1
|
Sudakov K, Rana A, Faigenboim-Doron A, Gordin A, Carmeli S, Shimshoni JA, Cytryn E, Minz D. Diverse effects of Bacillus sp. NYG5-emitted volatile organic compounds on plant growth, rhizosphere microbiome, and soil chemistry. Microbiol Res 2025; 295:128089. [PMID: 39978144 DOI: 10.1016/j.micres.2025.128089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Bacterial strains in the rhizosphere secrete volatile organic compounds (VOCs) that play critical roles in inter- and intra-kingdom signaling, influencing both microbe-microbe and microbe-plant interactions. In this study we evaluated the plant growth-promoting effects of VOCs emitted by Bacillus sp. NYG5 on Arabidopsis thaliana, Nicotiana tabacum, and Cucumis sativus, focusing on VOC-induced alterations in plant metabolic pathways, rhizosphere microbial communities, and soil chemical properties. NYG5 VOCs enhanced plant biomass across all tested species and induced significant shifts in rhizosphere microbial community composition, specifically increasing relative abundance of Gammaproteobacteria and reducing Deltaproteobacteria (Linear discriminant analysis Effect Size, p < 0.05). Soil analysis revealed a considerable reduction in humic substance concentrations following VOCs exposure, as detected by fluorescent spectral analysis. Using SPME-GC-MS, several novel VOCs were identified, some of which directly promoted plant growth. Transcriptomic analysis of N. tabacum exposed to NYG5 VOCs demonstrated activation of pathways related to phenylpropanoid biosynthesis, sugar metabolism, and hormone signal transduction. Within the phenylpropanoid biosynthesis pathway, a significant upregulation (p adj = 1.16e-14) of caffeic acid 3-O-methyltransferase was observed, a key enzyme leading to lignin and suberin monomer biosynthesis. These results highlight the complex mechanisms through which bacterial VOCs influence plant growth, including metabolic modulation, rhizosphere microbiome restructuring, and soil chemical changes. Collectively, this study highlights the pivotal role of bacterial VOCs in shaping plant-microbe-soil interactions.
Collapse
Affiliation(s)
- Kobi Sudakov
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel; Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel
| | - Anuj Rana
- Department of Microbiology, College of Basic Science and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Adi Faigenboim-Doron
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Alexander Gordin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Carmeli
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jakob A Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Dror Minz
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel.
| |
Collapse
|
2
|
Lin Z, Wang K, Feng J. Identification and analysis of VOCs released by Rhodococcus ruber GXMZU2400 to promote plant growth and inhibit pathogen growth. BMC PLANT BIOLOGY 2025; 25:559. [PMID: 40301703 PMCID: PMC12042462 DOI: 10.1186/s12870-025-06582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
A strain of Rhodococcus ruber was isolated from the rhizosphere of Spartina alterniflora. The VOCs released by this strain effectively promote the growth of Arabidopsis thaliana and inhibit several plant pathogenic fungi, including Bipolaris sorokiniana, Cryphonectria parasitica, Fusarium oxysporum, Fusarium pseudograminearum, and Plectosphaerella cucumerina. SPME/GC-MS analysis revealed that the strain produces dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), with DMDS being the predominant component of the volatile organic compounds (VOCs). It was observed that the growth of A. thaliana was enhanced under fumigation with DMDS and DMTS. Furthermore, these compounds effectively inhibited the aforementioned plant pathogenic fungi, with DMTS demonstrating a lethal effect on plant pathogenic fungi. Previous studies have confirmed that DMDS and DMTS promote the growth of A. thaliana. In this study, we found that DMTS could significantly enhance plant growth and inhibit plant pathogenic fungi even at low dosages. Transcriptome analysis indicated that the growth-related genes of A. thaliana were significantly upregulated in response to treatment with VOCs from R. ruber. Additionally, VOCs induced changes in multiple plant defense response genes and promoted the C4 pathway.
Collapse
Affiliation(s)
- Ziyan Lin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Kun Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China.
| |
Collapse
|
3
|
Feng W, Sun X, Yuan G, Ding G. Suillusbovinus sesquiterpenes stimulate root growth and ramification of host and non-host plants by coordinating plant auxin signaling pathways. IMA Fungus 2025; 16:e142356. [PMID: 40171249 PMCID: PMC11959287 DOI: 10.3897/imafungus.16.142356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Prior to physical contact, ectomycorrhizal (ECM) fungi can regulate plant root growth and ramification by emitting volatile organic compounds (VOCs). However, the underlying mechanisms of these VOC effects, as well as the key signaling molecules within the VOC blends, are largely unknown. Under sterile conditions, we studied the effects of the SuillusbovinusVOCs on the root growth of Pinusmassoniana or Arabidopsisthaliana before physical contact. Exogenously added auxin inhibitors and auxin-related mutants were used to explore the role of auxin in the promotion of plant root development by S.bovinusVOCs. S.bovinusVOCs stimulated host P.massoniana and non-host A.thaliana lateral root formation (LRF). Although these effects were independent of the host, they exhibited a symbiotic fungal-specific feature. Sesquiterpenes (SQTs) were the main S.bovinus VOC component that promoted LRF in plants. Two SQTs, α-humulene and β-cedrene, utilized different auxin pathways to promote plant root growth but did not affect the formation of an ECM symbiotic relationship between P.massoniana and S.bovinus. These findings enhance our understanding of the role played by SQTs in the signal recognition mechanism during the ECM presymbiotic stage and their role in promoting plant growth.
Collapse
Affiliation(s)
- Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Guiyun Yuan
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Bao S, Wang X, Zeng J, Yue L, Xiao Z, Chen F, Wang Z. The fate of biodegradable polylactic acid microplastics in maize: impacts on cellular ion fluxes and plant growth. FRONTIERS IN PLANT SCIENCE 2025; 16:1544298. [PMID: 40070709 PMCID: PMC11893570 DOI: 10.3389/fpls.2025.1544298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize. Seed germination and hydroponic experiments were conducted over a period of 5 to 20 days, during which the plants were exposed to PLA MPs at concentrations of 0, 1, 10, and 100 mg L-1. Low concentrations of PLA MPs (1 mg L-1 and 10 mg L-1) significantly enhanced maize seed germination rate by 52.6%, increased plant shoot height by 16.6% and 16.9%, respectively, as well as elevated aboveground biomass dry weight by 133.7% and 53.3%, respectively. Importantly, depolymerization of PLA MPs was observed in the nutrient solution, resulting in the formation of small-sized PLA MPs (< 2 μm). Interestingly, further transformation occurred within the xylem sap and apoplast fluid (after 12 h) with a transformation rate reaching 13.1% and 27.2%, respectively. The enhanced plant growth could be attributed to the increase in dissolved organic carbon resulting from the depolymerization of PLA MPs. Additionally, the transformation of PLA MPs mediated pH and increase in K+ flux (57.2%, 72 h), leading to acidification of the cell wall and subsequent cell expansion. Our findings provide evidence regarding the fate of PLA MPs in plants and their interactions with plants, thereby enhancing our understanding of the potential impacts associated with biodegradable plastics.
