1
|
Kapoor DU, Vaishnav DJ, Garg R, Saini PK, Prajapati BG, Castro GR, Suttiruengwong S, Limmatvapirat S, Sriamornsak P. Exploring the impact of material selection on the efficacy of hot-melt extrusion. Int J Pharm 2025; 668:124966. [PMID: 39561905 DOI: 10.1016/j.ijpharm.2024.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Hot-melt extrusion (HME) has emerged as a versatile and efficient technique in pharmaceutical formulation development, particularly for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review delves into the fundamental principles of HME, exploring its application in drug delivery systems. A comprehensive analysis of polymers utilized in HME, such as hydroxypropyl methylcellulose, ethyl cellulose, hydroxypropyl cellulose, and polyvinylpyrrolidone, is presented, highlighting their roles in achieving controlled drug release and improved stability. The incorporation of plasticizers, such as triacetin, poly(propylene glycol), glycerol, and sorbitol, is critical in reducing the glass transition temperature (Tg) of polymer blends, thereby enhancing the processability of HME formulations. A comparison of Tg values for various polymer-plasticizer combinations is discussed using different predictive models. For researchers and industry professionals looking to optimize drug formulation strategies, this article offers valuable insights into the mechanisms through which HME enhances drug solubility and bioavailability two critical factors in oral drug delivery. Furthermore, by reviewing recent patents and marketed formulations, the article serves as a comprehensive resource for understanding both the technical advancements and commercial applications of HME. Readers will gain a deep understanding of the role of polymers and additives in HME, alongside future perspectives on how emerging materials and techniques could further revolutionize pharmaceutical development. This review is essential for those aiming to stay at the forefront of pharmaceutical extrusion technologies and their potential to improve therapeutic outcomes. The review concludes that meticulous material selection is vital for advancing pharmaceutical manufacturing processes and ensuring optimal outcomes in HME applications, thereby enhancing the overall efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Devendra J Vaishnav
- CK Pithawala Institute of Pharmaceutical Education and Research, Surat 395007, Gujarat, India
| | - Rahul Garg
- Asian College of Pharmacy, Udaipur 313001, Rajasthan, India
| | - Pushpendra Kumar Saini
- Department of Pharmaceutics, Sri Balaji College of Pharmacy, Jaipur 302026, Rajasthan, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India.
| | - Guillermo R Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Sustainable Materials Laboratory, Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand; Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023; 15:2116. [PMID: 37631330 PMCID: PMC10459848 DOI: 10.3390/pharmaceutics15082116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of active pharmaceutical ingredients (APIs) with low water solubility has experienced a significant increase in recent years. These APIs present challenges in formulation, particularly for oral dosage forms, despite their considerable therapeutic potential. Therefore, the improvement of solubility has become a major concern for pharmaceutical enterprises to increase the bioavailability of APIs. A promising formulation approach that can effectively improve the dissolution profile and the bioavailability of poorly water-soluble drugs is the utilization of amorphous systems. Numerous formulation methods have been developed to enhance poorly water-soluble drugs through amorphization systems, including co-amorphous formulations, amorphous solid dispersions (ASDs), and the use of mesoporous silica as a carrier. Furthermore, the successful enhancement of certain drugs with poor aqueous solubility through amorphization has led to their incorporation into various commercially available preparations, such as ASDs, where the crystalline structure of APIs is transformed into an amorphous state within a hydrophilic matrix. A novel approach, known as ternary solid dispersions (TSDs), has emerged to address the solubility and bioavailability challenges associated with amorphous drugs. Meanwhile, the introduction of a third component in the ASD and co-amorphous systems has demonstrated the potential to improve performance in terms of solubility, physical stability, and processability. This comprehensive review discusses the preparation and characterization of poorly water-soluble drugs in ternary solid dispersions and their mechanisms of drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Eli Lailasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ellen Nathania Yunita
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Rizqa Nurul Aulia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| | - Laila Subra
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| |
Collapse
|
3
|
Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel) 2023; 13:life13051099. [PMID: 37240744 DOI: 10.3390/life13051099] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A drug's aqueous solubility is defined as the ability to dissolve in a particular solvent, and it is currently a major hurdle in bringing new drug molecules to the market. According to some estimates, up to 40% of commercialized products and 70-90% of drug candidates in the development stage are poorly soluble, which results in low bioavailability, diminished therapeutic effects, and dosage escalation. Because of this, solubility must be taken into consideration when developing and fabricating pharmaceutical products. To date, a number of approaches have been investigated to address the problem of poor solubility. This review article attempts to summarize several conventional methods utilized to increase the solubility of poorly soluble drugs. These methods include the principles of physical and chemical approaches such as particle size reduction, solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation, co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers, micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes, and so forth have also been widely investigated for solubility enhancement. All these approaches have brought forward the enhancement of the bioavailability of orally administered drugs by improving the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely resolved, owing to several challenges associated with current approaches, such as reproducibility in large scale production. Considering that there is no universal approach for solving solubility issues, more research is needed to simplify the existing technologies, which could increase the number of commercially available products employing these techniques.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Yash Choudhari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
4
|
An ultrasonographic assisted investigation for the enhancement of duodenal/cecal motility of mosapride through a surfactant-based triple solid dispersion: In-vitro, in-vivo assessment of tablet formulation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
6
|
Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Wang B, Liu F, Xiang J, He Y, Zhang Z, Cheng Z, Liu W, Tan S. A critical review of spray-dried amorphous pharmaceuticals: Synthesis, analysis and application. Int J Pharm 2020; 594:120165. [PMID: 33309835 DOI: 10.1016/j.ijpharm.2020.120165] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
New drugs are frequently found with poor water-solubility in recent pharmaceutical projects, which brings difficulties of bioavailability for the clinical development of new drugs. When these drug compounds in a crystalline state are absorbed by gastrointestinal tract, their dissolution rates and absorption rates are very limited. Nowadays, various methods have been developed to improve the solubility, dissolution and bioavailability of drugs. According to the characteristics of drugs, this work suggests the use of spray drying technology to amorphize APIs (active pharmaceutical ingredients) to improve their bioavailability. This work reviews the properties of the spray-dried amorphous drugs, the progress made in drug synthesis and application, and the existing problems.
Collapse
Affiliation(s)
- Bo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jia Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Zhibin Zhang
- Research and Development Department, Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213162, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
8
|
Chavan RB, Lodagekar A, Yadav B, Shastri NR. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study. Drug Deliv Transl Res 2020; 10:903-918. [PMID: 32378174 DOI: 10.1007/s13346-020-00775-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study was designed to determine the applicability of a newly derived dimensionless number precipitation parameter, "supersaturation holding capacity (SHC)" in development of amorphous solid dispersion (ASD) of a rapidly crystallizing drug, nisoldipine. Also, ASD preparation from lab scale formulation technique to scalable spray drying technique followed by oral bioavailability study was demonstrated. Solution state screening of polymers was performed by determining nucleation induction time (tin) and SHC. With screened polymers, lab scale ASDs of nisoldipine were prepared using rotary evaporation (solvent evaporation) method, and the optimized stable ASDs were scaled up by spray drying. The ASDs were characterized by DSC, PXRD, and FTIR for amorphous nature and evaluated for apparent solubility, dissolution, and solid-state stability improvement. The spray dried ASDs were additionally evaluated for micrometric properties and oral bioavailability study.PVP grades demonstrated superior crystal growth inhibition properties (with 2-4-fold enhancements in SHC). ASDs prepared by both lab scale and scale-up technique using PVP stabilized the amorphous nisoldipine via antiplasticization effect that maintained the stability under accelerated stability conditions (40 °C/75% RH) for 6 months. Additionally, FTIR study confirmed the role of intermolecular interactions in amorphous state stabilization of PVP-based solid dispersions. PVP-based spray dried ASDs improved the apparent solubility 4-fold for PVP K17 and more than 3-fold for remaining spray dried ASDs. The enhanced solubility was translated to improved dissolution of the drug when compared with crystalline and amorphous form complementing the outcome of the solution state study. The spray dried ASD showed 2.3 and > 3-fold the improvement in Cmax and AUC (0-24 h) respectively when compared with crystalline nisoldipine during oral bioavailability study which highlights the significance of SHC parameter of polymers. The spray dried ASD has shown improved micromeritics properties then crystalline nisoldipine in terms of flow behavior.This unique study provides a rational strategy for selection of appropriate polymer in development of ASDs that can tackle both precipitation during dissolution and amorphous state stabilization in solid state and also considers the SHC in scale-up study. Graphical abstract.
