1
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Karmakar S, Lal G, Kumar A, Bhattacharyya S, Poluri KM, Mishra A. Ketorolac disturbs proteasome functions and induces mitochondrial abnormality-associated apoptosis. IUBMB Life 2025; 77:e2937. [PMID: 39723629 DOI: 10.1002/iub.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended to treat moderate-to-severe pain. Previous studies suggest that NSAIDs can suppress cellular proliferation and elevate apoptosis in different cancer cells. Ketorolac is an NSAID and can reduce the cancer cells' viability. However, molecular mechanisms by which Ketorolac can induce apoptosis and be helpful as an anti-tumor agent against carcinogenesis are unclear. Here, we observed treatment with Ketorolac disturbs proteasome functions, which induces aggregation of aberrant ubiquitinated proteins. Ketorolac exposure also induced the aggregation of expanded polyglutamine proteins, results cellular proteostasis disturbance. We found that the treatment of Ketorolac aggravates the accumulation of various cell cycle-linked proteins, which results in pro-apoptotic induction in cells. Ketorolac-mediated proteasome disturbance leads to mitochondrial abnormalities. Finally, we have observed that Ketorolac treatment depolarized mitochondrial membrane potential, released cytochrome c into cytoplasm, and induced apoptosis in cells, which could be due to proteasome functional depletion. Perhaps more in-depth research is required to understand the details of NSAID-based anti-proliferative molecular mechanisms that can elevate apoptosis in cancer cells and generate anti-tumor potential with the combination of putative cancer drugs.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Sampath R, Cummins NW, Natesampillai S, Bren GD, Chung TD, Baker J, Henry K, Pagliuzza A, Badley AD. Increasing procaspase 8 expression using repurposed drugs to induce HIV infected cell death in ex vivo patient cells. PLoS One 2017. [PMID: 28628632 PMCID: PMC5476266 DOI: 10.1371/journal.pone.0179327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV persists because a reservoir of latently infected CD4 T cells do not express viral proteins and are indistinguishable from uninfected cells. One approach to HIV cure suggests that reactivating HIV will activate cytotoxic pathways; yet when tested in vivo, reactivating cells do not die sufficiently to reduce cell-associated HIV DNA levels. We recently showed that following reactivation from latency, HIV infected cells generate the HIV specific cytotoxic protein Casp8p41 which is produced by HIV protease cleaving procaspase 8. However, cell death is prevented, possibly due to low procaspase 8 expression. Here, we tested whether increasing procaspase 8 levels in CD4 T cells will produce more Casp8p41 following HIV reactivation, causing more reactivated cells to die. Screening 1277 FDA approved drugs identified 168 that increased procaspase 8 expression by at least 1.7-fold. Of these 30 were tested for anti-HIV effects in an acute HIVIIIb infection model, and 9 drugs at physiologic relevant levels significantly reduced cell-associated HIV DNA. Primary CD4 T cells from ART suppressed HIV patients were treated with one of these 9 drugs and reactivated with αCD3/αCD28. Four drugs significantly increased Casp8p41 levels following HIV reactivation, and decreased total cell associated HIV DNA levels (flurbiprofen: p = 0.014; doxycycline: p = 0.044; indomethacin: p = 0.025; bezafibrate: P = 0.018) without effecting the viability of uninfected cells. Thus procaspase 8 levels can be increased pharmacologically and, in the context of HIV reactivation, increase Casp8p41 causing death of reactivating cells and decreased HIV DNA levels. Future studies will be required to define the clinical utility of this or similar approaches.