Collapse
Affiliation(s)
- Shijia Bao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Xi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Jianxiong Zeng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Chang YC, Lee PH, Hsu CL, Wang WD, Chang YL, Chuang HW. Decoding the Impact of a Bacterial Strain of Micrococcus luteus on Arabidopsis Growth and Stress Tolerance. Microorganisms 2024; 12:2283. [PMID: 39597672 PMCID: PMC11596720 DOI: 10.3390/microorganisms12112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs), specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi. The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings, causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity. Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally, exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress. MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis. Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore, MlS14 treatment increased the expression of several transcription factors associated with stress responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways essential for growth and adaptation to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan; (Y.-C.C.); (P.-H.L.); (C.-L.H.); (W.-D.W.); (Y.-L.C.)
| |
Collapse
|
6
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lichang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
8
|
Bashir A, Manzoor MM, Ahmad T, Farooq S, Sultan P, Gupta AP, Riyaz-Ul-Hassan S. Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiol Res 2023; 276:127479. [PMID: 37639964 DOI: 10.1016/j.micres.2023.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The role of endophytes in maintaining healthy plant ecosystems and holding promise for agriculture and food security is deeply appreciated. In the current study, we determine the community structure, spatial distribution, chemical diversity, and ecological functions of fungal endophytes of Rosa damascena growing in the North-Western Himalayas. Culture-dependent methods revealed that R. damascena supported a rich endophyte diversity comprising 32 genera and 68 OTUs. The diversity was governed by climate, altitude, and tissue type. Species of Aspergillus, Cladosporium, Penicillium, and Diaporthe were the core endophytes of the host plant consisting of 48.8% of the endophytes collectively. The predominant pathogen of the host was Alternaria spp., especially A. alternata. GC-MS analyses affirmed the production of diverse arrays of volatile organic compounds (VOC) by individual endophytes. Among the primary rose oil components, Diaporthe melonis RDE257, and Periconia verrucosa RDE85 produced phenyl ethyl alcohol (PEA) and benzyl alcohol (BA). The endophytes displayed varied levels of plant growth-promoting, colonization, and anti-pathogenic traits. Between the selected endophytes, P. verrucosa and D. melonis significantly potentiated plant growth and the flavonoids and chlorophyll content in the host. The potential of these two endophytes and their metabolites PEA and BA was confirmed on Nicotiana tabacum. The treatments of the metabolites and individual endophytes enhanced the growth parameters in the model plant significantly. The results imply that P. verrucosa and D. melonis are potential plant growth enhancers and their activity may be partially due to the production of PEA and BA. Thus, R. damascena harbors diverse endophytes with potential applications in disease suppression and host growth promotion. Further investigations at the molecular level are warranted to develop green endophytic agents for sustainable cultivation of R. damascena and biocontrol of leaf spot disease.
Collapse
Affiliation(s)
- Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malik Muzafar Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Phalisteen Sultan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Ajai P Gupta
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Tian C, Quan H, Jiang R, Zheng Q, Huang S, Tan G, Yan C, Zhou J, Liao H. Differential roles of Cassia tora 1-deoxy-D-xylulose-5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase in trade-off between plant growth and drought tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1270396. [PMID: 37929171 PMCID: PMC10623318 DOI: 10.3389/fpls.2023.1270396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Due to global climate change, drought is emerging as a major threat to plant growth and agricultural productivity. Abscisic acid (ABA) has been implicated in plant drought tolerance, however, its retarding effects on plant growth cannot be ignored. The reactions catalyzed by 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) proteins are critical steps within the isoprenoid biosynthesis in plants. Here, five DXS (CtDXS1-5) and two DXR (CtDXR1-2) genes were identified from Cassia tora genome. Based on multiple assays including the phylogeny, cis-acting element, expression pattern, and subcellular localization, CtDXS1 and CtDXR1 genes might be potential candidates controlling the isoprenoid biosynthesis. Intriguingly, CtDXS1 transgenic plants resulted in drought tolerance but retardant growth, while CtDXR1 transgenic plants exhibited both enhanced drought tolerance and increased growth. By comparison of β-carotene, chlorophyll, abscisic acid (ABA) and gibberellin 3 (GA3) contents in wild-type and transgenic plants, the absolute contents and (or) altered GA3/ABA levels were suggested to be responsible for the balance between drought tolerance and plant growth. The transcriptome of CtDXR1 transgenic plants suggested that the transcript levels of key genes, such as DXS, 9-cis-epoxycarotenoid dioxygenases (NCED), ent-kaurene synthase (KS) and etc, involved with chlorophyll, β-carotene, ABA and GA3 biosynthesis were induced and their contents increased accordingly. Collectively, the trade-off effect induced by CtDXR1 was associated with redesigning architecture in phytohormone homeostasis and thus was highlighted for future breeding purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
11
|
Erdoğan İ, Cevher-Keskin B, Bilir Ö, Hong Y, Tör M. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance. BIOLOGY 2023; 12:1037. [PMID: 37508466 PMCID: PMC10376527 DOI: 10.3390/biology12071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The revolutionary CRISPR/Cas9 genome-editing technology has emerged as a powerful tool for plant improvement, offering unprecedented precision and efficiency in making targeted gene modifications. This powerful and practical approach to genome editing offers tremendous opportunities for crop improvement, surpassing the capabilities of conventional breeding techniques. This article provides an overview of recent advancements and challenges associated with the application of CRISPR/Cas9 in plant improvement. The potential of CRISPR/Cas9 in terms of developing crops with enhanced resistance to biotic and abiotic stresses is highlighted, with examples of genes edited to confer disease resistance, drought tolerance, salt tolerance, and cold tolerance. Here, we also discuss the importance of off-target effects and the efforts made to mitigate them, including the use of shorter single-guide RNAs and dual Cas9 nickases. Furthermore, alternative delivery methods, such as protein- and RNA-based approaches, are explored, and they could potentially avoid the integration of foreign DNA into the plant genome, thus alleviating concerns related to genetically modified organisms (GMOs). We emphasize the significance of CRISPR/Cas9 in accelerating crop breeding processes, reducing editing time and costs, and enabling the introduction of desired traits at the nucleotide level. As the field of genome editing continues to evolve, it is anticipated that CRISPR/Cas9 will remain a prominent tool for crop improvement, disease resistance, and adaptation to challenging environmental conditions.
Collapse
Affiliation(s)
- İbrahim Erdoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Kirsehir Ahi Evran University, Kırşehir 40100, Türkiye
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Birsen Cevher-Keskin
- Genetic Engineering and Biotechnology Institute, TÜBİTAK Marmara Research Center, Kocaeli 41470, Türkiye
| | - Özlem Bilir
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
- Trakya Agricultural Research Institute, Atatürk Bulvarı 167/A, Edirne 22100, Türkiye
| | - Yiguo Hong
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mahmut Tör
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| |
Collapse
|
12
|
El Jaddaoui I, Rangel DEN, Bennett JW. Fungal volatiles have physiological properties. Fungal Biol 2023; 127:1231-1240. [PMID: 37495313 DOI: 10.1016/j.funbio.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
| | - Joan Wennstrom Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
13
|
Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS, Faizan S. Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon 2023; 9:e16134. [PMID: 37255980 PMCID: PMC10225898 DOI: 10.1016/j.heliyon.2023.e16134] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
The world's population is increasing and is anticipated to spread 10 billion by 2050, and the issue of food security is becoming a global concern. To maintain global food security, it is essential to increase crop productivity under changing climatic conditions. Conventional agricultural practices frequently use artificial/chemical fertilizers to enhance crop productivity, but these have numerous negative effects on the environment and people's health. To address these issues, researchers have been concentrating on substitute crop fertilization methods for many years, and biofertilizers as a crucial part of agricultural practices are quickly gaining popularity all over the globe. Biofertilizers are living formulations made of indigenous plant growth-promoting rhizobacteria (PGPR) which are substantial, environment-friendly, and economical biofertilizers for amassing crop productivity by enhancing plant development either directly or indirectly, and are the renewable source of plant nutrients and sustainable agronomy. The review aims to provide a comprehensive overview of the current knowledge on microbial inoculants as biofertilizers, including their types, mechanisms of action, effects on crop productivity, challenges, and limitations associated with the use of microbial inoculants. In this review, we focused on the application of biofertilizers to agricultural fields in plant growth development by performing several activities like nitrogen fixation, siderophore production, phytohormone production, nutrient solubilization, and facilitating easy uptake by crop plants. Further, we discussed the indirect mechanism of PGPRs, in developing induced system resistance against pest and diseases, and as a biocontrol agent for phytopathogens. This review article presents a brief outline of the ideas and uses of microbial inoculants in improving crop productivity as well as a discussion of the challenges and limitations to use microbial inoculants.
