not perform well in vivo, most likely because they can permeate the blood-brain (BBB) barrier and cause severe side-effects to the central nervous system. Therefore, the aim of this study was to synthesize a promazine derivate that would not cross the BBB but retain its properties as antimicrobial helper compound. Surprisingly, in vitro studies showed that the novel compound, JBC 1847 exhibited highly increased antimicrobial activity against eight Gram-positive pathogens (MIC, 0.5-2 mg/L), whereas a disc diffusion assay indicated that the properties as an adjuvant were lost. JBC 1847 showed significant (P < 0.0001) activity against a Staphylococcus aureus strain compared with the vehicle, in an in vivo wound infection model. However, both in vitro and in silico analyses showed that JBC 1847 possesses strong affinity for human plasma proteins and an Ames test showed that generally, it is a non-mutagenic compound. Finally, in silico predictions suggested that the compound was not prone to pass the BBB and had a suitable permeability to the skin. In conclusion, JBC 1847 is therefore suggested to hold potential as a novel topical agent for the clinical treatment of S. aureus skin and soft tissue infections, but pharmacokinetics and pharmacodynamics need to be further investigated.
Collapse
Affiliation(s)
- Troels Ronco
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia S Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iben Holmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kromann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ehsan Sheikhsamani
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University, Mashhad, Iran
| | | | - Søren W Svenningsen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørn B Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rikke H Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Simultaneous determination the concentration change of ketoconazole and dexamethasone acetate: application to drug-drug interaction in human keratinocyte. J Pharm Biomed Anal 2020; 188:113396. [PMID: 32535269 DOI: 10.1016/j.jpba.2020.113396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The combination of ketoconazole and dexamethasone acetate is one of the commonly used treatments in dermatology regiment for skin inflammation accompanied by fungal infections. This interaction of ketoconazole and dexamethasone may make the drug much effective, decrease the adverse reaction or toxic effects. At present, there was no information about the interaction of these two external drugs. Therefore, it was necessary to build a model to measure the levels and evaluate the interaction of ketoconazole and dexamethasone acetate in skin cells. METHODS In our study, the determination methodology of ketoconazole and dexamethasone acetate in human keratinocyte (HaCaT cells) was established and the interaction of these two drugs in cells was explored. HaCaT cells were cultured in medium containing ketoconazole, then they were sequentially cultured with or without dexamethasone acetate treatment for another 1, 2, 4, 8 and 12 h. The samples were then harvested and the concentrations were quantified by enhanced BCA (the bicinchoninic acid) protein assay. Furthermore, the analytes in the cell suspension were also prepared and analyzed by LC-MS method. RESULTS As a result, ketoconazole and dexamethasone acetate were detected at the concentration range of 0.02 to 5 μg/mL and 0.2 to 100 μg/mL, respectively. The RSD (relative standard deviation) and RE (relative error) of precision and accuracy of the two analytes in the cell suspension were all less than 15 %. The matrix effect values variations were all less than 15%. The results showed that there was no significant difference in the concentration of ketoconazole with or without dexamethasone acetate treatment within 12 h. CONCLUSIONS A simple, sensitive and rapid LC-MS method which could quantify these two analytes in cells simultaneously was developed for the first time. The results of the concentration changes meant that no interaction occurred when dexamethasone sequentially administrated for 12 h after ketoconazole treatment. This method was successfully applied to establish the cell pharmacokinetics methodology and preliminary studied the metabolism of drug-drug interaction of ketoconazole and dexamethasone acetate.
