1
|
Wang D, Qu X, Zhang Z, Zhou G. New developments in the role of ferroptosis in sepsis‑induced cardiomyopathy (Review). Mol Med Rep 2025; 31:118. [PMID: 40052561 PMCID: PMC11904766 DOI: 10.3892/mmr.2025.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Sepsis is a life‑threatening organ dysfunction disorder caused by dysfunctional host response to infection. Sepsis‑induced cardiomyopathy (SIC) is a common and serious complication of sepsis, and it is associated with increased mortality rates; however, its specific pathogenesis is still unclear. Ferroptosis, which is an iron‑dependent form of programmed cell death, is involved in the pathophysiology of SIC. Further study on the mechanism and therapeutic targets of ferroptosis in SIC may provide new strategies for clinical diagnosis and treatment of this condition. The present article reviews the mechanisms between SIC and ferroptosis, summarizes the progress in research of the involvement of ferroptosis in SIC and provides new potential strategies for further research and treatment in the future.
Collapse
Affiliation(s)
- Dingdeng Wang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Xinguang Qu
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Zhaohui Zhang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| |
Collapse
|
2
|
Liang H, Bai X, Zhu R, Song H, Miao Y, Wen Y, Niu J, Zhang F. Diminution of HSP75 disrupts intestinal epithelial barrier by inciting mPTP opening in ulcerative colitis. Cell Signal 2025; 132:111837. [PMID: 40294832 DOI: 10.1016/j.cellsig.2025.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Ulcerative colitis is an idiopathic, chronic inflammatory disorder. The disruption of intestinal epithelial barrier caused by excessive apoptosis of intestinal epithelial cells is a pivotal factor in the etiology and pathology. The mitochondrial pathway is the most significant apoptosis mode of intestinal epithelial cells, which was regulated by the mitochondrial permeability transition pore(mPTP). However, the precise mechanism remains elusive. As a crucial molecule in combating stress and maintaining mitochondrial homeostasis, the heat shock protein 75(HSP75) may play a vital role in regulating the openness of the mPTP. In our research, we ascertained that HSP75 was significantly diminished in the intestinal mucosal of UC patients and experimental colitis mice, concomitantly with the disruption of intestinal epithelial barrier. Furthermore, a negative correlation between HSP75 and the openness of mPTP, mitochondrial-driven apoptosis, and disruption of intestinal epithelial barrier has been demonstrated in vivo and vitro. Secondly, HSP75 level is negatively correlated with the expression of ANT, VDAC, and PiC, which considered to be the components of mPTP. However, the CypD is unaffected by HSP75. Finally, HSP75 altered the synthesis of ANT, VDAC, PiC and the acetylation modification of ANT, but there is no direct interaction between HSP75 and mPTP component proteins. In conclusion, the present study demonstrated that HSP75 significantly decreased in the intestinal mucosa of UC, and preliminarily revealed a novel mechanism of HSP75 regulating the synthesis and openness of mPTP in the intestinal epithelial cells(IECs) of UC, suggesting that the targeted intestinal mucosa supplementation of HSP75 is anticipated to reverse the pathological process.
Collapse
Affiliation(s)
- Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Xinyu Bai
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Rui Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Huixian Song
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Yunling Wen
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China.
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China.
| |
Collapse
|
3
|
Zheng Q, Tang H, Qin Y, Liu D, Chen G, Tong T, Fu Y, Riaz A, Deng F, Chen Z, Zeng F, Jiang W. Genome-Wide Identification, Molecular Evolution, and Expression Divergence of CLC, ALMT, VDAC, and MSL Gene Family in Barley. Food Sci Nutr 2025; 13:e70110. [PMID: 40124110 PMCID: PMC11928749 DOI: 10.1002/fsn3.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
Organic and inorganic nutrients, osmotic components, associated protein cofactors, and signaling molecules regulate biotic and abiotic stresses in plants. Earlier reports suggest that plant cells activate anion channels and induce the efflux of anions at the plasma membrane under drought. Herein, CHLORIDE CHANNEL (CLC), ALUMINUM-ACTIVATED MALATE TRANSPORTER (ALMT), VOLTAGE-DEPENDENT ANION CHANNEL (VDAC), and MECHANOSENSITIVE CHANNEL of SMALL CONDUCTANCE-LIKE (MscS-like, MSL) gene family were reported in barley. Totally, 43 anion channel proteins were identified in barley at the genome-wide level. Expression profiles of anion channel genes were obtained from public databases and verified by qRT-PCR. In addition, the expression pattern of the anion channel gene family in multiple tissues among ten land plants showed the organs in which it is actively expressed, and 43 anion channel genes were expressed in diverse tissues, such as tillers, epidermal strips, inflorescences, and grain in barley. The expression of anion channel genes was performed in ten different cultivars and wild barley, of which 17 genes were confirmed by qRT-PCR under drought treatment, suggesting that different cultivars have diverse anion channel genes in response to drought stress. The plants with high transcripts of these genes demonstrated stronger tolerance to drought stress and element content (e.g., potassium, calcium). The results might help to further elucidate the molecular mechanism of anion channels related to stress and provide a toolkit for enhancing the drought tolerance of barley.
