1
|
Sangeet S, Khan A. Bacopa monnieri phytochemicals as promising BACE1 inhibitors for Alzheimer's disease therapy. Sci Rep 2025; 15:13504. [PMID: 40251199 PMCID: PMC12008303 DOI: 10.1038/s41598-025-92644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/03/2025] [Indexed: 04/20/2025] Open
Abstract
Alzheimer's disease (AD) remains a formidable challenge, necessitating the discovery of effective therapeutic agents targeting β-site amyloid precursor protein cleaving enzyme 1 (BACE1). This study investigates the inhibitory potential of phytochemicals derived from Bacopa monnieri, a plant renowned for its cognitive-enhancing properties, in comparison to established synthetic inhibitors such as Atabecestat, Lanabecestat, and Verubecestat. Utilizing molecular docking and advanced computational simulations, we demonstrate that Bacopaside I exhibits superior binding affinity and a unique interaction profile with BACE1, suggesting a more nuanced inhibitory mechanism. Our findings highlight the promising role of Bacopa monnieri phytochemicals as viable alternatives to synthetic drugs, emphasizing their potential to overcome limitations faced in clinical settings. Furthermore, the development of the SIMANA ( https://simana.streamlit.app/ ) platform enhances the visualization and analysis of protein-ligand interactions, facilitating a deeper understanding of the dynamics involved. This research not only underscores the therapeutic promise of natural compounds in AD treatment but also advocates for a paradigm shift towards integrating traditional medicinal knowledge into contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Satyam Sangeet
- CompObelisk, Makolia, Bahraich, Uttar Pradesh, 271802, India.
| | - Arshad Khan
- CompObelisk, Makolia, Bahraich, Uttar Pradesh, 271802, India
| |
Collapse
|
2
|
Elamin G, Zhang Z, Dwarka D, Kasumbwe K, Mellem J, Mkhwanazi NP, Madlala P, Soliman MES. Integrative genomic analyses combined with molecular dynamics simulations reveal the impact of deleterious mutations of Bcl-2 gene on the apoptotic machinery and implications in carcinogenesis. Front Genet 2025; 15:1502152. [PMID: 39840282 PMCID: PMC11747654 DOI: 10.3389/fgene.2024.1502152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery. Single nucleotide polymorphisms (SNPs) are considered viable diagnostic and therapeutic biomarkers for various cancers. Therefore, this study explores the association between SNPs in Bcl-2 and the structural, functional, protein-protein interactions (PPIs), drug binding and dynamic characteristics. Methods Comprehensive cross-validated bioinformatics tools and molecular dynamics (MD) simulations. Multiple sequence, genetic, structural and disease phenotype analyses were applied in this study. Results Analysis revealed that out of 130 mutations, approximately 8.5% of these mutations were classified as pathogenic. Furthermore, two particular variants, namely, Bcl-2G101V and Bcl-2F104L, were found to be the most deleterious across all analyses. Following 500 ns, MD simulations showed that these mutations caused a significant distortion in the protein conformational, protein-protein interactions (PPIs), and drug binding landscape compared to Bcl-2WT. Conclusion Despite being a predictive study, the findings presented in this report would offer a perspective insight for further experimental investigation, rational drug design, and cancer gene therapy.