Collapse
|
33
|
Pan W, Zeng D, Ding N, Luo K, Man YB, Zeng L, Zhang Q, Luo J, Kang Y. Percutaneous Penetration and Metabolism of Plasticizers by Skin Cells and Its Implication in Dermal Exposure to Plasticizers by Skin Wipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10181-10190. [PMID: 32678582 DOI: 10.1021/acs.est.0c02455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous studies focused on the human exposure to plasticizers via dermal contact; however, the percutaneous penetration of plasticizers was seldom considered in exposure assessment. In the present study, skin wipes of palms, back-of-hands, and forehead were collected from 114 participants (ages: 18-27). There was no significant difference between the levels of phthalates from palms and back-of-hand, while all phthalates collected from the forehead were significantly higher than those from palms and back-of-hand (p < 0.001); di(2-ethylhexyl)phthalate levels were substantially higher than other detected phthalates followed by di(n-butyl)phthalate and di(isobutyl)phthalate (DiBP), and for alternative plasticizers, bis-2-ethylhexyl terephthalate levels were substantially higher than acetyltributyl citrate and bis-2-ethylhexyladipate. Skin permeation and metabolism of phthalates was assessed using human skin equivalent models. The permeability coefficient (kp) values of phthalates were significantly negatively correlated with their log octanol-water partition coefficient (log Kow), while a significantly positive correlation was found between the log Kow and the cumulative amounts of phthalates in the cells. The proportion of phthalate intake via dermal exposure to skin wipes ranges from 1.3% (for dimethyl phthalate) to 8.6% (for DiBP) and suggests that dermal absorption is a significant route for adult phthalate exposure.
Collapse
Affiliation(s)
- Weijian Pan
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Chemistry, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
34
|
Development of Topical/Transdermal Self-Emulsifying Drug Delivery Systems, Not as Simple as Expected. Sci Pharm 2020. [DOI: 10.3390/scipharm88020017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) originated as an oral lipid-based drug delivery system with the sole purpose of improving delivery of highly lipophilic drugs. However, the revolutionary drug delivery possibilities presented by these uniquely simplified systems in terms of muco-adhesiveness and zeta-potential changing capacity lead the way forward to ground-breaking research. Contrarily, SEDDSs destined for topical/transdermal drug delivery have received limited attention. Therefore, this review is focused at utilising principles, established during development of oral SEDDSs, and tailoring them to fit evaluation strategies for an optimised topical/transdermal drug delivery vehicle. This includes a detailed discussion of how the authentic pseudo-ternary phase diagram is employed to predict phase behaviour to find the self-emulsification region most suitable for formulating topical/transdermal SEDDSs. Additionally, special attention is given to the manner of characterising oral SEDDSs compared to topical/transdermal SEDDSs, since absorption within the gastrointestinal tract and the multi-layered nature of the skin are two completely diverse drug delivery territories. Despite the advantages of the topical/transdermal drug administration route, certain challenges such as the relatively undiscovered field of skin metabolomics as well as the obstacles of choosing excipients wisely to establish skin penetration enhancement might prevail. Therefore, development of topical/transdermal SEDDSs might be more complicated than expected.
Collapse
|
35
|
Jin W, Purves R, Krol E, Badea I, El-Aneed A. Mass Spectrometric Detection and Characterization of Metabolites of Gemini Surfactants Used as Gene Delivery Vectors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:366-378. [PMID: 31922726 DOI: 10.1021/jasms.9b00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gemini surfactants are a class of lipid molecules that have been successfully used in vitro and in vivo as nonviral gene delivery vectors. However, the biological fate of gemini surfactants has not been well investigated. In particular, the metabolism of gemini surfactants after they enter cells as gene delivery vehicles is unknown. In this work, we used a high-resolution quadrupole-Orbitrap mass spectrometry (Q-Exactive) instrument to detect the metabolites of three model gemini surfactants, namely, (a) unsubstituted (16-3-16), (b) with pyridinium head groups (16(Py)-S-2-S-16(Py)), and (c) substituted with a glycyl-lysine di-peptide (16-7N(GK)-16). The metabolites were characterized, and structures were proposed, based on accurate masses and characteristic product ions. The metabolism of the three gemini surfactants was very different as 16-3-16 was not metabolized in PAM 212 cells, whereas 16(Py)-S-2-S-16(Py) was metabolized primarily via phase I reactions, including oxidation and dealkylation, producing metabolites that could be linked to its observed high toxicity. The third gemini surfactant 16-7N(GK)-16 was metabolized mainly via phase II reactions, including methylation, acetylation, glucose conjugation, palmityl conjugation, and stearyl conjugation. The metabolism of gemini surfactants provides insight for future directions in the design and development of more effective gemini surfactants with lower toxicity. The reported approach can also be applied to study the metabolism of other structurally related gemini surfactants.
