1
|
Ramireddy AR, Behara DK. Development and Optimization of Eberconazole Nanostructured Lipid Carrier Topical Formulations Based on the QbD Approach. AAPS PharmSciTech 2025; 26:87. [PMID: 40102300 DOI: 10.1208/s12249-025-03083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/01/2025] [Indexed: 03/20/2025] Open
Abstract
Eberconazole nanostructured lipid carrier (EBR-NLC) 1% w/w optimization was done using the Quality by Design (QbD) approach, employing a 23 Full Factorial Design (FFD) for experimental planning, followed by thorough physico-chemical, in-vitro, and ex-vivo evaluations. The 23 FFD assessed the impact of total lipid amount, surfactant amount, and sonication time on critical quality attributes such as particle size and % entrapment efficiency. In-vitrorelease testing (IVRT) validation was performed using vertical diffusion cells. IVRT, a compendial technique by pharmacopoeias, was for performing semi-solid formulations analysis. The optimized EBR-NLC 1% w/w was characterized for assay, organic impurities, amplitude sweep, viscosity, IVRT, ex-vivo permeation testing, and skin retention. The validated IVRT technique was meeting the acceptance criteria of regulatory guidelines. The results showed that in-vitro release, ex-vivo permeation, and skin retention were significantly higher (P < 0.05) for the optimized EBR-NLC 1% w/w formulation compared to the innovator formulation (EBERNET® Cream 1% w/w). Applying QbD principles systematically facilitated the successful development and optimization of an EBR-NLC 1% w/w. The optimized EBR-NLC 1% w/w formulation proved to be a viable alternative, showing stability for at least six months under conditions of 40°C/75% RH and 30°C/75% RH.
Collapse
Affiliation(s)
- Amarnath Reddy Ramireddy
- Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University Anantapur (JNTUA), Anantapuramu, Andhra Pradesh, India, 515002.
| | - Dilip Kumar Behara
- JNTUA College of Engineering (Autonomous), Jawaharlal Nehru Technological University Anantapur (JNTUA), Anantapuramu, Andhra Pradesh, India, 515002
| |
Collapse
|
2
|
Ibnidris A, Liaskos N, Eldem E, Gunn A, Streffer J, Gold M, Rea M, Teipel S, Gardiol A, Boccardi M. Facilitating the use of the target product profile in academic research: a systematic review. J Transl Med 2024; 22:693. [PMID: 39075460 PMCID: PMC11288132 DOI: 10.1186/s12967-024-05476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nektarios Liaskos
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
| | - Ece Eldem
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Gold
- AriLex Life Sciences LLC, 780 Elysian Way, Deerfield, IL, 60015, USA
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Alejandra Gardiol
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
- Queen Mary University of London, London, UK
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Nijhawan HP, Prabhakar B, Yadav KS. Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles. Ther Deliv 2024; 15:427-447. [PMID: 38722230 PMCID: PMC11285313 DOI: 10.1080/20415990.2024.2342771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 06/19/2024] Open
Abstract
Aim: This study aimed to formulate erlotinib hydrochloride (ERT-HCL)-loaded chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using Quality-by-Design (QbD) to optimize critical quality attributes (CQAs). Materials & methods: Quality target product profile (QTPP) and CQAs were initially established. Based on L8-Taguchi screening and risk assessments, central composite design (CCD) design was used to optimize NPs. Results: ERT-HCL-loaded CS-PLGA NPs had a mean particle diameter, zeta potential and entrapment efficiency of 226.50 ± 1.62 d.nm, 27.66 ± 0.64 mV and 78.93 ± 1.94 %w/w, respectively. The NPs exhibited homogenous spherical morphology and sustained release for 72 h. Conclusion: Using systematic QbD approach, ERT-HCL was encapsulated in CS-PLGA NPs, optimizing CQAs. These findings propel future research for improved NSCLC treatment.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
4
|
Pant A, Sharma G, Saini S, Kaur G, Jain A, Thakur A, Singh B. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024; 14:730-756. [PMID: 37768530 DOI: 10.1007/s13346-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Raloxifene (RLX) is popularly indicated in treatment of osteoporosis and prevention of breast cancer. Owing to its poor aqueous solubility, high pre-systemic metabolism, intestinal glucuronidation, and P-glycoprotein (P-gp) efflux, however, it demonstrates low (< 2%) and inconsistent oral bioavailability. The current work, Quality by Design (QbD)-driven development of phospholipid-embedded nanostructured lipidic carriers (NLCs) of RLX, accordingly, was undertaken to potentiate its lymphatic uptake, augment oral bioavailability, and possibly reduce drug dosage. Factor screening and failure mode effect analysis (FMEA) studies were performed to delineate high-risk factors using solid lipid (glyceryl monostearate), liquid lipid (vitamin E), and surfactant (Tween 80). Response surface optimization studies were performed employing the Box-Behnken design. Mathematical and graphical methods were adopted to embark upon the selection of optimized NLCs with various critical quality attributes (CQAs) of mean particle size as 186 nm, zeta potential of - 23.6 mV, entrapment efficiency of 80.09%, and cumulative drug release at 12 h of 83.87%. The DSC and FTIR studies, conducted on optimized NLCs, indicated successful entrapment of drug into the lipid matrix. In vitro drug release studies demonstrated Fickian diffusion mechanism. In vivo pharmacokinetic studies in rats construed significant improvement in AUC0-72 h (4.48-folds) and in Cmax (5.11-folds), unequivocally indicating markedly superior (p < 0.001) oral bioavailability of RLX-NLCs vis-à-vis marketed tablet formulation. Subsequently, level "A" in vitro/in vivo correlation (IVIVC) was also successfully attempted between the percentages of in vitro drug dissolved and of in vivo drug absorbed at the matching time points. In vitro cytotoxicity and cellular uptake studies also corroborated higher efficacy and successful localization of coumarin-6-loaded NLCs into MG-63 cells through microfluidic channels.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Atul Jain
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Mittal S, Shah S, Yadav HN, Ali J, Gupta MM, Baboota S. Quality by design engineered, enhanced anticancer activity of temozolomide and resveratrol coloaded NLC and brain targeting via lactoferrin conjugation in treatment of glioblastoma. Eur J Pharm Biopharm 2023; 191:175-188. [PMID: 37648174 DOI: 10.1016/j.ejpb.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