Collapse
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
- Department of Pharmaceutical Chemistry, College of Pharmacy, Karary University, Khartoum, Sudan
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Depika Dwarka
- Ezintsha, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kabange Kasumbwe
- Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - John Mellem
- Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Paradise Madlala
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
3
|
Premkumar T, Sajitha Lulu S. Targeting key players in Alzheimer's disease: bioactive compounds from Moringa oleifera, Desmodium gangeticum, and Centella asiatica as potential therapeutics. J Biomol Struct Dyn 2024:1-23. [PMID: 38887054 DOI: 10.1080/07391102.2024.2335300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's Disease (AD) is one of the critical reasons for dementia around the world, with a huge number of cases being reported every year. The breakdown of Amyloid Precursor Protein (APP) plays a crucial role in AD development. The Beta-site APP Cleaving Enzyme 1 (BACE1) is a highly significant proteolytic enzyme found to be critically involved in the APP breakdown process and generates beta-amyloid plaques in the extracellular neuronal membrane. In this study, we have used natural compounds with cognitive and neuroprotective activities from three plants, Centella asiatica, Moringa oleifera, and Desmodium gangeticum to inhibit the activity of BACE1. We have identified nine compounds out of 73 compounds filtered out from the three plants showing high affinity with the catalytic dyad region of BACE1 through molecular docking studies. Interestingly, the 200 ns molecular dynamics simulation study further confirmed the stability of the complexes formed between 9 compounds and the BACE1 protein. Furthermore, the free energy calculations also revealed these complexes possess favorable energies. Astilbin, Delphinidin 3-glucoside, and kaempferol 7-O-glucoside showed good binding affinity and structural stability when compared to other compounds and the control CNP520. Following a preliminary screening, the Astilbin compound was chosen based on the grounds of binding affinity, ADMET Properties, Hbond formation, Molecular Dynamic simulation, and MM-PBSA studies. A subsequent 1microsecond molecular dynamics simulation was conducted for the Astilbin complex. Through microsecond simulation, it was found that Astilbin alters BACE1's behavior and induces conformational rearrangements. Thus, this study opens a gateway to inhibit the activity of BACE1 protein through Astilbin thereby disclosing the possibility of managing Alzheimer's Disease.
Collapse
Affiliation(s)
- T Premkumar
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - S Sajitha Lulu
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Schmitz B, Frieg B, Homeyer N, Jessen G, Gohlke H. Extracting binding energies and binding modes from biomolecular simulations of fragment binding to endothiapepsin. Arch Pharm (Weinheim) 2024; 357:e2300612. [PMID: 38319801 DOI: 10.1002/ardp.202300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Fragment-based drug discovery (FBDD) aims to discover a set of small binding fragments that may be subsequently linked together. Therefore, in-depth knowledge of the individual fragments' structural and energetic binding properties is essential. In addition to experimental techniques, the direct simulation of fragment binding by molecular dynamics (MD) simulations became popular to characterize fragment binding. However, former studies showed that long simulation times and high computational demands per fragment are needed, which limits applicability in FBDD. Here, we performed short, unbiased MD simulations of direct fragment binding to endothiapepsin, a well-characterized model system of pepsin-like aspartic proteases. To evaluate the strengths and limitations of short MD simulations for the structural and energetic characterization of fragment binding, we predicted the fragments' absolute free energies and binding poses based on the direct simulations of fragment binding and compared the predictions to experimental data. The predicted absolute free energies are in fair agreement with the experiment. Combining the MD data with binding mode predictions from molecular docking approaches helped to correctly identify the most promising fragments for further chemical optimization. Importantly, all computations and predictions were done within 5 days, suggesting that MD simulations may become a viable tool in FBDD projects.
Collapse
Affiliation(s)
- Birte Schmitz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gisela Jessen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
5
|
Rahimi M, Taghdir M, Abasi Joozdani F. Dynamozones are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease. Sci Rep 2023; 13:14179. [PMID: 37648682 PMCID: PMC10469195 DOI: 10.1038/s41598-023-40818-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Proteins are not static but are flexible molecules that can adopt many different conformations. The HIV-1 protease is an important target for the development of therapies to treat AIDS, due to its critical role in the viral life cycle. We investigated several dynamics studies on the HIV-1 protease families to illustrate the significance of examining the dynamic behaviors and molecular motions for an entire understanding of their dynamics-structure-function relationships. Using computer simulations and principal component analysis approaches, the dynamics data obtained revealed that: (i) The flap regions are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease; (ii) There are dynamic structural regions in some proteins that contribute to the biological function and allostery of proteins via appropriate flexibility. These regions are a clear sign of the evolution of conformational dynamics of proteins, which we call dynamozones. The flap regions are one of the most important dynamozones members that are critical for HIV-1 protease function. Due to the existence of other members of dynamozones in different proteins, we propose to consider dynamozones as a footprint of the evolution of the conformational dynamics of proteins.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran
| |
Collapse
|
6
|
Kaur G, Goyal B. Deciphering the Molecular Mechanism of Inhibition of β‐Secretase (BACE1) Activity by a 2‐Amino‐imidazol‐4‐one Derivative. ChemistrySelect 2022. [DOI: 10.1002/slct.202202561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gurmeet Kaur
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
| |
Collapse
|
7
|
Mishra P, Basak S, Mukherjee A, Basu A. Design and Study of In Silico Binding Dynamics of Certain Isoxazole Bearing Leads Against Aβ-42 and BACE-1 Loop in Protein Fibrillation. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210813120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Design isoxazole bearing leads as dual inhibitors against Amyloid β and BACE-1 loop
in protein fibrillation.