Collapse
Affiliation(s)
- Wei Jin
- Drug Design & Discovery Group, College of Pharmacy and Nutrition , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan Canada , S7N 5E5
| | - Randy Purves
- Drug Design & Discovery Group, College of Pharmacy and Nutrition , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan Canada , S7N 5E5
- Centre for Veterinary Drug Residues , Canadian Food Inspection Agency , 116 Veterinary Road , Saskatoon , Saskatchewan Canada , S7N 2R3
| | - Ed Krol
- Drug Design & Discovery Group, College of Pharmacy and Nutrition , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan Canada , S7N 5E5
| | - Ildiko Badea
- Drug Design & Discovery Group, College of Pharmacy and Nutrition , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan Canada , S7N 5E5
| | - Anas El-Aneed
- Drug Design & Discovery Group, College of Pharmacy and Nutrition , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan Canada , S7N 5E5
| |
Collapse
|
36
|
Sharifian S, Homaei A, Kamrani E, Etzerodt T, Patel S. New insights on the marine cytochrome P450 enzymes and their biotechnological importance. Int J Biol Macromol 2020; 142:811-821. [DOI: 10.1016/j.ijbiomac.2019.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023]
|
37
|
Sabri AH, Kim Y, Marlow M, Scurr DJ, Segal J, Banga AK, Kagan L, Lee JB. Intradermal and transdermal drug delivery using microneedles - Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev 2020; 153:195-215. [PMID: 31634516 DOI: 10.1016/j.addr.2019.10.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
The progress in microneedle research is evidenced by the transition from simple 'poke and patch' solid microneedles fabricated from silicon and stainless steel to the development of bioresponsive systems such as hydrogel-forming and dissolving microneedles. In this review, we provide an outline on various microneedle fabrication techniques which are currently employed. As a range of factors, including materials, geometry and design of the microneedles, affect the performance, it is important to understand the relationships between them and the resulting delivery of therapeutics. Accordingly, there is a need for appropriate methodologies and techniques for characterization and evaluation of microneedle performance, which will also be discussed. As the research expands, it has been observed that therapeutics delivered via microneedles has gained expedited access to the lymphatics, which makes them a favorable delivery method for targeting the lymphatic system. Such opportunity is valuable in the area of vaccination and treatment of lymphatic disorders, which is the final focus of the review.
Collapse
|
38
|
Moriya Y, Kogame A, Tagawa Y, Morohashi A, Kondo T, Asahi S, Benet LZ. The Enhancement of Subcutaneous First-Pass Metabolism Causes Nonlinear Pharmacokinetics of TAK-448 after a Single Subcutaneous Administration to Rats. Drug Metab Dispos 2019; 47:1004-1012. [PMID: 31201213 DOI: 10.1124/dmd.119.087148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
2-(N-acetyl-D-tyrosyl-trans-4-hydroxy-L-prolyl-L-asparaginyl-L-threonyl-L-phenylalanyl) hydrazinocarbonyl-L-leucyl-Nω-methyl-L-arginyl-L-tryptophanamide monoacetate (TAK-448, RVT-602), a kisspeptin analog, has been developed as a therapeutic agent for prostate cancer. The purpose of the present study is to clarify the mechanism of the less than dose-proportional nonlinear pharmacokinetics of TAK-448 after subcutaneous administration to rats. The plasma pharmacokinetics of TAK-448 and radiolabeled TAK-448 ([14C]TAK-448) were examined after subcutaneous and intravenous administrations to rats. [14C]TAK-448 was also subcutaneously injected together with protease inhibitors. The effects of the protease inhibitors on the in vitro metabolism of [14C]TAK-448 were investigated using rat skin homogenates. In a dose-ascending study, less than dose-proportional nonlinear pharmacokinetics were observed after subcutaneous administration with limited absorption of TAK-448 at the highest dose level contrary to the linear pharmacokinetics following intravenous dosing, indicating enhancement of subcutaneous metabolism with dose escalation. The systemic absorption of unchanged TAK-448 recovered when protease inhibitors were subcutaneously coadministered, suggested the involvement of subcutaneous proteases in the first-pass metabolism. An in vitro metabolism study suggests that serine protease could be responsible for the subcutaneous metabolism of TAK-448. Dose-dependent enhancement of first-pass metabolism appears to contribute to the less than dose-proportional nonlinear pharmacokinetics of TAK-448 after subcutaneous administrations to rats.