The most dangerous type of high-grade astrocytoma is glioblastoma multiforme. The objective of the work was to engineer lactoferrin conjugated temozolomide and resveratrol co-loaded NLC for the treatment of glioblastoma using intranasal delivery for brain targeting. Synergistic activity of temozolomide and resveratrol was determined using combination index method and 1:1 ratio was selected. QbD approach was used to formulate and optimize NLC, with minimum particle size, maximum transmittance and entrapment efficiency using Central Composite Rotable Design (CCRD) method. The optimized LTR-NLC had desired average particle size (209.3 nm), narrow PDI along, high percentage transmittance (>95%) and better entrapment efficiency (95.26% of TEM and 87.59% of RES). From ex-vivo permeation studies it was found that the permeation at 24 h was 77.43 %, and 88.55 % from LTR-NLC and 25.76 % and 31.10% from suspension for resveratrol and temozolomide respectively. In comparison to drug suspension, NLC had nearly 3-fold increase in drug penetration. IC50 value was also significantly better in the groups treated with LTR-NLC. Hence it can be concluded that LTR-NLC may be an effective formulation for the treatment of glioblastoma, according to the findings of this investigation.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, U.P., India.
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Science, The University of the West Indies, St. Augustine, Trinidad & Tobago.
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Singh N, Pandey AK, Pal RR, Parashar P, Singh P, Mishra N, Kumar D, Raj R, Singh S, Saraf SA. Assessment of Anti-Arthritic Activity of Lipid Matrix Encased Berberine in Rheumatic Animal Model. J Microencapsul 2023; 40:263-278. [PMID: 36989347 DOI: 10.1080/02652048.2023.2194414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
AIM The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. METHOD The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimized through box-behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. RESULT The optimized NLCs exhibited a mean diameter of 180.2 ± 0.31nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27mm, decline in paw withdrawal timing, and improvements in walking behavior were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. CONCLUSION The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.
Collapse
Affiliation(s)
- Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Amit Kumar Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Poonam Parashar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
7
|
Liu M, Gao T, Jiang L, Li S, Shi B, Li F. Enhancing the biopharmaceutical attributes of atorvastatin calcium using polymeric and lipid-polymer hybrid nanoparticles: An approach for atherosclerosis treatment. Biomed Pharmacother 2023; 159:114261. [PMID: 36689837 DOI: 10.1016/j.biopha.2023.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis is associated with inflammation in the arteries, a significant cause of heart attacks and strokes. Although statin therapy can reduce the chances of atherosclerotic plaque formation, they need to be administered in high doses due to low systemic bioavailability and encountered with side effects. To overcome these challenges, we developed nanoparticles using biocompatible and biodegradable lipids and polymers for improving systemic drug absorption and therapeutic response. The polymeric nanoparticles were prepared using PLGA and PVA, while hybrid nanoparticles were prepared using PLGA and Phospholipon 90 G. Both nanoparticles were systematically optimized by I-optimal response surface design. The optimum formulation composition exhibited particle size of less than 250 nm, polydispersity index of less than 0.3, entrapment efficiency of more than 70%, and sustained drug release up to 6 h. In vivo pharmacokinetic evaluation in rats indicated multi-fold improvement in the extent of drug absorption (Cmax and AUCtotal) for atorvastatin from the nanoparticles vis-à-vis the pure drug suspension. In vivo pharmacodynamic studies also indicated the excellent ability of nanoparticles to lower the elevated levels of lipids (total cholesterol, triglycerides, and low-density lipoproteins) and increase the level of high-density lipoproteins as compared to that of the pure drug suspension.
Collapse
Affiliation(s)
- Miao Liu
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province 450008, China.
| | - Tingchao Gao
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Lei Jiang
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Shunqi Li
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Bolun Shi
- Cardiosurgery Intensive Care Unit, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Fangxu Li
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| |
Collapse
|
8
|
Agrawal V, Patel R, Patel M. Design, characterization, and evaluation of efinaconazole loaded poly(D, L-lactide-co-glycolide) nanocapsules for targeted treatment of onychomycosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Paclitaxel and Curcumin as Dual-Drug-Loaded Lipid Nanocapsules in the Management of Brain Tumour. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
10
|
Bajwa N, Mahal S, Naryal S, Singh PA, Baldi A. Development of Novel Solid Nanostructured Lipid Carriers for Bioavailability Enhancement Using a Quality by Design Approach. AAPS PharmSciTech 2022; 23:253. [DOI: 10.1208/s12249-022-02386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022] Open
|
11
|
Garg J, Pathania K, Sah SP, Pawar SV. Nanostructured lipid carriers: a promising drug carrier for targeting brain tumours. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
In recent years, the field of nanotechnology and nanomedicine has transformed the pharmaceutical industry with the development of novel drug delivery systems that overcome the shortcomings of traditional drug delivery systems. Nanostructured lipid carriers (NLCs), also known as the second-generation lipid nanocarriers, are one such efficient and targeted drug delivery system that has gained immense attention all across due to their myriad advantages and applications. Scientific advancements have revolutionized our health system, but still, brain diseases like brain tumour have remained formidable owing to poor prognosis and the challenging drug delivery to the brain tissue. In this review, we highlighted the application and potential of NLCs in brain-specific delivery of chemotherapeutic agents.