Collapse
Affiliation(s)
- Qingfeng Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Haiyang Tang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Duo Liu
- Institute of Hybrid WheatBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Guang Chen
- Central LaboratoryZhejiang Academy of Agricultural ScienceHangzhouChina
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Ying Fu
- School of Computer ScienceYangtze UniversityJingzhouChina
| | - Adeel Riaz
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Zhong‐Hua Chen
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of AgricultureYangtze UniversityJingzhouChina
| | - Wei Jiang
- College of AgriculturalNanjing Agricultural UniversityNanjingChina
- Xianghu LaboratoryHangzhouChina
| |
Collapse
|
4
|
Feng H, Peng N, Zhao X, Fu J, Luo Z, Zhang Y. Mitochondrial Porin Is Required for Versatile Biocontrol Trait-Involved Biological Processes in a Filamentous Insect Pathogenic Fungus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2088-2102. [PMID: 39797785 DOI: 10.1021/acs.jafc.4c11891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi. Here, the only VDAC isoform (BbOmm1) in the filamentous insect pathogenic fungus Beauveria bassiana was characterized, which was crucial for maintenance of mitochondrial homeostasis and function and important biocontrol traits. Besides serious impairment of fungal growth, conidiation, and germination, inactivation of BbOmm1 led to increased sensitivity/tolerance to oxidative and osmotic stresses and production of oosporein and other secondary metabolites, which corresponded to the mitochondrial damage, downregulation of membrane lipid and cell wall homeostasis-involved genes, and upregulation of detoxification genes and biosynthesis gene clusters of those metabolites. These results enrich our understanding of VDAC-mediated biocontrol traits in insect fungal pathogens.
Collapse
Affiliation(s)
- Haonan Feng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ning Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, P. R. China
- School of Basic Medicine Science, Chongqing University of Chinese Medicine, Chongqing 402760, P. R. China
| | - Jiawei Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
5
|
Hu Y, Yang H, Song C, Tian L, Wang P, Li T, Cheng C, AlNusaif M, Li S, Liang Z, Le W. LRRK2 G2019S Gene Mutation Causes Skeletal Muscle Impairment in Animal Model of Parkinson's Disease. J Cachexia Sarcopenia Muscle 2024; 15:2595-2607. [PMID: 39310961 PMCID: PMC11634472 DOI: 10.1002/jcsm.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND While the gradually aggravated motor and non-motor disorders of Parkinson's disease (PD) lead to progressive disability and frequent falling, skeletal muscle impairment may contribute to this condition. The leucine-rich repeat kinase2 (LRRK2) is a common disease-causing gene in PD. Little is known about its role in skeletal muscle impairment and its underlying mechanisms. METHODS To investigate whether the mutation in LRRK2 causes skeletal muscle impairment, we used 3-month-old (3mo) and 14-month-old (14mo) LRRK2G2019S transgenic (TG) mice as a model of PD, compared with the age-matched littermate wild-type (WT) controls. We measured the muscle mass and strength, ultrastructure, inflammatory infiltration, mitochondrial morphology and dynamics dysfunction through behavioural analysis, electromyography (EMG), immunostaining, transmission electron microscopy (TEM) and other molecular biology techniques. RESULTS The 3mo-TG mice display mild skeletal muscle impairment with spontaneous potentials in EMG (increased by 130%, p < 0.05), myofibre necrosis (p < 0.05) and myosin heavy chain-II changes (reduced by 19%, p < 0.01). The inflammatory cells and macrophage infiltration are significantly increased (CD8a+ and CD68+ cells up 1060% and 579%, respectively, both p < 0.0001) compared with the WT mice. All of the above pathogenic processes are aggravated by aging. The 14mo-TG mice EMG examinations show a reduced duration (by 31%, p < 0.01) and increased polyphasic waves of motor unit action potentials (by 28%, p < 0.05). The 14mo-TG mice present motor behavioural deficits (p < 0.05), muscle strength and mass reduction by 37% and 8% (p < 0.05 and p < 0.01, respectively). A remarkable increase in inflammatory infiltration is accompanied by pro-inflammatory cytokines in the skeletal muscles. TEM analysis shows muscle fibre regeneration with the reduced length of sarcomeres (by 6%;p < 0.05). The muscle regeneration is activated as Pax7+ cells increased by 106% (p < 0.0001), andmyoblast determination protein elevated by 71% (p < 0.01). We also document the morphological changes and dynamics dysfunction of mitochondria with the increase of mitofusin1 by 43% (p < 0.05) and voltage-dependent anion channel 1 by 115% (p < 0.001) in the skeletal muscles of 14mo-TG mice. CONCLUSIONS Taken together, these findings may provide new insights into the clinical and pathogenic involvement of LRRK2G2019 mutation in muscles, suggesting that the diseases may affect not only midbrain dopaminergic neurons, but also other tissues, and it may help overall clinical management of this devastating disease.
Collapse
Affiliation(s)
- Yiying Hu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of NeurologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Huijia Yang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Chunli Song
- Department of NeurologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lulu Tian
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Panpan Wang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Tianbai Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Cheng Cheng
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Murad AlNusaif
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Song Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Zhanhua Liang
- Department of NeurologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Weidong Le
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
6
|
Hossen S, Hanif MA, Cho Y, Kho KH. Molecular and structural analyses of voltage-dependent anion channel 2 and its anti-apoptotic function in stress and pollutant resistance in Pacific abalone. Int J Biol Macromol 2024; 282:137234. [PMID: 39491697 DOI: 10.1016/j.ijbiomac.2024.137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
This study aimed to identify voltage-dependent anion channel 2 (Hdh-VDAC2) and determine its functional role in response to acute thermal stress, H2O2-induced stress, heavy metal toxicity, bacterial and viral infections, and during metamorphosis. Structural analysis confirmed that Hdh-VDAC2 is a pore-forming β-barrel protein. Molecular docking further confirmed the protein-protein interactions of Hdh-VDAC2 with Hdh-BAX, Hdh-caspase 3, and Hdh-BCL2. In the Hdh-VDAC2-inhibited hemocytes (HCY), apoptotic genes (Hdh-caspase-3 and Hdh-BAX) exhibited elevated mRNA expression, while the anti-apoptotic gene (Hdh-BCL2) was downregulated. Further, fluorescent techniques confirmed excessive reactive oxygen species (ROS) production, lower cell viability, elevated caspase 3 activity, and increased DNA fragmentation in Hdh-VDAC2-inhibited HCY, indicating an anti-apoptotic role of Hdh-VDAC2 in Pacific abalone. Transcriptomic analysis revealed differential expression patterns, with upregulation in the digestive gland (DG) and downregulation in the gill (GIL) and HCY when comparing heat-tolerant (HT) versus heat-sensitive (HS) abalone groups. Additionally, both cold and heat stresses induced Hdh-VDAC2 expression. Other environmental factors including H2O2, cadmium, bacteria, and viruses, were also shown to induce Hdh-VDAC2 mRNA expression in the GIL and DG of Pacific abalone. During metamorphosis, the blastula (BLS) stage exhibited higher Hdh-VDAC2 mRNA expression. These findings suggest that Hdh-VDAC2 plays a crucial anti-apoptotic role and may be a biomarker for summer mortality in Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea.