Collapse
Affiliation(s)
- Durre Shahwar
- Genetics and Molecular Biology Section, Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
- Plant Genomics and Molecular Biology Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Zeenat Mushtaq
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Humira Mushtaq
- Research and Training Center on Pollinators and Pollination Management Section, Division of Entomology, SKAUST, Kashmir, 190025, India
| | - Abdulaziz A. Alqarawi
- Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Younghoon Park
- Plant Genomics and Molecular Biology Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Thobayet S. Alshahrani
- Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
14
|
Nawrocka J, Szymczak K, Skwarek-Fadecka M, Małolepsza U. Toward the Analysis of Volatile Organic Compounds from Tomato Plants ( Solanum lycopersicum L.) Treated with Trichoderma virens or/and Botrytis cinerea. Cells 2023; 12:cells12091271. [PMID: 37174671 PMCID: PMC10177525 DOI: 10.3390/cells12091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, β-phellandrene, β-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and β-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Monika Skwarek-Fadecka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Urszula Małolepsza
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
15
|
Hernández-Huerta J, Tamez-Guerra P, Gomez-Flores R, Delgado-Gardea MCE, Robles-Hernández L, Gonzalez-Franco AC, Infante-Ramirez R. Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis formulations. PeerJ 2023; 11:e14633. [PMID: 36710864 PMCID: PMC9881471 DOI: 10.7717/peerj.14633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Background Bacillus genus has been used in horticultural crops as a biocontrol agent against insect pests, microbial phytopathogens, and plant growth-promoting bacteria (PGPB), representing an alternative to agrochemicals. In particular, B. cereus (Bc) and B. thuringiensis (Bt) have been studied for their fungicidal and insecticidal activities. However, their use as biofertilizer formulations and biocontrol agents against phytopathogenic bacteria is limited. Objective To evaluate Bc and Bt formulations as PGPB and biocontrol agents against the bacterial spot agent Xanthomonas euvesicatoria (Xe) in greenhouse-grown chili peppers. Methods Bc and Bt isolates obtained from soil samples were identified and characterized using conventional biochemical and multiplex PCR identification methods. Bioassays to determine Bc and Bt isolates potential as PGPB were evaluated on chili pepper seedlings in seedbeds. In addition, formulations based on Bc (F-BC26 and F-BC08) and Bt (F-BT24) strains were assessed as biofertilizers on pepper, under controlled conditions. Furthermore, in vitro antagonism assays were performed by confronting Bc and Bt isolate formulations against Xe isolates in direct (foliage) and indirect (resistance induction) phytopathogen biocontrol assays on pepper plants, which were grown under controlled conditions for 15 d after formulations treatment. Results Isolates were identified as Bc and Bt. Formulations significantly improved pepper growth in seedbeds and pots, whereas in vitro bioassays demonstrated the bactericidal effect of Bc and Bt strains against Xe isolates. Furthermore, assays showed significant plant protection by F-BC26, F-BC08, and F-BT24 formulated strains against Xe. Conclusion Results indicated that F-BT24 and F-BC26 isolates formulations promoted pepper growth and protected it against Xanthomonas euvesicatoria.
Collapse
Affiliation(s)
- Jared Hernández-Huerta
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Patricia Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | | | | | | | | |
Collapse
|
16
|
Tyagi S, Kabade PG, Gnanapragasam N, Singh UM, Gurjar AKS, Rai A, Sinha P, Kumar A, Singh VK. Codon Usage Provide Insights into the Adaptation of Rice Genes under Stress Condition. Int J Mol Sci 2023; 24:ijms24021098. [PMID: 36674611 PMCID: PMC9861248 DOI: 10.3390/ijms24021098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Plants experience different stresses, i.e., abiotic, or biotic, and to combat them, plants re-program the expression of growth-, metabolism-, and resistance-related genes. These genes differ in their synonymous codon usage frequency and show codon usage bias. Here, we investigated the correlation among codon usage bias, gene expression, and underlying mechanisms in rice under abiotic and biotic stress conditions. The results indicated that genes with higher expression (up- or downregulated) levels had high GC content (≥60%), a low effective number of codon usage (≤40), and exhibited strong biases towards the codons with C/G at the third nucleotide position, irrespective of stress received. TTC, ATC, and CTC were the most preferred codons, while TAC, CAC, AAC, GAC, and TGC were moderately preferred under any stress (abiotic or biotic) condition. Additionally, downregulated genes are under mutational pressure (R2 ≥ 0.5) while upregulated genes are under natural selection pressure (R2 ≤ 0.5). Based on these results, we also identified the possible target codons that can be used to design an optimized set of genes with specific codons to develop climate-resilient varieties. Conclusively, under stress, rice has a bias towards codon usage which is correlated with GC content, gene expression level, and gene length.
Collapse
Affiliation(s)
- Swati Tyagi
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | | | - Niranjani Gnanapragasam
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Uma Maheshwar Singh
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | | | - Ashutosh Rai
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | - Pallavi Sinha
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Arvind Kumar
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | - Vikas Kumar Singh
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
- Correspondence:
| |
Collapse
|
17
|
Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Toxins (Basel) 2023; 15:toxins15010045. [PMID: 36668865 PMCID: PMC9866025 DOI: 10.3390/toxins15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic fungi in the genera Alternaria, Aspergillus, Botrytis, Fusarium, Geotrichum, Gloeosporium, Monilinia, Mucor, Penicillium, and Rhizopus are the most common cause of pre- and postharvest diseases of fruit, vegetable, root and grain commodities. Some species are also able to produce mycotoxins, secondary metabolites having toxic effects on human and non-human animals upon ingestion of contaminated food and feed. Synthetic fungicides still represent the most common tool to control these pathogens. However, long-term application of fungicides has led to unacceptable pollution and may favour the selection of fungicide-resistant mutants. Microbial biocontrol agents may reduce the incidence of toxigenic fungi through a wide array of mechanisms, including competition for the ecological niche, antibiosis, mycoparasitism, and the induction of resistance in the host plant tissues. In recent years, the emission of volatile organic compounds (VOCs) has been proposed as a key mechanism of biocontrol. Their bioactivity and the absence of residues make the use of microbial VOCs a sustainable and effective alternative to synthetic fungicides in the management of postharvest pathogens, particularly in airtight environments. In this review, we will focus on the possibility of applying yeast VOCs in the biocontrol of mycotoxigenic fungi affecting stored food and feed.