Collapse
Affiliation(s)
- Rahul B Chavan
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Anurag Lodagekar
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Balvant Yadav
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Nalini R Shastri
- Solid State Pharmaceutical Research Group (SSPRG), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India.
| |
Collapse
|
9
|
Zhang X, Li Y, Huang Z, Cui Y, Zhao Z, Yue X, Wang G, Liang R, Huang Y, Tan W, Wu C. Development and pharmacokinetics evaluation of quetiapine fumarate sustained-release tablets based on hydrophilic matrix. J Drug Deliv Sci Technol 2019; 54:101322. [DOI: 10.1016/j.jddst.2019.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019; 11:E132. [PMID: 30893899 PMCID: PMC6470797 DOI: 10.3390/pharmaceutics11030132] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023] Open
Abstract
Approximately 40% of new chemical entities (NCEs), including anticancer drugs, have been reported as poorly water-soluble compounds. Anticancer drugs are classified into biologic drugs (monoclonal antibodies) and small molecule drugs (nonbiologic anticancer drugs) based on effectiveness and safety profile. Biologic drugs are administered by intravenous (IV) injection due to their large molecular weight, while small molecule drugs are preferentially administered by gastrointestinal route. Even though IV injection is the fastest route of administration and ensures complete bioavailability, this route of administration causes patient inconvenience to visit a hospital for anticancer treatments. In addition, IV administration can cause several side effects such as severe hypersensitivity, myelosuppression, neutropenia, and neurotoxicity. Oral administration is the preferred route for drug delivery due to several advantages such as low cost, pain avoidance, and safety. The main problem of NCEs is a limited aqueous solubility, resulting in poor absorption and low bioavailability. Therefore, improving oral bioavailability of poorly water-soluble drugs is a great challenge in the development of pharmaceutical dosage forms. Several methods such as solid dispersion, complexation, lipid-based systems, micronization, nanonization, and co-crystals were developed to improve the solubility of hydrophobic drugs. Recently, solid dispersion is one of the most widely used and successful techniques in formulation development. This review mainly discusses classification, methods for preparation of solid dispersions, and use of solid dispersion for improving solubility of poorly soluble anticancer drugs.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ki Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
11
|
Lee GW, Cho HH, Jeon SH, Choi MJ, Kim D, Kim HS, Song JE, Khang G. Improved Rapid Action of Dapoxetine Hydrochloride & L-arginine Solid Dispersion Using Film Formulation. Macromol Res 2019. [DOI: 10.1007/s13233-019-7047-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Naftopidil-fumaric acid interaction in a solid dispersion system: Improving the dissolution rate and oral absorption of naftopidil in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:264-274. [DOI: 10.1016/j.msec.2018.10.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/31/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023]
|
13
|
Haser A, Zhang F. New Strategies for Improving the Development and Performance of Amorphous Solid Dispersions. AAPS PharmSciTech 2018; 19:978-990. [PMID: 29340977 DOI: 10.1208/s12249-018-0953-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
The understanding of amorphous solid dispersions has grown significantly in the past decade. This is evident from the number of approved commercial amorphous solid dispersion products. While amorphous formulation is considered an enabling technology, it has become the norm for formulating poorly soluble compounds. Despite this success, improvements can still be made that enable early development formulation decisions, to develop a rationale for selecting a manufacturing process, to overcome degradation and phase separation during processing, to help achieve physical stability during storage, and to optimize dissolution behavior. The purpose of this literature review is to present recently reported strategies for improving the development and performance of ASDs. The benefits and limitations of each strategy as well as recent relevant case studies will be presented in this review. The strategies are presented from three different aspects: (a) prediction techniques that enable formulation decisions, (b) manufacturing considerations that help produce physically and chemically stable ASDs, and
Collapse
|