| |
Collapse
|
7
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
8
|
Lv JL, Lai WQ, Gong YQ, Zheng KY, Zhang XY, Lu ZP, Li MW, Wang XY, Dai LS. Bombyx mori voltage-dependent anion-selective channel induces programmed cell death to defend against Bombyx mori nucleopolyhedrovirus infection. PEST MANAGEMENT SCIENCE 2024; 80:3752-3762. [PMID: 38488318 DOI: 10.1002/ps.8082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wen-Qing Lai
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yu-Quan Gong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiao-Ying Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhan-Peng Lu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Bi X, Lin M, Zhou Y, Li D, Xu Z, Zhou L, Huang J. Insecticidal Activity and Molecular Target by Morphological Analysis, RNAseq, and Molecular Docking of the Aryltetralin Lignan Lactone Helioxanthin, Isolated from Taiwania flousiana Gaussen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5133-5144. [PMID: 38427577 DOI: 10.1021/acs.jafc.3c06384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Botanical insecticides are considered an environmentally friendly approach to insect control because they are easily biodegraded and cause less environmental pollution compared to traditional chemical pesticides. In this study, we reported the insecticidal activities of the ingredients from Taiwania flousiana Gaussen (T. flousiana). Five compounds, namely helioxanthin (C1), taiwanin E (C2), taiwanin H (C3), 7,4'-dimethylamentoflavone (C4), and 7,7″-di-O-methylamentoflavone (C5), were isolated and tested against the second, third, and fourth instar larvae of Aedes aegypti. Our results indicated that all five compounds showed insecticidal activities, and helioxanthin, which is an aryltetralin lignan lactone, was the most effective with LC50 values of 0.60, 2.82, and 3.12 mg/L, respectively, 48 h after application, with its activity against the second instar larvae similar to that of pyrethrin and better than that of rotenone. Further studies found that helioxanthin accumulated in the gastric cecum and the midgut and caused swelling of mitochondria with shallow matrices and fewer or disappeared crista. Additionally, our molecular mechanisms studies indicated that the significantly differentially expressed genes (DEGs) were mainly associated with mitochondria and the cuticle, among which the voltage-dependent anion-selective channel (VDAC) gene was the most down-regulated by helioxanthin, and VDAC is the potential target of helioxanthin by binding to specific amino acid residues (His 122 and Glu 147) via hydrogen bonds. We conclude that aryltetralin lignan lactone is a potential class of novel insecticides by targeting VDAC.
Collapse
Affiliation(s)
- Xiaoyang Bi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Meihong Lin
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Yifeng Zhou
- College of Life Sciences, Hubei Minzu University, Enshi 445000, China
| | - Dandan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zuowei Xu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Lijuan Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jiguang Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
11
|
Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X. Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling. PLANT PHYSIOLOGY 2024; 194:1041-1058. [PMID: 37772952 DOI: 10.1093/plphys/kiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.
Collapse
Affiliation(s)
- Haixia Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zile Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Ouyang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- State Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Singh N, Ravi B, Saini LK, Pandey GK. Voltage-dependent anion channel 3 (VDAC3) mediates P. syringae induced ABA-SA signaling crosstalk in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108237. [PMID: 38109831 DOI: 10.1016/j.plaphy.2023.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Pathogen severely affects plant mitochondrial processes including respiration, however, the roles and mechanism of mitochondrial protein during the immune response remain largely unexplored. The interplay of plant hormone signaling during defense is an outcome of plant pathogen interaction. We recently discovered that the Arabidopsis calcineurin B-like interacting protein kinase 9 (AtCIPK9) interacts with the voltage-dependent anion channel 3 (AtVDAC3) and inhibits MV-induced oxidative damage. Here we report the characterization of AtVDAC3 in an antagonistic interaction pathway between abscisic acid (ABA) and salicylic acid (SA) signaling in Pseudomonas syringae -Arabidopsis interaction. In this study, we observed that mutants of AtVDAC3 were highly susceptible to Pseudomonas syringae infection as compared to the wild type (WT) Arabidopsis plants. Transcripts of VDAC3 and CIPK9 were inducible upon ABA application. Following pathogen exposure, expression analyses of ABA and SA biosynthesis genes indicated that the function of VDAC3 is required for isochorisimate synthase 1 (ICS1) expression but not for Nine-cis-epoxycaotenoid dioxygenase 3 (NCED3) expression. Despite the fact that vdac3 mutants had increased NCED3 expression in response to pathogen challenge, transcripts of ABA sensitive genes such as AtRD22 and AtRAB18 were downregulated even after exogenous ABA application. VDAC3 is required for ABA responsive genes expression upon exogenous ABA application. We also found that Pseudomonas syringae-induced SA signaling is downregulated in vdac3 mutants since overexpression of VDAC3 resulted in hyperaccumulation of Pathogenesis related gene1 (PR1) transcript. Interestingly, ABA application prior to P. syringae inoculation resulted in the upregulation of ABA responsive genes like Responsive to ABA18 (RAB18) and Responsive to dehydration 22 (RD22). Intriguingly, in the absence of AtVDAC3, Pst challenge can dramatically increase ABA-induced RD22 and RAB18 expression. Altogether our results reveal a novel Pathogen-SA-ABA interaction pathway in plants. Our findings show that ABA plays a significant role in modifying plant-pathogen interactions, owing to cross-talk with the biotic stress signaling pathways of ABA and SA.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
13
|
Chen Z, Jasinska W, Ashraf M, Rosental L, Hong J, Zhang D, Brotman Y, Shi J. Lipidomic insights into the response of Arabidopsis sepals to mild heat stress. ABIOTECH 2023; 4:224-237. [PMID: 37970465 PMCID: PMC10638258 DOI: 10.1007/s42994-023-00103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 11/17/2023]
Abstract
Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant's HSR, in the context of floral development. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00103-x.