Collapse
|
18
|
Chandrasekaran M, Paramasivan M, Sahayarayan JJ. Microbial Volatile Organic Compounds: An Alternative for Chemical Fertilizers in Sustainable Agriculture Development. Microorganisms 2022; 11:microorganisms11010042. [PMID: 36677334 PMCID: PMC9861404 DOI: 10.3390/microorganisms11010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Microorganisms are exceptional at producing several volatile substances called microbial volatile organic compounds (mVOCs). The mVOCs allow the microorganism to communicate with other organisms via both inter and intracellular signaling pathways. Recent investigation has revealed that mVOCs are chemically very diverse and play vital roles in plant interactions and microbial communication. The mVOCs can also modify the plant's physiological and hormonal pathways to augment plant growth and production. Moreover, mVOCs have been affirmed for effective alleviation of stresses, and also act as an elicitor of plant immunity. Thus, mVOCs act as an effective alternative to various chemical fertilizers and pesticides. The present review summarizes the recent findings about mVOCs and their roles in inter and intra-kingdoms interactions. Prospects for improving soil fertility, food safety, and security are affirmed for mVOCs application for sustainable agriculture.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Republic of Korea
- Correspondence: ; Tel.: +82-2-3408-4026
| | - Manivannan Paramasivan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | | |
Collapse
|
19
|
Duc NH, Vo HTN, van Doan C, Hamow KÁ, Le KH, Posta K. Volatile organic compounds shape belowground plant-fungi interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1046685. [PMID: 36561453 PMCID: PMC9763900 DOI: 10.3389/fpls.2022.1046685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs), a bouquet of chemical compounds released by all life forms, play essential roles in trophic interactions. VOCs can facilitate a large number of interactions with different organisms belowground. VOCs-regulated plant-plant or plant-insect interaction both below and aboveground has been reported extensively. Nevertheless, there is little information about the role of VOCs derived from soilborne pathogenic fungi and beneficial fungi, particularly mycorrhizae, in influencing plant performance. In this review, we show how plant VOCs regulate plant-soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions. How fungal VOCs mediate plant-soilborne pathogenic and beneficial fungi interactions are presented and the most common methods to collect and analyze belowground volatiles are evaluated. Furthermore, we suggest a promising method for future research on belowground VOCs.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| | - Ha T. N. Vo
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Cong van Doan
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDIV), Leipzig, Germany
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Khac Hoang Le
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Katalin Posta
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| |
Collapse
|
20
|
Determination of Reactive Oxygen or Nitrogen Species and Novel Volatile Organic Compounds in the Defense Responses of Tomato Plants against Botrytis cinerea Induced by Trichoderma virens TRS 106. Cells 2022; 11:cells11193051. [PMID: 36231012 PMCID: PMC9563596 DOI: 10.3390/cells11193051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
In the present study, Trichoderma virens TRS 106 decreased grey mould disease caused by Botrytis cinerea in tomato plants (S. lycopersicum L.) by enhancing their defense responses. Generally, plants belonging to the ‘Remiz’ variety, which were infected more effectively by B. cinerea than ‘Perkoz’ plants, generated more reactive molecules such as superoxide (O2−) and peroxynitrite (ONOO−), and less hydrogen peroxide (H2O2), S-nitrosothiols (SNO), and green leaf volatiles (GLV). Among the new findings, histochemical analyses revealed that B. cinerea infection caused nitric oxide (NO) accumulation in chloroplasts, which was not detected in plants treated with TRS 106, while treatment of plants with TRS 106 caused systemic spreading of H2O2 and NO accumulation in apoplast and nuclei. SPME-GCxGC TOF-MS analysis revealed 24 volatile organic compounds (VOC) released by tomato plants treated with TRS 106. Some of the hexanol derivatives, e.g., 4-ethyl-2-hexynal and 1,5-hexadien-3-ol, and salicylic acid derivatives, e.g., 4-hepten-2-yl and isoamyl salicylates, are considered in the protection of tomato plants against B. cinerea for the first time. The results are valuable for further studies aiming to further determine the location and function of NO in plants treated with Trichoderma and check the contribution of detected VOC in plant protection against B. cinerea.
Collapse
|
21
|
Tsotetsi T, Nephali L, Malebe M, Tugizimana F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? PLANTS (BASEL, SWITZERLAND) 2022; 11:2482. [PMID: 36235347 PMCID: PMC9571655 DOI: 10.3390/plants11192482] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/12/2023]
Abstract
The rhizosphere is a thin film of soil that surrounds plant roots and the primary location of nutrient uptake, and is where important physiological, chemical, and biological activities are occurring. Many microbes invade the rhizosphere and have the capacity to promote plant growth and health. Bacillus spp. is the most prominent plant growth promoting rhizobacteria due to its ability to form long-lived, stress-tolerant spores. Bacillus-plant interactions are driven by chemical languages constructed by a wide spectrum of metabolites and lead to enhanced plant growth and defenses. Thus, this review is a synthesis and a critical assessment of the current literature on the application of Bacillus spp. in agriculture, highlighting gaps that remain to be explored to improve and expand on the Bacillus-based biostimulants. Furthermore, we suggest that omics sciences, with a focus on metabolomics, offer unique opportunities to illuminate the chemical intercommunications between Bacillus and plants, to elucidate biochemical and molecular details on modes of action of Bacillus-based formulations, to generate more actionable insights on cellular and molecular events that explain the Bacillus-induced growth promotion and stress resilience in plants.
Collapse
Affiliation(s)
- Teboho Tsotetsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Lerato Nephali
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Motumiseng Malebe
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
- International R&D Division, Omnia Nutriology, Omnia Group (Pty) Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
22
|
Kumari D, Prasad BD, Dwivedi P, Hidangmayum A, Sahni S. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Mol Biol Rep 2022; 49:11587-11600. [DOI: 10.1007/s11033-022-07851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
|
23
|
Riaz M, Akhtar N, Msimbira LA, Antar M, Ashraf S, Khan SN, Smith DL. Neocosmospora rubicola, a stem rot disease in potato: Characterization, distribution and management. Front Microbiol 2022; 13:953097. [PMID: 36033873 PMCID: PMC9403868 DOI: 10.3389/fmicb.2022.953097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Potato (Solanum tuberosum L.) is one of the most important crops in maintaining global food security. Plant stand and yield are affected by production technology, climate, soil type, and biotic factors such as insects and diseases. Numerous fungal diseases including Neocosmospora rubicola, causing stem rot, are known to have negative effects on potato growth and yield quality. The pathogen is known to stunt growth and cause leaf yellowing with grayish-black stems. The infectivity of N. rubicola across a number of crops indicates the need to search for appropriate management approaches. Synthetic pesticides application is a major method to mitigate almost all potato diseases at this time. However, these pesticides significantly contribute to environmental damage and continuous use leads to pesticide resistance by pathogens. Consumers interest in organic products have influenced agronomists to shift toward the use of biologicals in controlling most pathogens, including N. rubicola. This review is an initial effort to carefully examine current and alternative approaches to control N. rubicola that are both environmentally safe and ecologically sound. Therefore, this review aims to draw attention to the N. rubicola distribution and symptomatology, and sustainable management strategies for potato stem rot disease. Applications of plant growth promoting bacteria (PGPB) as bioformulations with synthetic fertilizers have the potential to increase the tuber yield in both healthy and N. rubicola infested soils. Phosphorus and nitrogen applications along with the PGPB can improve plants uptake efficiency and reduce infestation of pathogen leading to increased yield. Therefore, to control N. rubicola infestation, with maximum tuber yield benefits, a pre-application of the biofertilizer is shown as a better option, based on the most recent studies. With the current limited information on the disease, precise screening of the available resistant potato cultivars, developing molecular markers for resistance genes against N. rubicola will assist to reduce spread and virulence of the pathogen.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Naureen Akhtar
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Mohammed Antar
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Shoaib Ashraf
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Salik Nawaz Khan
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
| | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Orozco-Mosqueda MDC, Fadiji AE, Babalola OO, Glick BR, Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263:127137. [PMID: 35905581 DOI: 10.1016/j.micres.2022.127137] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called "omics" sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
Collapse
Affiliation(s)
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, Mexico.
| |
Collapse
|
25
|
Gamboa-Becerra R, Desgarennes D, Molina-Torres J, Ramírez-Chávez E, Kiel-Martínez AL, Carrión G, Ortiz-Castro R. Plant growth-promoting and non-promoting rhizobacteria from avocado trees differentially emit volatiles that influence growth of Arabidopsis thaliana. PROTOPLASMA 2022; 259:835-854. [PMID: 34529144 DOI: 10.1007/s00709-021-01705-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.