Background:
Protein fibrillation is one of the key reasons for several diseases, namely Alzheimer’s, Parkinson’s,
and many others. One of the key strategies of preventing protein fibrillation is destabilizing the
protein fibrils themselves or inhibiting the amyloid fibril-forming pathway in the initial stage.
Introduction:
Attempts have been taken to design newer leads to inhibit protein fibrillation by targeting
the β-amyloidogenesis pathway in the brain. To exploit interfenestration between Amyloid β -42 protein
and BACE-1 (β-site amyloid precursor protein cleaving enzyme) for amyloidogenesis, studies are undertaken
to design dual inhibitors against the same.
Method:
In vitro binding interactions were found using docking, de novo ligand design, and MD simulation
study.
Results:
Three compounds bearing an isoxazole heterocyclic nucleus were designed which could successfully
bind to the hydrophobic raft and salt bridge residues Asp 23-Lys-26 of Amyloid β, destabilizing the
growing fibril. Additionally, one of our candidate compounds exhibited force of interaction with Thr232
at the S3 pocket of BACE-1, interacted with key residue Asp228, Tyr71, and Thr72 of the β-hairpin flap
and hydrogen bonding with Gly11 at loop 10s.
Conclusion:
Protein flexibility dynamics of the Aβ-42 protein revealed that there is a considerable conformational
change of the same with or without ligand binding. The lower RMSF of the bound region and
reprogramming residual contacts within the Aβ-42 protein suggested successful binding of the ligand with
the protein, lowering the access for further β-β dimerization.
Collapse
Affiliation(s)
- Puja Mishra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India
| | - Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India
| | - Arup Mukherjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, WB, India
| | - Anindya Basu
- School of Pharmaceutical Sciences, Rajiv
Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| |
Collapse
|
8
|
Bhakat S, Söderhjelm P. Flap Dynamics in Pepsin-Like Aspartic Proteases: A Computational Perspective Using Plasmepsin-II and BACE-1 as Model Systems. J Chem Inf Model 2022; 62:914-926. [PMID: 35138093 PMCID: PMC8889585 DOI: 10.1021/acs.jcim.1c00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/28/2022]
Abstract
The flexibility of β hairpin structure known as the flap plays a key role in catalytic activity and substrate intake in pepsin-like aspartic proteases. Most of these enzymes share structural and sequential similarity. In this study, we have used apo Plm-II and BACE-1 as model systems. In the apo form of the proteases, a conserved tyrosine residue in the flap region remains in a dynamic equilibrium between the normal and flipped states through rotation of the χ1 and χ2 angles. Independent MD simulations of Plm-II and BACE-1 remained stuck either in the normal or flipped state. Metadynamics simulations using side-chain torsion angles (χ1 and χ2 of tyrosine) as collective variables sampled the transition between the normal and flipped states. Qualitatively, the two states were predicted to be equally populated. The normal and flipped states were stabilized by H-bond interactions to a tryptophan residue and to the catalytic aspartate, respectively. Further, mutation of tyrosine to an amino-acid with smaller side-chain, such as alanine, reduced the flexibility of the flap and resulted in a flap collapse (flap loses flexibility and remains stuck in a particular state). This is in accordance with previous experimental studies, which showed that mutation to alanine resulted in loss of activity in pepsin-like aspartic proteases. Our results suggest that the ring flipping associated with the tyrosine side-chain is the key order parameter that governs flap dynamics and opening of the binding pocket in most pepsin-like aspartic proteases.