Collapse
Affiliation(s)
- Zican Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Muhammad Ashraf
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Leah Rosental
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Jung Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
14
|
Li Y, Liu C, Qi M, Ye T, Kang Y, Wang Y, Wang X, Xue H. Effect of the metal ion-induced carbonylation modification of mitochondrial membrane channel protein VDAC on cell vitality, seedling growth and seed aging. FRONTIERS IN PLANT SCIENCE 2023; 14:1138781. [PMID: 37324694 PMCID: PMC10264620 DOI: 10.3389/fpls.2023.1138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Introduction Seeds are the most important carrier of germplasm preservation. However, an irreversible decrease in vigor can occur after the maturation of seeds, denoted as seed aging. Mitochondrion is a crucial organelle in initiation programmed cell death during seed aging. However, the underlying mechanism remains unclear. Methods Our previous proteome study found that 13 mitochondria proteins underwent carbonylation modification during the aging of Ulmus pumila L. (Up) seeds. This study detected metal binding proteins through immobilized metal affinity chromatography (IMAC), indicating that metal binding proteins in mitochondria are the main targets of carbonization during seed aging. Biochemistry, molecular and cellular biology methods were adopted to detect metal-protein binding, protein modification and subcellular localization. Yeast and Arabidopsis were used to investigate the biological functions in vivo. Results and discussion In IMAC assay, 12 proteins were identified as Fe2+/Cu2+/Zn2+ binding proteins, including mitochondrial voltage dependent anion channels (VDAC). UpVDAC showed binding abilities to all the three metal ions. His204Ala (H204A) and H219A mutated UpVDAC proteins lost their metal binding ability, and became insensitive to metal-catalyzed oxidation (MCO) induced carbonylation. The overexpression of wild-type UpVDAC made yeast cells more sensitive to oxidative stress, retarded the growth of Arabidopsis seedlings and accelerated the seed aging, while overexpression of mutated UpVDAC weakened these effects of VDAC. These results reveal the relationship between the metal binding ability and carbonylation modification, as well as the probable function of VDAC in regulating cell vitality, seedling growth and seed aging.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Manyao Qi
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ying Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Langer M, Hilo A, Guan JC, Koch KE, Xiao H, Verboven P, Gündel A, Wagner S, Ortleb S, Radchuk V, Mayer S, Nicolai B, Borisjuk L, Rolletschek H. Causes and consequences of endogenous hypoxia on growth and metabolism of developing maize kernels. PLANT PHYSIOLOGY 2023; 192:1268-1288. [PMID: 36691698 PMCID: PMC10231453 DOI: 10.1093/plphys/kiad038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.