Collapse
Affiliation(s)
- Yuu Moriya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| | - Akifumi Kogame
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| | - Yoshihiko Tagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| | - Akio Morohashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| | - Takahiro Kondo
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| | - Satoru Asahi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| | - Leslie Z Benet
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan (Y.M., A.K., Y.T., A.M., S.A.); Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, Osaka, Japan (T.K.); and University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, San Francisco, California (L.Z.B.)
| |
Collapse
|
39
|
Calcutt JJ, Anissimov YG. Physiologically based mathematical modelling of solute transport within the epidermis and dermis. Int J Pharm 2019; 569:118547. [PMID: 31377408 DOI: 10.1016/j.ijpharm.2019.118547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
The stratum corneum is the main barrier to transdermal drug delivery which has previously resulted in mathematical modelling of solute transport in the skin being primarily directed at this skin layer. However, for topical treatment and skin toxicity studies, the concentration in the epidermis and dermis is important and needs to be modelled mathematically. Hitherto, mathematical models for viable skin layers typically simplified the clearance of solute by blood, either assuming sink condition at the top of the skin capillary loops or assuming a distributed clearance in the dermis. This paper is an attempt to develop a physiologically based mathematical model of drug transport in the viable skin. It incorporates explicit modelling of the capillary loops within the dermis and employs COMSOL Multiphysics® software to model the transport in three dimensions. Previously derived simplified models were compared to the results from this new numerical model. The results of this comparison showed that the simplified model reasonably described the average concentration in the viable skin layers when parameters of the models were chosen appropriately. When the recruitment of the capillary loops in the dermis was full and the top of capillary loops was at a depth of 100μm, the effective depth to place a sink condition in the simpler models was found to be at 150μm. However, when there was only partial recruitment of the capillaries, the effective depth increased to 180μm. The presented modelling is also essential for determining a transdermal flux when the stratum corneum barrier is compromised by such methods as microporation, application of chemical enhancers or microneedles.
Collapse
Affiliation(s)
- Joshua J Calcutt
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Yuri G Anissimov
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
40
|
Pyo SM, Maibach HI. Skin Metabolism: Relevance of Skin Enzymes for Rational Drug Design. Skin Pharmacol Physiol 2019; 32:283-294. [PMID: 31357203 DOI: 10.1159/000501732] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Transdermal therapeutic systems (TTS) have numerous pharmacological benefits. Drug release, for example, is independent of whether a patient is in a fed or a fasted state, and lower doses can be given as gastrointestinal and hepatic first-pass metabolism is avoided. In addition, inter- and intrapatient variability is minimized as the release of the drug is mainly controlled by the system. This makes TTS interesting as alternative systems to the most common dosage form of oral tablets. The difficulty with the dermal administration route is transporting the drug through the skin, since the skin is an efficient barrier against foreign bodies. Various strategies have been reported in the literature of how drug penetration can be improved. Most of them, however, focus on overcoming the stratum corneum as the first (mechanical) skin barrier. However, penetration is much more complex, and the skin's barrier function does not only depend on the stratum corneum; what has been underestimated is the second (biological) skin barrier formed of enzymes. Compared to the stratum corneum, very little is known about these enzymes, e.g., which enzymes are present in the skin and where exactly they are localized. Hence, very few strategies can be found for how to bypass or even use the skin enzyme barrier for TTS development. This review article provides an overview of the skin enzymes considered to be relevant for the biotransformation of dermally applied drugs. Also, we discuss the use of dermal prodrugs and soft drugs and give the stereoselectivity of skin metabolism careful consideration. Finally, we provide suggestions on how to make use of the current knowledge about skin enzymes for rational TTS design.