Collapse
Affiliation(s)
- Soumendranath Bhakat
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
- Department
of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, St. Louis, Missouri 63110, United States
| | - Pär Söderhjelm
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
9
|
Ugbaja SC, Lawal M, Kumalo H. An Overview of β-Amyloid Cleaving Enzyme 1 (Bace1) in Alzheimer's Disease Therapy Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem 2021; 29:114-135. [PMID: 34102967 DOI: 10.2174/0929867328666210608145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Over decades of its identification, numerous past and ongoing researches have focused on the therapeutic roles of β-amyloid cleaving enzyme 1 (BACE1) as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β-amyloid-associated plaques in patients with AD, the researchers eventually discontinued the tests due to the lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions to BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein sites splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
10
|
Habib I, Khan S, Mohammad T, Hussain A, Alajmi MF, Rehman T, Anjum F, Hassan MI. Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. J Biomol Struct Dyn 2021; 40:9053-9066. [PMID: 33982644 DOI: 10.1080/07391102.2021.1922313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is one of the major components of the shelterin complex. It directly binds to the telomere and controls its function by regulating the telomerase acting on it. Several variations are reported in the TRF1 gene; some are associated with variety of diseases. Here, we have studied the structural and functional significance of these variations in the TRFH domain of TRF1. We have used cutting-edge computational methods such as SIFT, PolyPhen-2, PROVEAN, Mutation Assessor, mCSM, SDM, STRUM, MAESTRO, and DUET to predict the effects of 124 mutations in the TRFH domain of TRF1. Out of 124 mutations, we have identified 12 deleterious mutations with high confidence based on their prediction. To see the impact of the finally selected mutations on the structure and stability of TRF1, all-atom molecular dynamics (MD) simulations on TRF1-Wild type (WT), L79R and P150R mutants for 200 ns were carried out. A significant conformational change in the structure of the P150R mutant was observed. Our integrated computational study provides a comprehensive understanding of structural changes in TRF1 incurred due to the mutations and subsequent function, leading to the progression of many diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Figueiredo PR, Santos SFG, Almeida BC, Simões I, Carvalho ATP. Introduction of a Glycine Linker Connecting the Heavy and Light Chains in Synthetic Cardosin B-Derived Rennet Changes the Specificity of Subpocket S3'. J Phys Chem B 2021; 125:4368-4374. [PMID: 33905253 DOI: 10.1021/acs.jpcb.1c01826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of plant-based synthetic rennets is of high commercial interest, due to the current great consumer demand for animal product alternatives. A previously developed recombinant form of the aspartic protease cardosin B with a three-glycine linker showed great potential due to its good performance in milk coagulation. This enzyme was found to be more specific and less proteolytically active than the native form for milk clotting, but the underlying structural causes for these activity changes were not completely clear. Here, we have performed molecular dynamics simulations with the recombinant enzyme with and without the linker. Our results showed that the introduction of the linker changes the subpocket S3', which is located more than 4 nm away. These results showcase how small modifications in proteins can have significant effects in distant regions in the protein structure that affect their biotechnological applications.
Collapse
Affiliation(s)
- Pedro R Figueiredo
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sónia F G Santos
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz C Almeida
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandra T P Carvalho
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
12
|
Bhakat S. Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments. RSC Adv 2021; 11:11026-11047. [PMID: 35423571 PMCID: PMC8695779 DOI: 10.1039/d0ra10359d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/21/2021] [Indexed: 01/26/2023] Open
Abstract
Pepsin-like aspartic proteases (PAPs) are a class of aspartic proteases which shares tremendous structural similarity with human pepsin. One of the key structural features of PAPs is the presence of a β-hairpin motif otherwise known as flap. The biological function of the PAPs is highly dependent on the conformational dynamics of the flap region. In apo PAPs, the conformational dynamics of the flap is dominated by the rotational degrees of freedom associated with χ1 and χ2 angles of conserved Tyr (or Phe in some cases). However it is plausible that dihedral order parameters associated with several other residues might play crucial roles in the conformational dynamics of apo PAPs. Due to their size, complexities associated with conformational dynamics and clinical significance (drug targets for malaria, Alzheimer's disease etc.), PAPs provide a challenging testing ground for computational and experimental methods focusing on understanding conformational dynamics and molecular recognition in biomolecules. The opening of the flap region is necessary to accommodate substrate/ligand in the active site of the PAPs. The BIG challenge is to gain atomistic details into how reversible ligand binding/unbinding (molecular recognition) affects the conformational dynamics. Recent reports of kinetics (K i, K d) and thermodynamic parameters (ΔH, TΔS, and ΔG) associated with macro-cyclic ligands bound to BACE1 (belongs to PAP family) provide a perfect challenge (how to deal with big ligands with multiple torsional angles and select optimum order parameters to study reversible ligand binding/unbinding) for computational methods to predict binding free energies and kinetics beyond typical test systems e.g. benzamide-trypsin. In this work, i reviewed several order parameters which were proposed to capture the conformational dynamics and molecular recognition in PAPs. I further highlighted how machine learning methods can be used as order parameters in the context of PAPs. I then proposed some open ideas and challenges in the context of molecular simulation and put forward my case on how biophysical experiments e.g. NMR, time-resolved FRET etc. can be used in conjunction with biomolecular simulation to gain complete atomistic insights into the conformational dynamics of PAPs.