Collapse
Affiliation(s)
- Matthias Langer
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Alexander Hilo
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Jiahn-Chou Guan
- University of Florida, Horticultural Sciences Department, Fifield Hall, 2550 Hull Rd., PO Box 110690, Gainesville, Florida, 32611, USA
| | - Karen E Koch
- University of Florida, Horticultural Sciences Department, Fifield Hall, 2550 Hull Rd., PO Box 110690, Gainesville, Florida, 32611, USA
| | - Hui Xiao
- Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Pieter Verboven
- Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Andre Gündel
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Steffen Wagner
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Volodymyr Radchuk
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Simon Mayer
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Bart Nicolai
- Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Ljudmilla Borisjuk
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany
| |
Collapse
|
16
|
Jiang W, Tong T, Chen X, Deng F, Zeng F, Pan R, Zhang W, Chen G, Chen ZH. Molecular response and evolution of plant anion transport systems to abiotic stress. PLANT MOLECULAR BIOLOGY 2022; 110:397-412. [PMID: 34846607 DOI: 10.1007/s11103-021-01216-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
We propose that anion channels are essential players for green plants to respond and adapt to the abiotic stresses associated changing climate via reviewing the literature and analyzing the molecular evolution, comparative genetic analysis, and bioinformatics analysis of the key anion channel gene families. Climate change-induced abiotic stresses including heatwave, elevated CO2, drought, and flooding, had a major impact on plant growth in the last few decades. This scenario could lead to the exposure of plants to various stresses. Anion channels are confirmed as the key factors in plant stress responses, which exist in the green lineage plants. Numerous studies on anion channels have shed light on their protein structure, ion selectivity and permeability, gating characteristics, and regulatory mechanisms, but a great quantity of questions remain poorly understand. Here, we review function of plant anion channels in cell signaling to improve plant response to environmental stresses, focusing on climate change related abiotic stresses. We investigate the molecular response and evolution of plant slow anion channel, aluminum-activated malate transporter, chloride channel, voltage-dependent anion channel, and mechanosensitive-like anion channel in green plant. Furthermore, comparative genetic and bioinformatic analysis reveal the conservation of these anion channel gene families. We also discuss the tissue and stress specific expression, molecular regulation, and signaling transduction of those anion channels. We propose that anion channels are essential players for green plants to adapt in a diverse environment, calling for more fundamental and practical studies on those anion channels towards sustainable food production and ecosystem health in the future.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xuan Chen
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
17
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
18
|
Yanda MK, Tomar V, Cole R, Guggino WB, Cebotaru L. The Mitochondrial Ca 2+ import complex is altered in ADPKD. Cell Calcium 2022; 101:102501. [PMID: 34823104 PMCID: PMC8840832 DOI: 10.1016/j.ceca.2021.102501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Mutations in either of the polycystic kidney disease genes, PKD1 or PKD2, engender the growth of cysts, altering renal function. Cystic growth is supported by major changes in cellular metabolism, some of which involve the mitochondrion, a major storage site for Ca2+ and a key organelle in cellular Ca2+ signaling. The goal here was to understand the role of components of the mitochondrial Ca2+ uptake complex in PC1-mutant cells in autosomal dominant polycystic kidney disease (ADPKD). We found that the mitochondrial Ca2+ uniporter (MCU) and voltage-dependent anion channels 1& 3 (VDAC) were down-regulated in different mouse and cell models of ADPKD along with the Ca2+-dependent enzyme, pyruvate dehydrogenase phosphatase (PDHX). The release of Ca2+ from the endoplasmic reticulum, and Ca2+ uptake by the mitochondria were upregulated in PC1(polycystin)-null cells. We also observed an enhanced staining with MitoTracker Red CMXRos in PC1-null cultured cells than in PC1-containing cells and a substantially higher increase in response to ER Ca2+ release. Increased colocalization of the Ca2+ sensitive dye, rhodamine2, with MitoTracker Green suggested an increase Ca2+ entry into the mitochondria in PC1 null cells subsequent to Ca2+ release from the ER or from Ca2+ entry from the extracellular solution. These data clearly demonstrate abnormal release of Ca2+ by the ER and corresponding alterations in Ca2+ uptake by the mitochondria in PC1-null cells. Importantly, inhibiting mitochondrial Ca2+ uptake with the specific inhibitor Ru360 inhibited cyst growth and altered both apoptosis and cell proliferation. We further show that the decrease in mitochondrial proteins and abnormally high Ca2+ signaling can be reversed by application of the cystic fibrosis (CFTR) corrector, VX-809. We conclude that enhanced Ca2+ signaling and alterations in proteins association with the mitochondrial Ca2+ uptake complex are associated with malfunction of PC1. Finally, our results identify novel therapeutic targets for treating ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vartika Tomar