Main body
NLCs are lipid-based formulations with a solid matrix at room temperature and offer advantages like enhanced stability, low toxicity, increased shelf life, improved drug loading capacity, and biocompatibility over other conventional lipid-based nanocarriers such as nanoemulsions and solid lipid nanoparticles. This review meticulously articulates the structure, classification, components, and various methods of preparation exemplified with various research studies along with their advantages and disadvantages. The concept of drug loading and release has been discussed followed by a brief about stability and strategies to improve stability of NLCs. The review also summarizes various in vitro and in vivo research studies on NLCs encapsulated with cytotoxic drugs and their potential application in brain-specific drug delivery.
Conclusion
NLCs are employed as an important carrier for the delivery of food, cosmetics, and medicines and recently have been used in brain targeting, cancer, and gene therapy. However, in this review, the applications and importance of NLCs in targeting brain tumour have been discussed in detail stating examples of various research studies conducted in recent years. In addition, to shed light on the promising role of NLCs, the current clinical status of NLCs has also been summarized.
Graphical Abstract
Collapse
|
12
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
14
|
Wang B, Sun L, Wen M, Tan Y, Almalki WH, Katouah H, Kazmi I, Afzal O, Altamimi ASA, Al-Abbasi FA, Alrobaian M, Alharbi KS, Alenezi SK, Alghaith AF, Beg S, Rahman M. Nano lipidic carriers for codelivery of sorafenib and ganoderic acid for enhanced synergistic antitumor efficacy against hepatocellular carcinoma. Saudi Pharm J 2021; 29:843-856. [PMID: 34408545 PMCID: PMC8363106 DOI: 10.1016/j.jsps.2021.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
The current study focuses on the development and evaluation of nano lipidic carriers (NLCs) for codelivery of sorafenib (SRF) and ganoderic acid (GA) therapy in order to treat hepatocellular carcinoma (HCC). The dual drug-loaded NLCs were prepared by hot microemulsion technique, where SRF and GA as the drugs, Precirol ATO5, Capmul PG8 as the lipids, while Solutol HS15 and ethanol was used as surfactant and cosolvents. The optimized drug-loaded NLCs were extensively characterized through in vitro and in vivo studies. The optimized formulation had particle size 29.28 nm, entrapment efficiency 93.1%, and loading capacity 14.21%. In vitro drug release studies revealed>64% of the drug was released in the first 6 h. The enzymatic stability analysis revealed stable nature of NLCs in various gastric pH, while accelerated stability analysis at 25◦C/60% RH indicated the insignificant effect of studied condition on particle size, entrapment efficiency, and loading capacity of NLCs. The cytotoxicity performed on HepG2 cells indicated higher cytotoxicity of SRF and GA-loaded NLCs as compared to the free drugs (p < 0.05). Furthermore, the optimized formulation suppressed the development of hepatic nodules in the Wistar rats and significantly reduced the levels of hepatic enzymes and nonhepatic elements against DEN intoxication. The SRF and GA-loaded NLCs also showed a significant effect in suppressing the tumor growth and inflammatory cytokines in the experimental study. Further, histopathology study of rats treated SRF and GA-loaded NLCs and DEN showed absence of necrosis, apoptosis, and disorganized hepatic parenchyma, etc. over other treated groups of rats. Overall, the dual drug-loaded NLCs outperformed over the plain drugs in terms of chemoprotection, implying superior therapeutic action and most significantly eliminating the hepatic toxicity induced by DEN in Wistar rat model.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology Minimally Invasive, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong Province 250031, China
| | - Lin Sun
- Department of Radiology, Binzhou People’s Hospital, Binzhou, Shandong Province 256610, China
| | - Mingyun Wen
- Department of Radiology, Binzhou People’s Hospital, Binzhou, Shandong Province 256610, China
| | - Youchun Tan
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicne, Shandong University, No.11 Wuying Shanzhong Road, Jinan City, Shandong Province 250031, China
- Corresponding author at: Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicne, Shandong University, No.11 Wuying Shanzhong Road, Jinan City, Shandong Province 250031, China
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanadi Katouah
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | | | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Khalid S. Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Sattam K. Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| |
Collapse
|
15
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
16
|
Implications of phospholipid-based nanomixed micelles of olmesartan medoxomil with enhanced lymphatic drug targeting ability and systemic bioavailability. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Wang L, Wang X, Shen L, Alrobaian M, Panda SK, Almasmoum HA, Ghaith MM, Almaimani RA, Ibrahim IAA, Singh T, Baothman AA, Choudhry H, Beg S. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed Pharmacother 2021; 138:111461. [PMID: 33706131 DOI: 10.1016/j.biopha.2021.111461] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022] Open
Abstract