Collapse
Affiliation(s)
- Sung Min Pyo
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany,
| | - Howard I Maibach
- Department of Dermatology, University of California School of Medicine, San Francisco, California, USA
| |
Collapse
|
41
|
Popiół J, Gunia-Krzyżak A, Piska K, Żelaszczyk D, Koczurkiewicz P, Słoczyńska K, Wójcik-Pszczoła K, Krupa A, Kryczyk-Poprawa A, Żesławska E, Nitek W, Żmudzki P, Marona H, Pękala E. Discovery of Novel UV-Filters with Favorable Safety Profiles in the 5-Arylideneimidazolidine-2,4-dione Derivatives Group. Molecules 2019; 24:E2321. [PMID: 31238526 PMCID: PMC6630718 DOI: 10.3390/molecules24122321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
Effective protection from the harmful effects of UV radiation may be achieved by using sunscreens containing organic or inorganic UV filters. The number of currently available UV filters is limited and some of the allowed molecules possess limitations such as systemic absorption, endocrine disruption properties, contact and photocontact allergy induction, and low photostability. In the search for new organic UV filters we designed and synthesized a series consisting of 5-benzylidene and 5-(3-phenylprop-2-en-1-ylidene)imidazolidine-2,4-dione (hydantoin) derivatives. The photoprotective activity of the tested compounds was confirmed in methanol solutions and macrogol formulations. The most promising compounds possessed similar UV protection parameter values as selected commercially available UV filters. The compound diethyl 2,2'-((Z)-4-((E)-3-(4-methoxyphenyl)allylidene)-2,5-dioxoimidazolidine-1,3-diyl)diacetate (4g) was characterized as an especially efficient UVA photoprotective agent with a UVA PF of 6.83 ± 0.05 and favorable photostability. Diethyl 2,2'-((Z)-4-(4-methoxybenzylidene)-2,5-dioxo- imidazolidine-1,3-diyl)diacetate (3b) was the most promising UVB-filter, with a SPFin vitro of 3.07 ± 0.04 and very good solubility and photostability. The main photodegradation products were geometric isomers of the parent compounds. These compounds were also shown to be non-cytotoxic at concentrations up to 50 µM when tested on three types of human skin cells and possess no estrogenic activity, according to the results of a MCF-7 breast cancer model.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Ewa Żesławska
- Department of Chemistry, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Krakow, Poland;
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| |
Collapse
|
42
|
Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today 2019; 24:1899-1910. [PMID: 31176740 DOI: 10.1016/j.drudis.2019.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
Understanding skin metabolism is important when considering drug discovery and safety assessment. This review compares xenobiotic skin metabolism in ex vivo skin to reconstructed human skin and reconstructed human epidermis models, concentrating on phase I and phase II enzymes. Reports on phase I enzymes are more abundant than for phase II enzymes with mRNA and protein expression far more reported than enzyme activity. Almost all of the xenobiotic metabolizing enzymes detected in human skin are also present in liver. However, in general the relative levels are lower in skin than in liver and fewer enzymes are reported.
Collapse
Affiliation(s)
- Siamaque Kazem
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emma Charlotte Linssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
In Vitro transdermal delivery of sesamol using oleic acid chemically-modified gelatin nanoparticles as a potential breast cancer medication. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Tang H, Mayersohn M. Porcine Prediction of Pharmacokinetic Parameters in People: A Pig in a Poke? Drug Metab Dispos 2018; 46:1712-1724. [PMID: 30171162 DOI: 10.1124/dmd.118.083311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
The minipig has become an animal of considerable interest in preclinical drug development. It has been used in toxicology research and in examining/establishing regulatory guidelines as a nonrodent animal model. We have reviewed some basic issues that one would want to consider in the development and testing of any animal model for humans. The pig is a reasonable alternative to the dog, but there are some clear limitations and unexplained disparities in the literature, which require further study; primary among these is the need for standardization in choice of breed and sex and routine protocols. The minipig offers numerous advantages over other established animal models, and it has similarities to the human with regard to anatomy, physiology, and biochemistry. The gastrointestinal tract is structurally and functionally similar to humans. This appears to be true for enzymes and transporters in the gut as well, but more study is needed. One major concern is assessment of oral drug absorption, especially with regard to potential food effects due to gastric emptying differences, yet this does not appear to be a consistent observation. Hepatic metabolism seems to reflect enzymatic patterns in humans, with some differences. Kidney function seems similar to humans but requires further study. We have analyzed literature data that suggest the pig would offer a reasonable model for human oral bioavailability and for allometric predictions of clearance. The minipig appears to be the model for dermal absorption in humans, and we discuss this in terms of literature data and our own in-house experience.