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert Cole
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William B Guggino
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Liudmila Cebotaru
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| |
Collapse
|
19
|
Yang M, Duan X, Wang Z, Yin H, Zang J, Zhu K, Wang Y, Zhang P. Overexpression of a Voltage-Dependent Anion-Selective Channel (VDAC) Protein-Encoding Gene, MsVDAC, from Medicago sativa Confers Cold and Drought Tolerance to Transgenic Tobacco. Genes (Basel) 2021; 12:1706. [PMID: 34828312 PMCID: PMC8617925 DOI: 10.3390/genes12111706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are highly conserved proteins that are involved in the translocation of tRNA and play a key role in modulating plant senescence and multiple pathways. However, the functions of VDACs in plants are still poorly understood. Here, a novel VDAC gene was isolated and identified from alfalfa (Medicago sativa L.). MsVDAC localized to the mitochondria, and its expression was highest in alfalfa roots and was induced in response to cold, drought and salt treatment. Overexpression of MsVDAC in tobacco significantly increased MDA, GSH, soluble sugars, soluble protein and proline contents under cold and drought stress. However, the activities of SOD and POD decreased in transgenic tobacco under cold stress, while the O2- content increased. Stress-responsive genes including LTP1, ERD10B and Hxk3 were upregulated in the transgenic plants under cold and drought stress. However, GAPC, CBL1, BI-1, Cu/ZnSOD and MnSOD were upregulated only in the transgenic tobacco plants under cold stress, and GAPC, CBL1, and BI-1 were downregulated under drought stress. These results suggest that MsVDAC provides cold tolerance by regulating ROS scavenging, osmotic homeostasis and stress-responsive gene expression in plants, but the improved drought tolerance via MsVDAC may be mainly due to osmotic homeostasis and stress-responsive genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (X.D.); (Z.W.); (H.Y.); (J.Z.); (K.Z.); (Y.W.)
| |
Collapse
|
20
|
Heslop KA, Milesi V, Maldonado EN. VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges. Front Physiol 2021; 12:742839. [PMID: 34658929 PMCID: PMC8511398 DOI: 10.3389/fphys.2021.742839] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.
Collapse
Affiliation(s)
- Kareem A Heslop
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, La Plata, Argentina
| | - Eduardo N Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
21
|
Khan A, Kuriachan G, Mahalakshmi R. Cellular Interactome of Mitochondrial Voltage-Dependent Anion Channels: Oligomerization and Channel (Mis)Regulation. ACS Chem Neurosci 2021; 12:3497-3515. [PMID: 34503333 DOI: 10.1021/acschemneuro.1c00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) of the outer mitochondrial membrane are known conventionally as metabolite flux proteins. However, research findings in the past decade have revealed the multifaceted regulatory roles of VDACs, from governing cellular physiology and mitochondria-mediated apoptosis to directly regulating debilitating cancers and neurodegenerative diseases. VDACs achieve these diverse functions by establishing isoform-dependent stereospecific interactomes in the cell with the cytosolic constituents and endoplasmic reticulum complexes, and the machinery of the mitochondrial compartments. VDACs are now increasingly recognized as regulatory hubs of the cell. Not surprisingly, even the transient misregulation of VDACs results directly in mitochondrial dysfunction. Additionally, human VDACs are now implicated in interaction with aggregation-prone cytosolic proteins, including Aβ, tau, and α-synuclein, contributing directly to the onset of Alzheimer's and Parkinson's diseases. Deducing the interaction dynamics and mechanisms can lead to VDAC-targeted peptide-based therapeutics that can alleviate neurodegenerative states. This review succinctly presents the latest findings of the VDAC interactome, and the mode(s) of VDAC-dependent regulation of biochemical physiology. We also discuss the relevance of VDACs in pathophysiological states and aggregation-associated diseases and address how VDACs will facilitate the development of next-generation precision medicines.