The present work describes the systematic development of paclitaxel and naringenin-loaded solid lipid nanoparticles (SLNs) for the treatment of glioblastoma multiforme (GBM). So far only temozolomide therapy is available for the GBM treatment, which fails by large amount due to poor brain permeability of the drug and recurrent metastasis of the tumor. Thus, we investigated the drug combination containing paclitaxel and naringenin for the treatment of GBM, as these drugs have individually demonstrated significant potential for the management of a wide variety of carcinoma. A systematic product development approach was adopted where risk assessment was performed for evaluating the impact of various formulation and process parameters on the quality attributes of the SLNs. I-optimal response surface design was employed for optimization of the dual drug-loaded SLNs prepared by micro-emulsification method, where Percirol ATO5 and Dynasan 114 were used as the solid lipid and surfactant, while Lutrol F188 was used as the stabilizer. Drug loaded-SLNs were subjected to detailed in vitro and in vivo characterization studies. Cyclic RGD peptide sequence (Arg-Gly-Asp) was added to the formulation to obtain the surface modified SLNs which were also evaluated for the particle size and surface charge. The optimized drug-loaded SLNs exhibited particle size and surface charge of 129 nm and 23 mV, drug entrapment efficiency >80% and drug loading efficiency >7%. In vitro drug release study carried out by micro dialysis bag method indicated more than 70% drug was release observed within 8 h time period. In vivo pharmacokinetic evaluation showed significant improvement (p < 0.05) in drug absorption parameters (Cmax and AUC) from the optimized SLNs over the free drug suspension. Cytotoxicity evaluation on U87MG glioma cells indicated SLNs with higher cytotoxicity as compared to that of the free drug suspension (p < 0.05). Evaluation of uptake by florescence measurement indicated superior uptake of SLNs tagged with dye over the plain dye solution. Overall, the dual drug-loaded SLNs showed better chemoprotective effect over the plain drug solution, thus construed superior anticancer activity of the developed nanoformulation in the management of glioblastoma multiforme.
Collapse
Affiliation(s)
- Liying Wang
- Department of Neurology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, China
| | - Xiangbo Wang
- Department of Oncological Radiotherapy, The People's Hospital of Zhangqiu, No.1920 Huiquan Road, Mingshui, Jinan, Shandong Province 250200, China
| | - Lina Shen
- Department of the Third Neurosurgery, Handan City No.1 Hospital, Handan, Hebei 056002, China
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sunil K Panda
- Research Director, Menovo Pharmaceuticals Research Lab, Ningbo, China
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| | - Abdullah A Baothman
- Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Science (KSAU-HS), King Abdullah International Medical Research Center (KAIMARC), Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
18
|
Rahman M, Almalki WH, Afzal O, Kazmi I, Alfawaz Altamimi AS, Alghamdi S, Al-Abbasi FA, Altowayan WM, Alrobaian M, Alharbi KS, Beg S, Saleem S, Kumar V. Diosmin-loaded solid nanoparticles as nano-antioxidant therapy for management of hepatocellular carcinoma: QbD-based optimization, in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Nandhini S, Ilango K. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res Pharm Sci 2020; 16:103-117. [PMID: 33953779 PMCID: PMC8074810 DOI: 10.4103/1735-5362.305193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 12/18/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Vasicine is a potential bronchodilator and can be used for the effective management of asthma and bronchitis. It has low absorption in the gastrointestinal tract due to its poor solubility thereby low bioavailability. The objective of this research was to develop a novel drug delivery system of vasaka extract to improve its bioavailability by enhancing the solubility and absorption of vasicine. Experimental approach Vasaka-loaded phytosomes were developed and optimized by thin-layer hydration technique using systematic quality by design approach. Box-Behnken design (32 factorial design) using Design-Expert software was employed to optimize phytosome wherein phosphatidylcholine concentration (X1), stirring temperature (X2), and stirring time (X3) were selected as independent variables. Yield (%), particle size (nm), and entrapment efficiency (%) were evaluated as responses. The optimized phytosome was characterized by studying the surface morphology such as FE-SEM and TEM analysis, thermal characteristics by thermal gravimetric analysis and spectral and diffraction studies by FTIR and XRD analysis and studying the dissolution behaviour of phytosome by in vitro release study. Findings/Results The percentage yield, particle size, and entrapment efficiency values of the phytosomes were found in the range of 30.03-97.03%, 231.0-701.4 nm, and 20.02-95.88% w/w, respectively. The optimized phytosome showed the zeta potential of -23.2 mV exhibited good stability and SEM and TEM analysis revealed the spherical shape and smooth particles with the uniform particle size distribution of phytosomes. The comparative in vitro drug release study of vasaka extract and phytosome revealed the sustained release characteristics of phytosome which reached 68.80% at 8 h compared to vasaka extract reached a maximum of 45.08% at 4 h. Conclusion and implication The results highlighted the importance of optimization of formulation development using quality by design strategy to achieve consistent quality of pharmaceutical products.