Collapse
Affiliation(s)
- Soumendranath Bhakat
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University P. O. Box 124 SE-22100 Lund Sweden +46-769608418
| |
Collapse
|
13
|
Fakhar Z, Khan S, AlOmar SY, Alkhuriji A, Ahmad A. ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease enzyme against COVID-19. Sci Rep 2021; 11:234. [PMID: 33420186 PMCID: PMC7794216 DOI: 10.1038/s41598-020-79918-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
A new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and become pandemic with thousands new deaths and infected cases globally. To address coronavirus disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us to explore potential lead compounds by considering drug repurposing approach targeting main protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as it contributes significantly in mediating viral replication and transcription. Herein, comprehensive computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for virtual screening based PhaseScore. Docking based virtual screening workflow was used to generate hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical properties of the selected lead compounds were characterized using ADMET. Molecular dynamics simulations were performed to explore the binding affinities of the considered lead compounds. Binding energies revealed that compound ABBV-744 binds to the Mpro with strong affinity (ΔGbind -45.43 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. Our study classified three best compounds which could be considered as promising inhibitors against main protease SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Zeynab Fakhar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS, Johannesburg, 2050, South Africa
| | - Shama Khan
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Y AlOmar
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Afrah Alkhuriji
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| |
Collapse
|
14
|
Ugbaja SC, Appiah-Kubi P, Lawal MM, Gumede NS, Kumalo HM. Unravelling the molecular basis of AM-6494 high potency at BACE1 in Alzheimer's disease: an integrated dynamic interaction investigation. J Biomol Struct Dyn 2021; 40:5253-5265. [PMID: 33410374 DOI: 10.1080/07391102.2020.1869099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
β-amyloid precursor protein cleaving enzyme1 (BACE1) has prominently been an important drug design target implicated in Alzheimer's disease pathway. The failure rate of most of the already tested drugs at different clinical phases remains a major concern. Recently, AM-6494 was reported as a novel potent, highly selective, and orally effective inhibitor against BACE1. AM-6494 displayed no alteration of skin/fur colour in animal studies, an adverse effect common to previous BACE1 inhibitors. However, the atomistic molecular mechanism of BACE1 inhibition by AM-6494 remains unclear. To elucidate the binding mechanism of AM-6494 relative to umibecestat (CNP-520) as well as the structural changes when bound to BACE1, advanced computational techniques such as accelerated MD simulation and principal component analysis have been utilised. The results demonstrated higher binding affinity of AM-6494 at BACE1 with van der Waals as dominant energy contributor compared to umibecestat. Conformational monitoring of the β-hairpin flap covering the active site revealed an effective flap closure when bound with AM-6494 compared to CNP-520, which predominantly alternates between semi-open and closed conformations. The observed effective flap closure of AM-6494 explains its higher inhibitory power towards BACE1. Besides the catalytic Asp32/228 dyad, Tyr14, Leu30, Tyr71 and Gly230 represent critical residues in the potency of these inhibitors at BACE1 binding interface. The findings highlighted in this research provide a basis to explain AM-6494 high inhibitory potency and might assist in the design of new inhibitors with improved selectivity and potency for BACE1.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Patrick Appiah-Kubi
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monsurat M Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Nelisiwe S Gumede
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Arya R, Paliwal S, Gupta SP, Sharma S, Madan K, Mishra A, Verma K, Chauhan N. In-silico Studies and Biological Activity of Potential BACE-1 Inhibitors. Comb Chem High Throughput Screen 2020; 24:729-736. [PMID: 32957879 DOI: 10.2174/1386207323999200918151331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is a neurological condition causing cognitive inability and dementia. The pathological lesions and neuronal damage in the brain are caused by self-aggregated fragments of mutated Amyloidal precursor protein (APP). OBJECTIVE The controlled APP processing by inhibition of secretase is the strategy to reduce Aβ load to treat Alzheimer's disease. METHODS A QSAR study was performed on 55 Pyrrolidine based ligands as BACE-1 inhibitors with an activity magnitude greater than 4 of compounds. RESULTS In the advent of designing new BACE-1 inhibitors, the pharmacophore model with correlation (r = 0.90) and root mean square deviation (RMSD) of 0.87 was developed and validated. Further, the hits retrieved by the in-silico approach were evaluated by docking interactions. CONCLUSION Two structurally diverse compounds exhibited Asp32 and Thr232 binding with the BACE-1 receptor. The aryl-substituted carbamate compound exhibited the highest fit value and docking score. The biological activity evaluation by in-vitro assay was found to be >0.1μM.