Collapse
Affiliation(s)
- Roberto Gamboa-Becerra
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Ana L Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Gloria Carrión
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
26
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
27
|
Maurya AK, Pazouki L, Frost CJ. Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth. J Chem Ecol 2022; 48:441-454. [PMID: 35394556 DOI: 10.1007/s10886-022-01359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
A striking feature of plant ecology is the ability of plants to detect and respond to environmental cues such as herbivore-induced plant volatiles (HIPVs) by priming or directly activating defenses against future herbivores. However, whether seeds also respond to compounds that are common constituents of HIPV blends and initiate future plant resistance is unknown. Considering that seeds depend on other environmental cues to determine basic survival traits such as germination timing, we predicted that seeds exposed to synthetic constituents of HIPV blends would generate well-defended plants. We investigated the effect of seed exposure to common volatiles on growth, reproduction, and resistance characteristics in the model plants Arabidopsis thaliana and Medicago truncatula using herbivores from two feeding guilds. After seed scarification and vernalization, we treated seeds with one of seven different plant-derived volatile compounds for 24 h. Seeds were then germinated and the resulting plants were assayed for growth, herbivore resistance, and expression of inducible defense genes. Of all the synthetic volatiles tested, indole specifically reduced both beet armyworm growth on A. thaliana and pea aphid fecundity on M. truncatula. The induction of defense genes was not affected by seed exposure to indole in either plant species, indicating that activation of direct resistance rather than inducible resistance is the mechanism by which seed priming operates. Moreover, neither plant species showed any negative effect of seed exposure to any synthetic volatile on vegetative and reproductive growth. Rather, M. truncatula plants derived from seeds exposed to (Z)-3-hexanol and (Z)-3-hexenyl acetate grew larger compared to controls. Our results indicate that seeds are sensitive to specific volatiles in ways that enhance resistance profiles with no apparent costs in terms of growth. Seed priming by HIPVs may represent a novel ecological mechanism of plant-to-plant interactions, with broad potential applications in agriculture and seed conservation.
Collapse
Affiliation(s)
- Abhinav K Maurya
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Leila Pazouki
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Christopher J Frost
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA. .,BIO5 Institute, University of Arizona, 85721, Tucson, AZ, USA.
| |
Collapse
|
28
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
29
|
Dukare A, Mhatre P, Maheshwari HS, Bagul S, Manjunatha BS, Khade Y, Kamble U. Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech 2022; 12:57. [PMID: 35186654 PMCID: PMC8817020 DOI: 10.1007/s13205-022-03115-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Sustainable agriculture demands the balanced use of inorganic, organic, and microbial biofertilizers for enhanced plant productivity and soil fertility. Plant growth-enhancing rhizospheric bacteria can be an excellent biotechnological tool to augment plant productivity in different agricultural setups. We present an overview of microbial mechanisms which directly or indirectly contribute to plant growth, health, and development under highly variable environmental conditions. The rhizosphere microbiomes promote plant growth, suppress pathogens and nematodes, prime plants immunity, and alleviate abiotic stress. The prospective of beneficial rhizobacteria to facilitate plant growth is of primary importance, particularly under abiotic and biotic stresses. Such microbe can promote plant health, tolerate stress, even remediate soil pollutants, and suppress phytopathogens. Providing extra facts and a superior understanding of microbial traits underlying plant growth promotion can stir the development of microbial-based innovative solutions for the betterment of agriculture. Furthermore, the application of novel scientific approaches for facilitating the design of crop-specific microbial biofertilizers is discussed. In this context, we have highlighted the exercise of "multi-omics" methods for assessing the microbiome's impact on plant growth, health, and overall fitness via analyzing biochemical, physiological, and molecular facets. Furthermore, the role of clustered regularly interspaced short palindromic repeats (CRISPR) based genome alteration and nanotechnology for improving the agronomic performance and rhizosphere microbiome is also briefed. In a nutshell, the paper summarizes the recent vital molecular processes that underlie the different beneficial plant-microbe interactions imperative for enhancing plant fitness and resilience under-challenged agriculture.
Collapse
Affiliation(s)
- Ajinath Dukare
- ICAR-Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, Maharashtra India
| | - Priyank Mhatre
- ICAR-Central Potato Research Institute (Regional Station), Udhagamandalam, Tamil Nadu India
| | - Hemant S. Maheshwari
- ICAR-Indian Institute of Soybean Research (IISR), Indore, Madhya Pradesh India
- Present Address: Ecophysiology of Plants, Faculty of Science and Engineering, GELIFES-Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Samadhan Bagul
- ICAR-Directorate of Medicinal and Aromatic Plant Research, Anand, Gujarat India
| | - B. S. Manjunatha
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, West Bengal India
| | - Yogesh Khade
- ICAR- Directorate of Onion and Garlic Research, Pune, Maharashtra India
| | - Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana India
| |
Collapse
|
30
|
Mashabela MD, Piater LA, Dubery IA, Tugizimana F, Mhlongo MI. Rhizosphere Tripartite Interactions and PGPR-Mediated Metabolic Reprogramming towards ISR and Plant Priming: A Metabolomics Review. BIOLOGY 2022; 11:346. [PMID: 35336720 PMCID: PMC8945280 DOI: 10.3390/biology11030346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms colonising the rhizosphere. PGPR are involved in plant growth promotion and plant priming against biotic and abiotic stresses. Plant-microbe interactions occur through chemical communications in the rhizosphere and a tripartite interaction mechanism between plants, pathogenic microbes and plant-beneficial microbes has been defined. However, comprehensive information on the rhizosphere communications between plants and microbes, the tripartite interactions and the biochemical implications of these interactions on the plant metabolome is minimal and not yet widely available nor well understood. Furthermore, the mechanistic nature of PGPR effects on induced systemic resistance (ISR) and priming in plants at the molecular and metabolic levels is yet to be fully elucidated. As such, research investigating chemical communication in the rhizosphere is currently underway. Over the past decades, metabolomics approaches have been extensively used in describing the detailed metabolome of organisms and have allowed the understanding of metabolic reprogramming in plants due to tripartite interactions. Here, we review communication systems between plants and microorganisms in the rhizosphere that lead to plant growth stimulation and priming/induced resistance and the applications of metabolomics in understanding these complex tripartite interactions.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| |
Collapse
|
31
|
Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030386. [PMID: 35161366 PMCID: PMC8839143 DOI: 10.3390/plants11030386] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/05/2023]
Abstract
Plant beneficial microorganisms improve the health and growth of the associated plants. Application of beneficial microbes triggers an enhanced resistance state, also termed as induced systemic resistance (ISR), in the host, against a broad range of pathogens. Upon the activation of ISR, plants employ long-distance systemic signaling to provide protection for distal tissue, inducing rapid and strong immune responses against pathogens invasions. The transmission of ISR signaling was commonly regarded to be a jasmonic acid- and ethylene-dependent, but salicylic acid-independent, transmission. However, in the last decade, the involvement of both salicylic acid and jasmonic acid/ethylene signaling pathways and the regulatory roles of small RNA in ISR has been updated. In this review, the plant early recognition, responsive reactions, and the related signaling transduction during the process of the plant-beneficial microbe interaction was discussed, with reflection on the crucial regulatory role of small RNAs in the beneficial microbe-mediated ISR.