Collapse
Affiliation(s)
- Sundaresan Nandhini
- Divison of Pharmacognosy and Phytochemistry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu (Dt), Tamil Nadu, India
| | - Kaliappan Ilango
- Divison of Pharmacognosy and Phytochemistry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu (Dt), Tamil Nadu, India.,Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu (Dt), Tamil Nadu, India
| |
Collapse
|
20
|
Shi Z, Alrobaian M, Kazmi I, Afzal O, Altamimi ASA, Al-Abbasi FA, Almalki WH, Baothman AA, Choudhry H, Rahman M, Webster TJ, Beg S. Cationic self-nanoemulsifying formulations of tamoxifen with improved biopharmaceutical attributes and anticancer activity: Systematic development and evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Rehman S, Nabi B, Baboota S, Ali J. Tailoring lipid nanoconstructs for the oral delivery of paliperidone: Formulation, optimization and in vitro evaluation. Chem Phys Lipids 2020; 234:105005. [PMID: 33144070 DOI: 10.1016/j.chemphyslip.2020.105005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The present research work involves Quality by Design (QbD)-based fabrication of lipid nanoconstructs (LNC) of paliperidone (PPD) bearing superior biopharmaceutical attributes. METHODS LNC of paliperidone was prepared by melt emulsification-probe sonication and high-pressure homogenization method followed by optimization using QbD approach. Preparing LNC by both these methods will give the benefit of identifying the best optimized formulation which will be further evaluated for in vitro studies. RESULTS The best optimized formulation was obtained using melt emulsification-probe sonication technique with small particle size (86.35 nm), high entrapment efficiency (90.07 %), and high loading capacity (8.49 %). The drug release from LNC was found to be 5, 8, and 9-folds greater than drug suspension in pH 1.2, 6.8, and 7.4 respectively (p < 0.001). Stability studies of LNC in simulated gastric fluid pH 1.2 and fasted state simulated intestinal fluid depicted no alteration in particle size and polydispersity index of LNC but were found to increase in fed state simulated intestinal fluid. The drug permeability through rat intestine for LNC was found to be approximately 6-folds (p < 0.05) greater as compared to the drug suspension which was further confirmed by confocal microscopy. The in vitro lipolysis study presented significantly highest solubilization (p < 0.001) in the aqueous phase thereby anticipating higher in vivo absorption. CONCLUSION Thus, it was concluded that LNC bears the knack of improving the solubilization and permeation potential of an otherwise hydrophobic drug, paliperidone."
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
22
|
Alshehri S, Imam SS, Hussain A, Alyousef AM, Altamimi M, Alsulays B, Shakeel F. Flufenamic Acid-Loaded Self-Nanoemulsifying Drug Delivery System for Oral Delivery: From Formulation Statistical Optimization to Preclinical Anti-Inflammatory Assessment. J Oleo Sci 2020; 69:1257-1271. [PMID: 32908093 DOI: 10.5650/jos.ess20070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This research work aimed to prepare and optimize "self-nanoemulsifying drug delivery system (SNEDDS)" by applying full factorial design (FFD) to improve solubilization and subsequently antiinflammatory efficacy of flufenamic acid (FLF). Suitable excipients were screened out based on the maximum solubility of FLF. FFD was applied using lipid (X1) and surfactant (X2) as independent variables against droplet size (Y1, nm), zeta potential (Y2, mV) and polydispersity index (PDI, Y3). Desirability function identified the main factors influencing the responses and possible interactions. Moreover, the optimized formulation (OFS1) was characterized and compared with pure FLF suspension. The prepared formulations (FS1-FS9) showed the size, PDI and zeta potential of 14.2-110.7 nm, 0.29-0.62 and -15.1 to -28.6 mV, respectively. The dispersion and emulsification of all formulations meted out within 2 min suggesting immediate release and successful solubilization. The optimized formulation OFS1 demonstrated ~ 85% drug release within 1 h which was significantly higher (p ˂ 0.05) than FLF suspension. The hemolysis study negated the probable interaction with blood cells. Eventually, improved anti-inflammatory efficacy was envisaged which might be attributed to increased drug solubility and absorption. The present nanocarrier could be a promising approach and alternative to conventional dosage form.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University
- College of Pharmacy, Almaarefa University
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| | | | - Mohammad Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| | - Bader Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University
| |
Collapse
|
23
|
Khurana B, Arora D, Narang RK. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: In vitro, ex vivo and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Saini S, Sharma T, Patel A, Kaur R, Tripathi SK, Katare OP, Singh B. QbD-steered development and validation of an RP-HPLC method for quantification of ferulic acid: Rational application of chemometric tools. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122300. [PMID: 32771967 DOI: 10.1016/j.jchromb.2020.122300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/04/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
The present work describes the systematic development of a simple, rapid, sensitive, robust, effective and cost-effective reversed-phase high performance liquid chromatographic method for quantitative analysis of ferulic acid using analytical quality by design paradigms. Initially, apt wavelength for the analysis of ferulic acid was selected employing principal component analysis as the chemometric tool. An Ishikawa fishbone diagram was constructed to delineate various plausible variables influencing analytical target profile, viz. peak area, theoretical plate count, retention time and peak tailing as the critical analytical attributes. Risk assessment using risk estimation matrix and factor screening studies employing Taguchi design aided in demarcating two critical method parameters, viz. mobile phase ratio and flow rate affecting critical analytical attributes. Subsequently, the optimum operational conditions of the liquid chromatographic method were delineated using face-centred composite design. Multicollinearity among the chosen factors for optimization was analyzed by the magnitude of variance inflation factor optimized analytical design space, providing optimum method performance, was earmarked using numerical and graphical optimization and corroborated using Monte Carlo simulations. Validation, as per the ICH Q2(R1) guidelines, ratified the efficiency and sensitivity of the developed novel analytical method of ferulic acid in the mobile phase and the human plasma matrix. The optimal method used a mobile phase, comprising of acetonitrile: water (47:53% v/v, pH adjusted to 3.0 with glacial acetic acid), at a flow rate of 0.8 mL·min-1, at a λmax of 322 nm using a C18 column. Use of principal component analysis unearthed the suitable wavelength for analysis, while analytical quality by design approach, along with Monte Carlo simulations, facilitated the identification of influential variables in obtaining the "best plausible" validated chromatographic solution for efficient quantification of ferulic acid.