Collapse
Affiliation(s)
- Richa Arya
- Banasthali Vidyapith, Banasthali-304022 (Raj.), India
| | | | - Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India
| | | | - Kirtika Madan
- Banasthali Vidyapith, Banasthali-304022 (Raj.), India
| | - Achal Mishra
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Tech. Campus. Bhilai, India
| | - Kanika Verma
- Banasthali Vidyapith, Banasthali-304022 (Raj.), India
| | - Neha Chauhan
- Banasthali Vidyapith, Banasthali-304022 (Raj.), India
| |
Collapse
|
16
|
Sosibo S, Amoako DG, Somboro AM, Sun DD, Ngila JC, Kumalo H. Understanding the Binding Mechanism of Antagonist (AZD3293) Against BACE-1: Molecular Insights into Alzheimer’s Drug Discovery. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666191029142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
β-site amyloid precursor protein cleaving enzyme (BACE 1) is the ratelimiting
enzyme in the formation of neurotoxic β-amyloid (Aβ) residues (Aβ1-40 or Aβ1-42)
considered as key players in the onset of Alzheimer’s Disease (AD). Consequently, BACE 1 is one
of the principal targets of anti-AD therapy with many small molecule BACE 1 inhibitors (BACE
1Is) in clinical trials. AZD3293 (Lanabecestat) is a BACE 1I that concluded in phase 2/3 clinical
trials. Due to the limited knowledge about the interaction of this drug with the BACE 1 enzyme, in
the present study, we performed comprehensive Molecular Dynamics (MD) analysis to understand
the binding mechanism of AZD3293 to BACE 1.
Methods:
A production run of 120 ns is carried out and results are analysed using Root Mean
Square Deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) to
explain the stability of enzyme ligand complex. Further, the distance (d1) between the flap tip
(Thr72) and the hinge residue of the flexible loop (Thr328), in relation to θ1 (Thr72–Asp228-
Thr328), and to the dihedral angle δ (Thr72-Asp35-Asp228-Thr328) were measured.
Results:
The presence of the ligand within the active site restricted conformational changes as
shown by decreased values of RMSF and average RMSD of atomic positions when compared to the
values of the apoenzyme. Further analysis via the flap dynamics approach revealed that the
AZD3293 decreases the flexibility of binding residues and made them rigid by altering the
conformational changes.
Conclusion:
The prospective binding modes of AZD3293 from this study may extend the
knowledge of the BACE 1-drug interaction and pave the way to design analogues with similar
inhibitory properties needed to slow the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Sphelele Sosibo
- School of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2001, South Africa
| | - Daniel Gyamfi Amoako
- Drug Research and Innovation Research Unit, School of Medical Biochemistry, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Anou Moise Somboro
- Drug Research and Innovation Research Unit, School of Medical Biochemistry, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Darren Delai Sun
- School of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2001, South Africa
| | - Jane Catherine Ngila
- School of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2001, South Africa
| | - Hezekiel Kumalo
- Drug Research and Innovation Research Unit, School of Medical Biochemistry, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| |
Collapse
|
17
|
Coimbra JRM, Baptista SJ, Dinis TCP, Silva MMC, Moreira PI, Santos AE, Salvador JAR. Combining Virtual Screening Protocol and In Vitro Evaluation towards the Discovery of BACE1 Inhibitors. Biomolecules 2020; 10:biom10040535. [PMID: 32244832 PMCID: PMC7226079 DOI: 10.3390/biom10040535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The treatment options for a patient diagnosed with Alzheimer’s disease (AD) are currently limited. The cerebral accumulation of amyloid-β (Aβ) is a critical molecular event in the pathogenesis of AD. When the amyloidogenic β-secretase (BACE1) is inhibited, the production of Aβ peptide is reduced. Henceforth, the main goal of this study is the discovery of new small bioactive molecules that potentially reach the brain and inhibit BACE1. The work was conducted by a customized molecular modelling protocol, including pharmacophore-based and molecular docking-based virtual screening (VS). Structure-based (SB) and ligand-based (LB) pharmacophore models were designed to accurately screen several drug-like compound databases. The retrieved hits were subjected to molecular docking and in silico filtered to predict their ability to cross the blood–brain barrier (BBB). Additionally, 34 high-scoring compounds structurally distinct from known BACE1 inhibitors were selected for in vitro screening assay, which resulted in 13 novel hit-compounds for this relevant therapeutic target. This study disclosed new BACE1 inhibitors, proving the utility of combining computational and in vitro approaches for effectively predicting anti-BACE1 agents in the early drug discovery process.