Collapse
Affiliation(s)
- Yiyang Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ying Gui
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Zijie Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Jianhua Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
32
|
Gámez-Arcas S, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Almagro G, Bahaji A, Sánchez-López ÁM, Pozueta-Romero J. Action mechanisms of small microbial volatile compounds in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:498-510. [PMID: 34687197 DOI: 10.1093/jxb/erab463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microorganisms communicate with plants by exchanging chemical signals throughout the phytosphere. Before direct contact with plants occurs, beneficial microorganisms emit a plethora of volatile compounds that promote plant growth and photosynthesis as well as developmental, metabolic, transcriptional, and proteomic changes in plants. These compounds can also induce systemic drought tolerance and improve water and nutrient acquisition. Recent studies have shown that this capacity is not restricted to beneficial microbes; it also extends to phytopathogens. Plant responses to microbial volatile compounds have frequently been associated with volatile organic compounds with molecular masses ranging between ~ 45Da and 300Da. However, microorganisms also release a limited number of volatile compounds with molecular masses of less than ~45Da that react with proteins and/or act as signaling molecules. Some of these compounds promote photosynthesis and growth when exogenously applied in low concentrations. Recently, evidence has shown that small volatile compounds are important determinants of plant responses to microbial volatile emissions. However, the regulatory mechanisms involved in these responses remain poorly understood. This review summarizes current knowledge of biochemical and molecular mechanisms involved in plant growth, development, and metabolic responses to small microbial volatile compounds.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada (CEBAS-CSIC), Campus Universitario de Espinardo, Espinardo, 30100 Murcia, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' (IHSM-UMA-CSIC), Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
33
|
Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100054. [PMID: 34841345 PMCID: PMC8610294 DOI: 10.1016/j.crmicr.2021.100054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.
Collapse
Key Words
- ABA, Abscisic acid
- BABA, β-Aminobutyric acid
- BTH, Benzothiadiazole
- CKRI, Cross kingdom RNA interference
- DAMPs, Damage-associated molecular patterns
- Defense mechanism
- ET, Ethylene
- ETI, Effector-triggered immunity
- Elicitors
- Fe, Iron
- GSH, Glutathione
- HAMP, Herbivore-associated molecular patterns
- HG, Heptaglucan
- HIR, Herbivore induced resistance
- HRs, Hormonal receptors
- ISR, Induced systemic resistance
- ISS, Induced systemic susceptibility
- Induced resistance
- JA, Jasmonic acid
- LAR, Local acquired resistance
- LPS, Lipopolysaccharides
- MAMPs, Microbe-associated molecular patterns
- MBCAs, Microbial biological control agents
- Microbiological bio-control agent
- N, Nitrogen
- NO, Nitric oxide
- P, Phosphorous
- PAMPs, Pathogen-associated molecular patterns
- PGP, Plant growth promotion
- PGPB, Plant growth promoting bacteria
- PGPF, Plant growth promoting fungi
- PGPR, Plant growth promoting rhizobacteria
- PRPs, Pathogenesis-related proteins
- PRRs, Pattern recognition receptors
- PTI, Pattern triggered immunity
- Plant defense
- Plant disease
- RLKs, Receptor-like-kinases
- RLPs, Receptor-like-proteins
- ROS, Reactive oxygen species
- SA, Salicylic acid
- SAR, Systemic acquired resistance
- TFs, Transcription factors
- TMV, Tobacco mosaic virus
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi – 221005, India
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur – 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi – 110007, India
| |
Collapse
|
34
|
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
Collapse
|
35
|
Prigigallo MI, De Stradis A, Anand A, Mannerucci F, L'Haridon F, Weisskopf L, Bubici G. Basidiomycetes Are Particularly Sensitive to Bacterial Volatile Compounds: Mechanistic Insight Into the Case Study of Pseudomonas protegens Volatilome Against Heterobasidion abietinum. Front Microbiol 2021; 12:684664. [PMID: 34220771 PMCID: PMC8248679 DOI: 10.3389/fmicb.2021.684664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the communication among organisms, including plants, beneficial or pathogenic microbes, and pests. In vitro, we observed that the growth of seven out of eight Basidiomycete species tested was inhibited by the VOCs of the biocontrol agent Pseudomonas protegens strain CHA0. In the Ascomycota phylum, only some species were sensitive (e.g., Sclerotinia sclerotiorum, Botrytis cinerea, etc.) but others were resistant (e.g., Fusarium oxysporum f. sp. cubense, Verticillium dahliae, etc.). We further discovered that CHA0 as well as other ten beneficial or phytopathogenic bacterial strains were all able to inhibit Heterobasidion abietinum, which was used in this research as a model species. Moreover, such an inhibition occurred only when bacteria grew on media containing digested proteins like peptone or tryptone (e.g., Luria-Bertani agar or LBA). Also, the inhibition co-occurred with a pH increase of the agar medium where the fungus grew. Therefore, biogenic ammonia originating from protein degradation by bacteria was hypothesized to play a major role in fungus inhibition. Indeed, when tested as a synthetic compound, it was highly toxic to H. abietinum (effective concentration 50% or EC50 = 1.18 M; minimum inhibitory concentration or MIC = 2.14 M). Using gas chromatography coupled to mass spectrometry (GC/MS), eight VOCs were found specifically emitted by CHA0 grown on LBA compared to the bacterium grown on potato dextrose agar (PDA). Among them, two compounds were even more toxic than ammonia against H. abietinum: dimethyl trisulfide had EC50 = 0.02 M and MIC = 0.2 M, and 2-ethylhexanol had EC50 = 0.33 M and MIC = 0.77 M. The fungus growth inhibition was the result of severe cellular and sub-cellular alterations of hyphae occurring as early as 15 min of exposure to VOCs, as evidenced by transmission and scanning electron microscopy observations. Transcriptome reprogramming of H. abietinum induced by CHA0’s VOCs pointed out that detrimental effects occurred on ribosomes and protein synthesis while the cells tried to react by activating defense mechanisms, which required a lot of energy diverted from the growth and development (fitness cost).