Collapse
Affiliation(s)
- Sumant Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Asha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Ranjot Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
25
|
Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res 2020; 10:1476-1494. [PMID: 32519202 DOI: 10.1007/s13346-020-00803-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ibrutinib (IBR) is the choice of drug for the treatment of chronic lymphocytic leukaemia (CLL) and mantle cell lymphoma (MCL). IBR has low oral bioavailability of 2.9% owing to its high first pass metabolism. Present study was aimed to develop the nanostructured lipid carriers (NLC) using glyceryl monostearate (GMS) as solid lipid and Capryol™ PGMC as liquid lipid. Plackett-Burman design (PBD) was applied to screen the significant factors; furthermore, these significant factors were subjected to optimisation using Central Composite design (CCD). The size, poly dispersity index (PDI) and entrapment efficiency (E.E.) of the developed NLC were 106.4 ± 8.66 nm, 0.272 ± 0.005 and 70.54 ± 5.52% respectively. Morphological evaluation using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM) revealed spherical particles. Furthermore, differential scanning calorimetry (DSC) indicates the formation of molecular dispersion of drug in the melted lipid matrix while Powder X-Ray Diffraction (PXRD) studies reveal the absence of crystalline drug peaks in the formulation diffractogram. In-vivo pharmacokinetics of NLC displayed an increase in Cmax (2.89-fold), AUC0-t (5.32-fold) and mean residence time (MRT) (1.82-fold) compared with free drug. Furthermore, lymphatic uptake was evaluated by chylomicron flow blocking approach using cycloheximide (CXI). The pharmacokinetic parameters Cmax, AUC0-t and MRT of NLC without CXI were 2.75, 3.57 and 1.30 folds higher compared with NLC with CXI. The difference in PK parameters without CXI indicates significant lymphatic uptake of the formulation. Hence, NLC can be a promising approach to enhance the oral bioavailability of drugs with high first-pass metabolism. Graphical abstract.
Collapse
Affiliation(s)
- Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Sravanthi Reddy Pailla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Shubham Prajapati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Sunitha Sampathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
26
|
Implications of Solid Lipid Nanoparticles of Ganoderic Acid for the Treatment and Management of Hepatocellular Carcinoma. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Arun JK, Vodeti R, Shrivastava B, Bakshi V. Integrated Quality by Design Approach for Developing Nanolipidic Drug Delivery Systems of Olmesartan Medoxomil with Enhanced Antihypertensive Action. Adv Pharm Bull 2020; 10:379-388. [PMID: 32665896 PMCID: PMC7335990 DOI: 10.34172/apb.2020.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose: The present work endeavors to report a systematic approach of developing the lipidic self-nanoemulsifying formulation of olmesartan medoxomil (OMT) on the principles of Quality by Design (QbD). Methods: For preparing the self-nanoemulsifying formulation, a mixture of oil, surfactant and cosurfactant were used as vehicles. The excipients were selected after screening by solubility as well as pseudoternary phase titration studies. Mixture design was adopted for systematic optimization of the composition of nanolipidic formulations, which were evaluated for smaller globule size, stable zeta potential and lower values of polydispersity index. The optimized liquid self-nanoemulsifying formulation was identified using numerical and graphical optimization techniques, followed by validation of the experimental model. Solidification of self-nanoemulsifying formulation was carried out using porous carriers, and then optimized on the basis of oil adsorption potential, powder flow property and drug release performance. Pharmacokinetic study was performed in male Wistar rats for evaluating the drug absorption parameters. All the experimental data obtained were subjected to statistical analysis using oneway ANOVA followed by post hoc analysis using Student’s t test. Results: The optimized liquid self-nanoemulsifying formulation showed globule size <100 nm, emulsification efficiency <5 minutes andin vitro drug release >85% within in 30 minutes. Further, the solid SNEDDS formulation was effectively formulated using Neusilin US2 with maximum oil adsorption capacity and good micromeritic properties. Pharmacokinetic evaluation indicated 4 to 5-folds increase (P <0.05) in the values of Cmax, AUC, and reduction in Tmax from the nanoformulations vis-à-vis the marketed formulation. Conclusion: Overall, the developed nanolipidic formulation of olmesartan indicated superior efficacy in augmenting the drug dissolution and absorption performance.