Collapse
Affiliation(s)
- Rahul Sampath
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Nathan W. Cummins
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Sekar Natesampillai
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Gary D. Bren
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Thomas D. Chung
- Office of Translation to Practice, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Jason Baker
- Division of Infectious Diseases, University of Minnesota, Minneapolis, MN, United States of America
| | - Keith Henry
- HIV Program, Hennepin County Medical Center, Minnneapolis, MN, United States of America
| | - Amélie Pagliuzza
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Andrew D. Badley
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
- Office of Translation to Practice, Mayo Clinic Rochester, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ghosh R, Alajbegovic A, Gomes AV. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:536962. [PMID: 26457127 PMCID: PMC4592725 DOI: 10.1155/2015/536962] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Azra Alajbegovic
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Qin S, Xu C, Li S, Yang C, Sun X, Wang X, Tang SC, Ren H. Indomethacin induces apoptosis in the EC109 esophageal cancer cell line by releasing second mitochondria-derived activator of caspase and activating caspase-3. Mol Med Rep 2015; 11:4694-700. [PMID: 25673090 DOI: 10.3892/mmr.2015.3331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
The use of non‑steroidal anti‑inflammatory drugs (NSAIDs) has been associated with a reduced risk of various types of cancer, including esophageal cancer. However, the mechanisms underlying the antineoplastic effects of NSAIDs in esophageal cancer remain to be elucidated. In the present study, a significant inhibition in cell viability was observed in the EC109 cells following treatment with different concentrations of indomethacin, and these effects occurred in a dose‑ and time‑dependent manner. This inhibition was due to the release of second mitochondria‑derived activator of caspase (Smac) into the cytosol and the activation of caspase‑3. Subsequently, flow cytometry was performed to investigate indomethacin‑induced apoptosis following the overexpression or knockdown of Smac, and western blot analysis was performed to determine the expression of Smac and the activation of caspase‑3. Overexpression of Smac was promoted apoptosis, while downregulation of Smac significantly inhibited apoptosis. Western blot analysis demonstrated that indomethacin induced apoptosis through releasing Smac into the cytosol and activating caspase‑3. These results indicated that Smac is essential for the apoptosis induced by indomethacin in esophageal cancer cells.
Collapse
Affiliation(s)
- Sida Qin
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuo Li
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Yang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xifang Wang
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Department of Hematology and Oncology, Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | - Hong Ren
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Cheng P, Jiang FH, Zhao LM, Dai Q, Yang WY, Zhu LM, Wang BJ, Xu C, Bao YJ, Zhang YJ. Human macrophage metalloelastase correlates with angiogenesis and prognosis of gastric carcinoma. Dig Dis Sci 2010; 55:3138-46. [PMID: 20127415 DOI: 10.1007/s10620-010-1127-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 01/11/2010] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS The function of human macrophage metalloelastase (HME) also known as matrix metalloproteinase 12, in tumorigenesis is contradictory. The current study was designed to investigate the association of HME expression with angiogenesis and prognosis of gastric carcinomas. METHODS In situ hybridization and immunohistochemistry were used to detect HME in human gastric carcinomas, chronic gastritis with atypical hyperplasia, and normal gastric epithelium mucosa. The results were further confirmed by RT-PCR or semi-quantitative reverse transcription polymerase chain reaction and Western blotting in gastric carcinomas and paired noncancerous tissues. VEGF and microvessel density count were also detected by immunohistochemical staining in all carcinoma tissues. The prognostic significance of HME was assessed with multiple linear regression analysis and Cox proportional hazards model. RESULTS High expression of HME protein/mRNA was observed in gastric carcinomas and atypical hyperplasia tissues compared with normal gastric epithelium mucosa, or paired noncancerous tissues. HME protein/mRNA were negatively correlated with MVD (p < 0.01), VEGF (p < 0.01), tumor differentiation grade (p < 0.05), vascular invasion (p < 0.01), and recurrence (p < 0.05-0.01). HME protein was an independent influential factor of MVD (p < 0.01). HME protein/mRNA was an independent prognostic factor of gastric carcinoma (p < 0.05-0.01). Patients with overexpression of HME protein/mRNA demonstrated a significantly better survival rate compared with those who did not (p < 0.05-0.01). CONCLUSIONS Overexpression of HME is strongly correlated with the reduced angiogenesis and vascular invasion of gastric carcinoma, and may serve as a useful predictive indicator in patients with this disease.