Collapse
Affiliation(s)
- Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Angelo De Stradis
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Francesco Mannerucci
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
36
|
Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication. PLANT, CELL & ENVIRONMENT 2021; 44:1030-1043. [PMID: 33047347 PMCID: PMC8048923 DOI: 10.1111/pce.13910] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Volatile organic compounds are important mediators of mutualistic interactions between plants and their physical and biological surroundings. Volatiles rapidly indicate competition or potential threat before these can take place, and they regulate and coordinate adaptation responses in neighbouring plants, fine-tuning them to match the exact stress encountered. Ecological specificity and context-dependency of plant-plant communication mediated by volatiles represent important factors that determine plant performance in specific environments. In this review, we synthesise the recent progress made in understanding the role of plant volatiles as mediators of plant interactions at the individual and community levels, highlighting the complexity of the plant receiver response to diverse volatile cues and signals and addressing how specific responses shape plant growth and survival. Finally, we outline the knowledge gaps and provide directions for future research. The complex dialogue between the emitter and receiver based on either volatile cues or signals determines the outcome of information exchange, which shapes the communication pattern between individuals at the community level and determines their ecological implications at other trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Dimitrije Markovic
- Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
- Faculty of Agriculture, University of Banja LukaBanja LukaBosnia and Herzegovina
| | - Merlin Rensing
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
37
|
Leal C, Fontaine F, Aziz A, Egas C, Clément C, Trotel-Aziz P. Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 isolated from a Vitis vinifera (cv. Chardonnay) rhizospheric soil: assets for sustainable biocontrol. ENVIRONMENTAL MICROBIOME 2021; 16:3. [PMID: 33902737 PMCID: PMC8067347 DOI: 10.1186/s40793-021-00372-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bacillus subtilis strains have been widely studied for their numerous benefits in agriculture, including viticulture. Providing several assets, B. subtilis spp. are described as promising plant-protectors against many pathogens and as influencers to adaptations in a changing environment. This study reports the draft genome sequence of the beneficial Bacillus subtilis PTA-271, isolated from the rhizospheric soil of healthy Vitis vinifera cv. Chardonnay at Champagne Region in France, attempting to draw outlines of its full biocontrol capacity. RESULTS The PTA-271 genome has a size of 4,001,755 bp, with 43.78% of G + C content and 3945 protein coding genes. The draft genome of PTA-271 putatively highlights a functional swarming motility system hypothesizing a colonizing capacity and a strong interacting capacity, strong survival capacities and a set of genes encoding for bioactive substances. Predicted bioactive compounds are known to: stimulate plant growth or defenses such as hormones and elicitors, influence beneficial microbiota, and counteract pathogen aggressiveness such as effectors and many kinds of detoxifying enzymes. CONCLUSIONS Plurality of the putatively encoded biomolecules by Bacillus subtilis PTA-271 genome suggests environmentally robust biocontrol potential of PTA-271, protecting plants against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Catarina Leal
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Florence Fontaine
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Aziz Aziz
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Conceiçao Egas
- UC-Biotech_CNC, Biocant Park, Biotechnology Innovation Center, P-3060-197, Cantanhede, Portugal
| | - Christophe Clément
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Patricia Trotel-Aziz
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France.
| |
Collapse
|
38
|
Camarena-Pozos DA, Flores-Núñez VM, López MG, Partida-Martínez LP. Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environ Microbiol 2021; 23:2215-2229. [PMID: 33432727 DOI: 10.1111/1462-2920.15395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Fungi represent a group of eukaryotic microorganisms that are an important part of the plant microbiome. They produce a vast array of metabolites, including fungal volatile organic compounds (fVOCs). However, the diversity and biological activities of fVOCs emitted by the mycobiota of plants native to arid and semi-arid environments remain under-explored. We characterized the chemical diversity of fVOCs produced by 22 representative members of the microbiome of agaves and cacti using SPME-GC-MS. We further tested the effects of pure compounds on the growth and development of Arabidopsis thaliana and host plants. Members of the Sordariomycetes (nine strains), Eurotiomycetes (three), Dothideomycetes (eight), Saccharomycetes (one) and Mucoromycetes (one) were included in our study. We identified 94 fungal organic volatiles classified into nine chemical classes. Terpenes showed the greatest chemical diversity, followed by alcohols and aliphatic compounds. We discovered that camphene and benzyl benzoate, together with the widely distributed and already tested benzyl alcohol, 2-phenylethyl alcohol and 3-methyl-1-butanol, improved plant growth and development of A. thaliana, Agave tequilana and Agave salmiana. Our studies on the fungal VOCs from desert plants underscore an untapped chemical diversity with promising biotechnological applications.
Collapse
Affiliation(s)
- D A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - V M Flores-Núñez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - M G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - L P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| |
Collapse
|
39
|
Tyagi S, Kumar R, Kumar V, Won SY, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM CROPS & FOOD 2021; 12:125-144. [PMID: 33079628 PMCID: PMC7583490 DOI: 10.1080/21645698.2020.1831729] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023]
Abstract
Plants are susceptible to phytopathogens, including bacteria, fungi, and viruses, which cause colossal financial shortfalls (pre- and post-harvest) and threaten global food safety. To combat with these phytopathogens, plant possesses two-layer of defense in the form of PAMP-triggered immunity (PTI), or Effectors-triggered immunity (ETI). The understanding of plant-molecular interactions and revolution of high-throughput molecular techniques have opened the door for innovations in developing pathogen-resistant plants. In this context, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has transformed genome editing (GE) technology and being harnessed for altering the traits. Here we have summarized the complexities of plant immune system and the use of CRISPR-Cas9 to edit the various components of plant immune system to acquire long-lasting resistance in plants against phytopathogens. This review also sheds the light on the limitations of CRISPR-Cas9 system, regulation of CRISPR-Cas9 edited crops and future prospective of this technology.
Collapse
Affiliation(s)
- Swati Tyagi
- Genomic Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Robin Kumar
- Department of Soil Science and Agricultural Chemistry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, India
- Department of Agriculture Engineering, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Vivak Kumar
- Department of Agriculture Engineering, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - So Youn Won
- Genomic Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
40
|
Soto MJ, López-Lara IM, Geiger O, Romero-Puertas MC, van Dillewijn P. Rhizobial Volatiles: Potential New Players in the Complex Interkingdom Signaling With Legumes. FRONTIERS IN PLANT SCIENCE 2021; 12:698912. [PMID: 34239533 PMCID: PMC8258405 DOI: 10.3389/fpls.2021.698912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Bacteria release a wide range of volatile compounds that play important roles in intermicrobial and interkingdom communication. Volatile metabolites emitted by rhizobacteria can promote plant growth and increase plant resistance to both biotic and abiotic stresses. Rhizobia establish beneficial nitrogen-fixing symbiosis with legume plants in a process starting with a chemical dialog in the rhizosphere involving various diffusible compounds. Despite being one of the most studied plant-interacting microorganisms, very little is known about volatile compounds produced by rhizobia and their biological/ecological role. Evidence indicates that plants can perceive and respond to volatiles emitted by rhizobia. In this perspective, we present recent data that open the possibility that rhizobial volatile compounds have a role in symbiotic interactions with legumes and discuss future directions that could shed light onto this area of investigation.
Collapse
Affiliation(s)
- María J. Soto
- Estación Experimental del Zaidín, CSIC, Granada, Spain
- *Correspondence: María J. Soto,
| | - Isabel M. López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | |
Collapse
|
41
|
Moisan K, Raaijmakers JM, Dicke M, Lucas‐Barbosa D, Cordovez V. Volatiles from soil-borne fungi affect directional growth of roots. PLANT, CELL & ENVIRONMENT 2021; 44:339-345. [PMID: 32996612 PMCID: PMC7821104 DOI: 10.1111/pce.13890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 05/11/2023]
Abstract
Volatiles play major roles in mediating ecological interactions between soil (micro)organisms and plants. It is well-established that microbial volatiles can increase root biomass and lateral root formation. To date, however, it is unknown whether microbial volatiles can affect directional root growth. Here, we present a novel method to study belowground volatile-mediated interactions. As proof-of-concept, we designed a root Y-tube olfactometer, and tested the effects of volatiles from four different soil-borne fungi on directional growth of Brassica rapa roots in soil. Subsequently, we compared the fungal volatile organic compounds (VOCs) previously profiled with Gas Chromatography-Mass Spectrometry (GC-MS). Using our newly designed setup, we show that directional root growth in soil is differentially affected by fungal volatiles. Roots grew more frequently toward volatiles from the root pathogen Rhizoctonia solani, whereas volatiles from the other three saprophytic fungi did not impact directional root growth. GC-MS profiling showed that six VOCs were exclusively emitted by R. solani. These findings verify that this novel method is suitable to unravel the intriguing chemical cross-talk between roots and soil-borne fungi and its impact on root growth.