Collapse
Affiliation(s)
- Jagdish Kumar Arun
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan-302 017, India
| | - Rajeshwar Vodeti
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan-302 017, India
- School of Pharmacy, ANURAG Group of Institutions, Venkatapur (V), Ghatkesar (M) Medchal (Dist.), Hyderabad, Telangana-500 038, India
| | - Birendra Shrivastava
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan-302 017, India
| | - Vasudha Bakshi
- School of Pharmacy, ANURAG Group of Institutions, Venkatapur (V), Ghatkesar (M) Medchal (Dist.), Hyderabad, Telangana-500 038, India
| |
Collapse
|
28
|
Beg S, Dhiman S, Sharma T, Jain A, Sharma RK, Jain A, Singh B. Stimuli Responsive In Situ Gelling Systems Loaded with PLGA Nanoparticles of Moxifloxacin Hydrochloride for Effective Treatment of Periodontitis. AAPS PharmSciTech 2020; 21:76. [PMID: 31970603 DOI: 10.1208/s12249-019-1613-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
The objectives of the present research work were systematic development of novel in situ gel formulation containing nanoparticles for localised delivery of moxifloxacin against bacterial periodontitis. PLGA nanoparticles were prepared and optimised in a systematic manner. Factor screening was performed with the help of half-factorial design to identify the influential factors, while response surface optimisation of the nanoparticles was conducted using central composite design. The optimum nanoparticle formulation was chosen on the basis of lower particle size, higher drug entrapment and controlled drug release characteristics up to 1 week time period, while the optimum in situ gel was selected on the basis of faster gelling and higher viscosity and gel strength properties for improved retention in the periodontium. In vivo histopathological studies and in vivo gamma scintigraphy studies revealed the extended release, superior efficacy and enhanced retention of nanoparticle-loaded in situ gelling system. Results obtained from in vivo histopathological studies after 1 week treatment with in situ gel formulation containing nanoparticles of moxifloxacin were found to be better than with 3 weeks treatment of marketed gel formulation. Overall, the studies ratify successful development of an effective site-specific drug delivery system with enhanced biopharmaceutical attributes for the periodontitis treatment.
Collapse
|
29
|
Central composite design-based optimization and fabrication of benzylisothiocynate-loaded PLGA nanoparticles for enhanced antimicrobial attributes. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Garg B, Beg S, Kumar R, Katare O, Singh B. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Jain A, Beg S, Saini S, Sharma T, Katare OP, Singh B. Application of chemometric approach for QbD-Enabled development and validation of an RP-HPLC method for estimation of methotrexate. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1626742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Atul Jain
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh, India
| | - Sarwar Beg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sumant Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - O. P. Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Bhupinder Singh
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Arora D, Nanda S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int J Pharm 2019; 567:118448. [PMID: 31226472 DOI: 10.1016/j.ijpharm.2019.118448] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
Abstract
Resveratrol is a potent anti-oxidant agent and can be used for the effective management of different skin conditions like extrinsic skin ageing, psoriasis, etc. The objective of this research was to develop a dermal delivery system of resveratrol for its improved dermatological benefits for achieving its enhanced skin deposition profile with limited systemic exposure. Resveratrol loaded ethosomal hydrogel was developed and optimized using systematic Quality by Design approach. Firstly, the quality target product profile (QTPP) of ethosomal formulation was defined and critical quality attributes (CQAs) and critical material attributes (CMAs) were screened through risk assessment studies based on fish bone diagram. 32 full factorial design using Design Expert software was employed to optimize the selected CMAs. Concentration of phospholipid (X1) and concentration of ethanol (X2) were selected as independent CMAs. Vesicle size (Y1), entrapment efficiency (Y2), permeation flux (Y3) and drug deposition in dermal layer (Y4) were evaluated as dependant CQAs. Optimized formulation was then evaluated for physicochemical and skin permeation properties. Ethosomal hydrogel was able to significantly enhance the skin permeation parameters and skin deposition of resveratrol in comparison to the conventional cream. The results were highly ratified by CLSM studies in which ethosomal hydrogel was found to be vastly scattered in the deeper skin layers. Thus, there is evidence that systemically developed ethosomal gel can deliver enhanced amounts of bioactives into the skin and it is expected that a number of products for dermal/transdermal applications will be developed in the future based on it.
Collapse
Affiliation(s)
- Daisy Arora
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India; Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga, Punjab, India.
| | - Sanju Nanda
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
33
|
Ghate VM, Kodoth AK, Raja S, Vishalakshi B, Lewis SA. Development of MART for the Rapid Production of Nanostructured Lipid Carriers Loaded with All-Trans Retinoic Acid for Dermal Delivery. AAPS PharmSciTech 2019; 20:162. [PMID: 30989451 DOI: 10.1208/s12249-019-1307-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been regarded as a wonder drug for many dermatological complications; however, its application is limited due to the extreme irritation, and toxicity seen once it has sufficiently concentrated into the bloodstream from the skin. Thus, the present study was aimed to increase the entrapment of ATRA and minimize its transdermal permeation. ATRA incorporated within nanostructured lipid carriers (NLCs) were produced by a green and facile thin lipid-film based microwave-assisted rapid technique (MART). The optimization was carried out using the response surface methodology (RSM)-driven artificial neural network (ANN) coupled with genetic algorithm (GA). The liquid lipid and surfactants were seen to play a very crucial role culminating in the particle size (< 70 nm), zeta potential (< - 32 mV), and entrapment of ATRA (> 98%). ANN-GA-optimized NLCs required a minimal quantity of the surfactants, formed within 2 min and were stable for 1 year at different storage conditions. The optimized NLC-loaded creams showed a skin retention (ex vivo) to an extent of 87.42% with no detectable drug in the receptor fluid (24 h) in comparison to the marketed cream which released 47.32% (12 h) of ATRA. The results were in good correlation with the in vivo skin deposition studies. The NLCs were biocompatible and non-skin irritant based on the primary irritation index. In conclusion, the NLCs were seen to have a very high potential in overcoming the drawbacks of ATRA for dermal delivery and could be produced conveniently by the MART.