Collapse
Affiliation(s)
- Peng Cheng
- Digestive Department, No. 3 People's Hospital/Shanghai Jiaotong University School of Medicine, 280 Mohe Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang YJ, Bao YJ, Dai Q, Yang WY, Cheng P, Zhu LM, Wang BJ, Jiang FH. mTOR signaling is involved in indomethacin and nimesulide suppression of colorectal cancer cell growth via a COX-2 independent pathway. Ann Surg Oncol 2010; 18:580-8. [PMID: 20803081 DOI: 10.1245/s10434-010-1268-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibition of mammalian target of rapamycin (mTOR) represents an attractive target for anticancer therapy, but its role in suppression of colorectal cancer (CRC) cell growth by cyclooxygenase-2 (COX-2) inhibitors is unclear. Here, we analyzed the effect of indomethacin (Indo, a nonselective COX-2 inhibitor) and nimesulide (Nim, a selective COX-2 inhibitor) on mTOR signaling in CRC cells in vitro and in vivo to determine the dependence of this effect on COX-2. METHODS Human CRC cell lines with varying COX-2 expression levels were treated with Indo and Nim. Western blot test was performed to detect mTOR-related components (mTOR, p70s6 K, and 4EBP1), and cell viability, cell cycle, and apoptosis were assessed. HCT116 and SW1116 cells were injected into athymic nude mice to establish a CRC xenograft model. After treatment with Nim, tumor volume, mTOR signaling, and apoptosis were evaluated in this model. HT29 and SW1116 cells were also treated with Nim after transfection with COX-2-specific small interfering RNA (siRNA) to assess dependence of COX-2 on mTOR signaling under drug treatment. RESULTS Both Indo and Nim reduced mTOR signaling activity in CRC cells that differ in their COX-2 expression in vitro and in vivo. Additionally, Indo and Nim could reduce the mTOR signaling activity after COX-2 silencing in CRC cells. CONCLUSIONS mTOR signaling is involved in Indo- and Nim-mediated suppression of CRC growth via a COX-2 independent pathway. This study unveils a novel mechanism through which COX-2 inhibitors exerts their anticancer effects and further emphasizes targeting mTOR signaling in anticancer therapy.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Department of Digestion, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang YJ, Dai Q, Sun DF, Xiong H, Tian XQ, Gao FH, Xu MH, Chen GQ, Han ZG, Fang JY. mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 2009; 16:2617-28. [PMID: 19517193 DOI: 10.1245/s10434-009-0555-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/07/2009] [Accepted: 05/05/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND mTOR signaling has been suggested to be an important factor involved in tumorigenesis, but its role in human colorectal cancer (CRC) has not been completely elucidated. Herein, the purpose of this study was to analyze the distribution pattern of mTOR signaling components in CRC and adenoma and to determine whether targeted inhibition of mTOR could be a potential therapeutic strategy for CRC. METHODS Immunohistochemical analysis was performed on human CRC and adenoma for mTOR signaling components, including mTOR, p70s6 K, and 4EBP1. HCT116 and SW480 human CRC cell lines were treated with siRNA directed against mTOR, and cell viability, cell cycle, and apoptosis were assessed. HCT116 and SW480 cells were injected into athymic nude mice to establish a CRC xenograft model. Mice were randomly transfected with either nontargeting control or mTOR siRNA, and tumor volume, mTOR signaling activity, and apoptosis were evaluated. RESULTS mTOR signaling components, including mTOR, p70s6 K, and 4EBP1, were highly activated in glandular elements of CRC and colorectal adenomas with high-grade intraepithelial neoplasia (HIN), with a correlation between staining intensity and depth of infiltration in CRC. Inhibition of mTOR expression using a specific mTOR siRNA resulted in considerably decreased in vitro and in vivo cell growth. CONCLUSIONS mTOR signaling is associated with the clinical pathological parameters of human CRC. siRNA-mediated gene silencing of mTOR may be a novel therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Shanghai Institute of Digestive Disease, Shanghai Jiaotong University School of Medicine Renji Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang YJ, Zhao SL, Tian XQ, Sun DF, Xiong H, Dai Q, Li XQ, Fang JY. Combined inhibition of Dnmt and mTOR signaling inhibits formation and growth of colorectal cancer. Int J Colorectal Dis 2009; 24:629-39. [PMID: 19229543 DOI: 10.1007/s00384-009-0664-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Although the anticancer effects of rapamycin (RPM) and 5-aza-deoxycytidine (AZA) have been studied extensively, the combined effect of these two drugs on colorectal cancer (CRC) is still unknown. This study addresses the effect of AZA and RPM combination therapy on CRC and its influence on the mammalian target of rapamycin (mTOR) and its signal transduction pathway. SUBJECTS AND METHODS Human CRC cell line HCT116 was treated with AZA alone, RPM alone, or concurrently with a combination of both drugs. Cell viability, apoptosis, and cell cycle distribution were analyzed. CRC was initiated in S-ICR mice, which were then treated with the drugs mentioned above, and tumor incidence and volume were measured. The activity of the mTOR signal transduction pathway was detected by Western blot analysis or immunohistochemistry. RESULTS Combination treatment with AZA and RPM inhibited the growth of HCT116 cells, induced apoptosis, arrested the cell cycle, and reduced the incidence and tumor volume of CRC in mice, as well as inhibited the phosphorylation of components of the mTOR signal transduction pathway. These effects were more significant than those of single-drug treatments. CONCLUSION Combination treatment with AZA and RPM inhibits the formation and growth of CRC. These findings may provide a novel strategy for CRC treatment.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Shanghai Institute of Digestive Disease, Shanghai Jiaotong University School of Medicine Renji Hospital, 145 Shandong Road Middle, Shanghai, 200001, China
| | | | | | | | | | | | | | | |
Collapse
|