Collapse
Affiliation(s)
- Kay Moisan
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
- Present address:
Bio‐communication & EcologyETH ZürichZürichSwitzerland
| | - Viviane Cordovez
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
42
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
43
|
Moisan K, Aragón M, Gort G, Dicke M, Cordovez V, Raaijmakers JM, Lucas‐Barbosa D. Fungal volatiles influence plant defence against above‐ground and below‐ground herbivory. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kay Moisan
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
| | - Marcela Aragón
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
| | - Gerrit Gort
- Biometris Wageningen University and Research Wageningen the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
- Institute of Biology Leiden University Leiden the Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
- Institute of Biology Leiden University Leiden the Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of Entomology Wageningen University and Research Wageningen the Netherlands
| |
Collapse
|
44
|
Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front Microbiol 2020; 11:1619. [PMID: 32760378 PMCID: PMC7372246 DOI: 10.3389/fmicb.2020.01619] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
A fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an overview of the modes of action of microbial adaptation and biocontrol in the phyllosphere, the genetic basis of the mechanisms, and examples of experiments that can detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed, as ensuring sufficient and consistent food production for a growing world population, while protecting our environment, is one of the biggest challenges of our time.
Collapse
Affiliation(s)
- Marie Legein
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dieter Vandenheuvel
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Babette Muyshondt
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Laboratory for Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
45
|
Plant growth induction by volatile organic compound released from solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H. Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5024-5038. [PMID: 32255613 DOI: 10.1021/acs.jafc.0c00073] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microorganisms colonizing the plant rhizosphere provide a number of beneficial functions for their host. Although an increasing number of investigations clarified the great functional capabilities of rhizosphere microbial communities, the understanding of the precise mechanisms underlying the impact of rhizosphere microbiome assemblies is still limited. Also, not much is known about the various beneficial functions of the rhizosphere microbiome. In this review, we summarize the current knowledge of biotic and abiotic factors that shape the rhizosphere microbiome as well as the rhizosphere microbiome traits that are beneficial to plants growth and disease-resistance. We give particular emphasis on the impact of plant root metabolites on rhizosphere microbiome assemblies and on how the microbiome contributes to plant growth, yield, and disease-resistance. Finally, we introduce a new perspective and a novel method showing how a synthetic microbial community construction provides an effective approach to unravel the plant-microbes and microbes-microbes interplays.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Wanyue Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
47
|
Yadav R, Ror P, Rathore P, Ramakrishna W. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:222-233. [PMID: 32155450 DOI: 10.1016/j.plaphy.2020.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 05/16/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been used to enhance crop productivity. The effect of native PGPB and arbuscular mycorrhizal (AM) fungi in combination on wheat yield, biofortification and soil enzymatic activity is a relatively unexplored area. Twenty seven bacterial isolates from three different soils were characterized for their plant growth promoting traits. A total of three native and five non-native bacteria were used with and without arbuscular mycorrhizal (AM) fungi in an open greenhouse pot experiment with two wheat varieties to evaluate their effect on wheat yield, nutrient uptake, and soil health parameters. Wheat plants subjected to native PGPB (CP4) (Bacillus subtilis) and AM fungi treatment gave the best results with reference to macronutrient (nitrogen and phosphorus), micronutrient (iron and zinc) content in wheat grains and yield-related parameters, including thousand grain weight, number of grains per spike and total tillers per plant in both wheat cultivars. Treatment with CP4 and CP4 plus AM fungi enhanced total chlorophyll in wheat leaves indicating higher photosynthetic activity. Significant improvement in soil health-related parameters, including soil organic matter and dehydrogenase activity, was observed. Significant correlation among grain yield-related parameters, nutrient enhancement, and soil health parameters was observed in PGPB and AM fungi treated plants, especially HD-3086. These results provide a roadmap for utilizing native PGPB and AM fungi for enhancing wheat production in Punjab state of India and exploring their utility in other parts of the country with different soil and environmental conditions.
Collapse
Affiliation(s)
| | - Pankaj Ror
- Department of Biochemistry, Central University of Punjab, India
| | | | | |
Collapse
|
48
|
Tyagi S, Lee KJ, Shukla P, Chae JC. Dimethyl disulfide exerts antifungal activity against Sclerotinia minor by damaging its membrane and induces systemic resistance in host plants. Sci Rep 2020; 10:6547. [PMID: 32300135 PMCID: PMC7162885 DOI: 10.1038/s41598-020-63382-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023] Open
Abstract
Microbial volatile compounds (MVCs) significantly influence the growth of plants and phytopathogens. However, the practical application of MVCs at the field level is limited by the fact that the concentrations at which these compounds antagonize the pathogens are often toxic for the plants. In this study, we investigated the effect of dimethyl disulfide (DMDS), one of the MVCs produced by microorganisms, on the fitness of tomato plants and its fungicidal potential against a fungal phytopathogen, Sclerotinia minor. DMDS showed strong fungicidal and plant growth promoting activities with regard to the inhibition of mycelial growth, sclerotia formation, and germination, and reduction of disease symptoms in tomato plants infected with S. minor. DMDS exposure significantly upregulated the expression of genes related to growth and defense against the pathogen in tomato. Especially, the overexpression of PR1 and PR5 suggested the involvement of the salicylic acid pathway in the induction of systemic resistance. Several morphological and ultrastructural changes were observed in the cell membrane of S. minor and the expression of ergosterol biosynthesis gene was significantly downregulated, suggesting that DMDS damaged the membrane, thereby affecting the growth and pathogenicity of the fungus. In conclusion, the tripartite interaction studies among pathogenic fungus, DMDS, and tomato revealed that DMDS played roles in antagonizing pathogen as well as improving the growth and disease resistance of tomato. Our findings provide new insights into the potential of volatile DMDS as an effective tool against sclerotial rot disease.
Collapse
Affiliation(s)
- Swati Tyagi
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kui-Jae Lee
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Jong-Chan Chae
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
49
|
Garbeva P, Weisskopf L. Airborne medicine: bacterial volatiles and their influence on plant health. THE NEW PHYTOLOGIST 2020; 226:32-43. [PMID: 31651035 DOI: 10.1111/nph.16282] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 05/21/2023]
Abstract
Like most other eukaryotes, plants do not live alone but in close association with a diverse microflora. These plant-associated microbes contribute to plant health in many different ways, ranging from modulation of hormonal pathways to direct antibiosis of plant pathogens. Over the last 15 yr, the importance of volatile organic compounds as mediators of mutualistic interactions between plant-associated bacteria and their hosts has become evident. This review summarizes current knowledge concerning bacterial volatile-mediated plant protection against abiotic and biotic stresses. It then discusses the translational potential of such metabolites or of their emitters for sustainable crop protection, the possible ways to harness this potential, and the major challenges still preventing us from doing so. Finally, the review concludes with highlighting the most pressing scientific gaps that need to be filled in order to enable a better understanding of: the molecular mechanisms underlying the biosynthesis of bacterial volatiles; the complex regulation of bacterial volatile emission in natural communities; the perception of bacterial volatiles by plants; and the modes of actions of bacterial volatiles on their host.
Collapse
Affiliation(s)
- Paolina Garbeva
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
50
|
Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. ADVANCES IN PLANT MICROBIOME AND SUSTAINABLE AGRICULTURE 2020. [DOI: 10.1007/978-981-15-3204-7_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|