Collapse
|
34
|
Harshita, Barkat MA, Rizwanullah M, Beg S, Pottoo FH, Siddiqui S, Ahmad FJ. Paclitaxel-loaded Nanolipidic Carriers with Improved Oral Bioavailability and Anticancer Activity against Human Liver Carcinoma. AAPS PharmSciTech 2019; 20:87. [PMID: 30675689 DOI: 10.1208/s12249-019-1304-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/04/2019] [Indexed: 01/16/2023] Open
Abstract
The poorly water-soluble chemotherapeutic agents, paclitaxel (PTX), exhibit serious clinical side effects upon oral administration due to poor aqueous solubility and a high degree of toxic effects due to non-specific distribution to healthy tissues. In our efforts, we formulated biocompatible dietary lipid-based nanostructured lipidic carriers (NLCs) to enhance the oral bioavailability of PTX for treatment of the liver cancer. A three-factor, three-level Box-Behnken design was employed for formulation and optimization of PTX-loaded NLC formulations. PTX-loaded NLC formulation prepared by melt-emulsification in which glyceryl monostearate (GMS) was used as solid lipid and soybean oil as liquid lipid, while poloxamer 188 and Tween 80 (1:1) incorporated as a surfactant. In vitro drug release investigation was executed by dialysis bag approach, which indicated initial burst effect with > 60% drug release within a 4-h time period. Moreover, PTX-NLCs indicated high entrapment (86.48%) and drug loading efficiency (16.54%). In vitro cytotoxicity study of PTX-NLCs performed on HepG2 cell line by MTT assay indicated that PTX-NLCs exhibited comparatively higher cytotoxicity than commercial formulation (Intaxel®). IC50 values of PTX-NLCs and Intaxel® after 24-h exposure were found to be 4.19 μM and 11.2 μM. In vivo pharmacokinetic study in Wistar rats also indicated nearly 6.8-fold improvement in AUC and Cmax of the drug from the PTX-NLCs over the PTX suspension. In a nutshell, the observed results construed significant enhancement in the biopharmaceutical attributes of PTX-NLCs as a potential therapy for the management of human liver carcinoma.
Collapse
|
35
|
Javed MN, Alam MS, Waziri A, Pottoo FH, Yadav AK, Hasnain MS, Almalki FA. QbD Applications for the Development of Nanopharmaceutical Products. PHARMACEUTICAL QUALITY BY DESIGN 2019:229-253. [DOI: 10.1016/b978-0-12-815799-2.00013-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
36
|
Huang Z, Huang Y, Ma C, Ma X, Zhang X, Lin L, Zhao Z, Pan X, Wu C. Endotracheal Aerosolization Device for Laboratory Investigation of Pulmonary Delivery of Nanoparticle Suspensions: In Vitro and in Vivo Validation. Mol Pharm 2018; 15:5521-5533. [PMID: 30252486 DOI: 10.1021/acs.molpharmaceut.8b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to perform the in vitro and in vivo validation of an endotracheal aerosolization (ETA) device (HRH MAG-4, HM). Solid lipid nanoparticle suspension (SLNS) formulations with particle sizes of approximately 120, 240, 360, and 480 nm were selected as model nanoparticle suspensions for the validation. The emission rate (ER) of the in vitro aerosolization and the influence of aerosolization on the physicochemical properties were investigated. A high ER of up to 90% was obtained, and no significant alterations in physicochemical properties were observed after the aerosolization. The pulmonary deposition of model drug budesonide in Sprague-Dawley rats was determined to be approximately 80%, which was satisfactory for pulmonary delivery. Additionally, a fluorescent probe with aggregation-caused quenching property was encapsulated in SLNS formulations for in vivo bioimaging, after excluding the effect of aerosolization on its fluorescence spectrum. It was verified that SLNS formulations were deposited in the lung region. The results demonstrated the feasibility and reliability of the HM device for ETA in laboratory investigation.
Collapse
Affiliation(s)
- Zhengwei Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Cheng Ma
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xiangyu Ma
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
- Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P.R. China
| | - Ling Lin
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| |
Collapse
|
37
|
Beg S, Choudhry H, Zamzami MA, Alharbi KS, Rahman M, Singh B. Nanocolloidal lipidic carriers of olmesartan medoxomil surface-tailored with Concavalin-A for lectin receptor targeting. Nanomedicine (Lond) 2018; 13:3107-3128. [PMID: 30474494 DOI: 10.2217/nnm-2018-0188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The present work involves the development of Concavalin A-conjugated nanostructured lipidic carriers (NLCs) of olmesartan medoxomil for lectin receptor targeting. Materials & methods: Excipient selection was performed by drug solubility in solid and liquid lipids. Factor screening was carried out by evaluating the impact of formulation and process variables on the critical quality attributes. Surface modification of NLCs was carried out using Concavalin A and extensively characterized. Results & conclusion: NLCs exhibited the particle size of 273.6 nm, ζ-potential of -30.2 nm, encapsulation efficiency of 73.3% and sustained drug release profile. Nearly 4.2-fold improvement in cell uptake, four- to eightfold increase in Cmax and AUC, and 37% reduction in blood pressure was observed from NLCs over the pure drug.
Collapse
Affiliation(s)
- Sarwar Beg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
- Product Development Research, Jubilant Generics Limited, Noida 201301, UP, India
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, UP, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
- UGC – Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites Biomedical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|