Collapse
Affiliation(s)
- Huadong Tang
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| | - Michael Mayersohn
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| |
Collapse
|
45
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
46
|
Fournier JF, Clary L, Chambon S, Dumais L, Harris CS, Millois C, Pierre R, Talano S, Thoreau É, Aubert J, Aurelly M, Bouix-Peter C, Brethon A, Chantalat L, Christin O, Comino C, El-Bazbouz G, Ghilini AL, Isabet T, Lardy C, Luzy AP, Mathieu C, Mebrouk K, Orfila D, Pascau J, Reverse K, Roche D, Rodeschini V, Hennequin LF. Rational Drug Design of Topically Administered Caspase 1 Inhibitors for the Treatment of Inflammatory Acne. J Med Chem 2018; 61:4030-4051. [DOI: 10.1021/acs.jmedchem.8b00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-François Fournier
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Laurence Clary
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Sandrine Chambon
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Laurence Dumais
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Craig Steven Harris
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Corinne Millois
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Romain Pierre
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Sandrine Talano
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Étienne Thoreau
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Jérome Aubert
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Michèle Aurelly
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Claire Bouix-Peter
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Anne Brethon
- Edelris, 115 Avenue Lacassagne, 69003 Lyon, France
| | - Laurent Chantalat
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Olivier Christin
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Catherine Comino
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Ghizlane El-Bazbouz
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Anne-Laurence Ghilini
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Tatiana Isabet
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Claude Lardy
- Edelris, 115 Avenue Lacassagne, 69003 Lyon, France
| | - Anne-Pascale Luzy
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Céline Mathieu
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Kenny Mebrouk
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Danielle Orfila
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Jonathan Pascau
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Kevin Reverse
- Nestlé Skin Health R&D, 2400 Route des Colles, BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Didier Roche
- Edelris, 115 Avenue Lacassagne, 69003 Lyon, France
| | | | | |
Collapse
|
47
|
Greco I, Hummel BD, Vasir J, Watts JL, Koch J, Hansen JE, Nielsen HM, Damborg P, Hansen PR. In Vitro ADME Properties of Two Novel Antimicrobial Peptoid-Based Compounds as Potential Agents against Canine Pyoderma. Molecules 2018; 23:E630. [PMID: 29534469 PMCID: PMC6017477 DOI: 10.3390/molecules23030630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) hold promise as the next generation of antimicrobial agents, but often suffer from rapid degradation in vivo. Modifying AMPs with non-proteinogenic residues such as peptoids (oligomers of N-alkylglycines) provides the potential to improve stability. We have identified two novel peptoid-based compounds, B1 and D2, which are effective against the canine skin pathogen Staphylococcus pseudintermedius, the main cause of antibiotic use in companion animals. We report on their potential to treat infections topically by characterizing their release from formulation and in vitro ADME properties. In vitro ADME assays included skin penetration profiles, stability to proteases and liver microsomes, and plasma protein binding. Both B1 and D2 were resistant to proteases and >98% bound to plasma proteins. While half-lives in liver microsomes for both were >2 h, peptoid D2 showed higher stability to plasma proteases than the peptide-peptoid hybrid B1 (>2 versus 0.5 h). Both compounds were suitable for administration in an oil-in-water cream formulation (50% release in 8 h), and displayed no skin permeation, in the absence or presence of skin permeability modifiers. Our results indicate that these peptoid-based drugs may be suitable as antimicrobials for local treatment of canine superficial pyoderma and that they can overcome the inherent limitations of stability encountered in peptides.
Collapse
Affiliation(s)
- Ines Greco
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark.
- Zoetis Inc., 333 Portage St., Kalamazoo, MI 49007, USA.
| | | | | | | | - Jason Koch
- Zoetis Inc., 333 Portage St., Kalamazoo, MI 49007, USA.
| | - Johannes E Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
48
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
49
|
Acharya PC, Fernandes C, Mallik S, Mishra B, Tekade RK. Physiologic Factors Related to Drug Absorption. DOSAGE FORM DESIGN CONSIDERATIONS 2018:117-147. [DOI: 10.1016/b978-0-12-814423-7.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
50
|
Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int J Pharm 2018; 535:1-17. [DOI: 10.1016/j.ijpharm.2017.10.046] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
|