Collapse
Affiliation(s)
- Altmash Khan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gifty Kuriachan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
22
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
23
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
24
|
Que T, Wang H, Yang W, Wu J, Hou C, Pei S, Wu Q, Li LM, Wei S, Xie X, Huang H, Chen P, Huang Y, Wu A, He M, Nong D, Wei X, Wu J, Nong R, Huang N, Zhou Q, Lin Y, Lu T, Wei Y, Li S, Yao J, Zhong Y, Qin H, Tan L, Li Y, Li W, Liu T, Liu S, Yu Y, Qiu H, Jiang Y, Li Y, Liu Z, Huang CM, Hu Y. The reference genome and transcriptome of the limestone langur, Trachypithecus leucocephalus, reveal expansion of genes related to alkali tolerance. BMC Biol 2021; 19:67. [PMID: 33832502 PMCID: PMC8034193 DOI: 10.1186/s12915-021-00998-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/05/2021] [Indexed: 01/13/2023] Open
Abstract
Background Trachypithecus leucocephalus, the white-headed langur, is a critically endangered primate that is endemic to the karst mountains in the southern Guangxi province of China. Studying the genomic and transcriptomic mechanisms underlying its local adaptation could help explain its persistence within a highly specialized ecological niche. Results In this study, we used PacBio sequencing and optical assembly and Hi-C analysis to create a high-quality de novo assembly of the T. leucocephalus genome. Annotation and functional enrichment revealed many genes involved in metabolism, transport, and homeostasis, and almost all of the positively selected genes were related to mineral ion binding. The transcriptomes of 12 tissues from three T. leucocephalus individuals showed that the great majority of genes involved in mineral absorption and calcium signaling were expressed, and their gene families were significantly expanded. For example, FTH1 primarily functions in iron storage and had 20 expanded copies. Conclusions These results increase our understanding of the evolution of alkali tolerance and other traits necessary for the persistence of T. leucocephalus within an ecologically unique limestone karst environment.
Collapse
Affiliation(s)
- Tengcheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Huifeng Wang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Weifei Yang
- Annoroad Gene Technology, Beijing, 100176, China
| | - Jianbao Wu
- Guangxi Chongzuo white headed langur national nature reserve, Chongzuo, Guangxi, 532200, China
| | - Chenyang Hou
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Surui Pei
- Annoroad Gene Technology, Beijing, 100176, China
| | - Qunying Wu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liu Ming Li
- Guangxi Reproductive Medical Research Center, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shilu Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xing Xie
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hongli Huang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Panyu Chen
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Yiming Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Aiqiong Wu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Meihong He
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Dengpan Nong
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Xiao Wei
- Guangxi Chongzuo white headed langur national nature reserve, Chongzuo, Guangxi, 532200, China
| | - Junyi Wu
- Nanning Animal Zoo, Nanning, Guangxi, 530021, China
| | - Ru Nong
- Nanning Animal Zoo, Nanning, Guangxi, 530021, China
| | - Ning Huang
- Nanning Animal Zoo, Nanning, Guangxi, 530021, China
| | - Qingniao Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yaowang Lin
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tingxi Lu
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yongjie Wei
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Shousheng Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Jianglong Yao
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Yanli Zhong
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Huayong Qin
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Luohao Tan
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Yingjiao Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Weidong Li
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tao Liu
- Annoroad Gene Technology, Beijing, 100176, China
| | - Sanyang Liu
- Annoroad Gene Technology, Beijing, 100176, China
| | - Yongyi Yu
- Annoroad Gene Technology, Beijing, 100176, China
| | - Hong Qiu
- Annoroad Gene Technology, Beijing, 100176, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Youcheng Li
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Cheng Ming Huang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yanling Hu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China. .,Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China. .,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
25
|
Rosencrans WM, Rajendran M, Bezrukov SM, Rostovtseva TK. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium 2021; 94:102356. [PMID: 33529977 PMCID: PMC7914209 DOI: 10.1016/j.ceca.2021.102356] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Voltage-dependent anion channel (VDAC), the most abundant mitochondrial outer membrane protein, is important for a variety of mitochondrial functions including metabolite exchange, calcium transport, and apoptosis. While VDAC's role in shuttling metabolites between the cytosol and mitochondria is well established, there is a growing interest in understanding the mechanisms of its regulation of mitochondrial calcium transport. Here we review the current literature on VDAC's role in calcium signaling, its biophysical properties, physiological function, and pathology focusing on its importance in cardiac diseases. We discuss the specific biophysical properties of the three VDAC isoforms in mammalian cells-VDAC 1, 2, and 3-in relationship to calcium transport and their distinct roles in cell physiology and disease. Highlighting the emerging evidence that cytosolic proteins interact with VDAC and regulate its calcium permeability, we advocate for continued investigation into the VDAC interactome at the contact sites between mitochondria and organelles and its role in mitochondrial calcium transport.
Collapse
Affiliation(s)
- William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Megha Rajendran
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
26
|
Zhang Y, Fernie AR. On the Detection and Functional Significance of the Protein-Protein Interactions of Mitochondrial Transport Proteins. Biomolecules 2020; 10:E1107. [PMID: 32722450 PMCID: PMC7464641 DOI: 10.3390/biom10081107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|