Collapse
Affiliation(s)
- Judite R. M. Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
| | - Salete J. Baptista
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Chem4Pharma, Edifício IPN Incubadora, 3030-199 Coimbra, Portugal
| | - Teresa C. P. Dinis
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria M. C. Silva
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
| | - Paula I. Moreira
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E. Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Correspondence: ; Tel.: +351-239-488-479
| |
Collapse
|
18
|
Bobrovs R, Jaudzems K, Jirgensons A. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases. J Med Chem 2019; 62:8931-8950. [DOI: 10.1021/acs.jmedchem.9b00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| |
Collapse
|
19
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Ion GND, Mihai DP, Lupascu G, Nitulescu GM. Application of molecular framework-based data-mining method in the search for beta-secretase 1 inhibitors through drug repurposing. J Biomol Struct Dyn 2018; 37:3674-3685. [PMID: 30234434 DOI: 10.1080/07391102.2018.1526115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeting beta-secretase 1, also known as beta-amyloid precursor protein-cleaving enzyme (BACE-1) for the inhibition of amyloid production, has been intensely studied in the last decades in the search for stopping Alzheimer's disease (AD) progression. The chances of finding a druggable BACE-1 inhibitor may be increased by drug repurposing, as this kind of molecules already fulfil certain requirements needed for further advancement. The study describes the development and application of a data-mining method based on molecular frameworks and descriptor values of tested BACE-1 inhibitors, suitable for filtering large compound databases, in order to find molecules with high potency against this protease. A total of 465 compounds extracted from the literature, tested against BACE-1, were analysed for finding molecular descriptor values and frameworks that ensure a high probability of strong inhibition. Resulting conclusions were used for filtering DrugBank database, containing ∼8700 approved and experimental drugs, obtaining 26 structures characterized by four major Bemis-Murcko frameworks: 2-[3-(2-cyclohexylethyl)cyclohexyl]-decahydronaphthalene, 3-(2-cyclohexylethyl)-1,1'-bi(cyclohexane), [5-(cyclohexylmethyl)-8-cyclopentyloctyl]cyclohexane and (3-cyclohexylcyclopentyl)cyclohexane. The compounds were further studied by molecular docking using the structure of the closed form of the enzyme, which revealed seven compounds already involved in trials targeting BACE-1 inhibition, confirming the method's specificity. The compounds that afforded the best binding energies were DB06925 (tyrosine-protein kinase inhibitor), DB12285 (Verubecestat) and DB08899 (Enzalutamide). Moreover, docking results indicated several other molecules with high in silico inhibitory potency that can be further studied for developing a potential treatment for AD. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Dragos Paul Mihai
- a Faculty of Pharmacy , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Gina Lupascu
- a Faculty of Pharmacy , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - George Mihai Nitulescu
- a Faculty of Pharmacy , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| |
Collapse
|
21
|
Kumar A, Srivastava G, Negi AS, Sharma A. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. J Biomol Struct Dyn 2018; 37:275-290. [DOI: 10.1080/07391102.2018.1426043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | - Gaurava Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | - Arvind S. Negi
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| |
Collapse
|
22
|
Kumar A, Sharma A. Computational Modeling of Multi-target-Directed Inhibitors Against Alzheimer’s Disease. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7404-7_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
23
|
McGillewie L, Ramesh M, Soliman ME. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases. Protein J 2017; 36:385-396. [PMID: 28762197 DOI: 10.1007/s10930-017-9735-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Collapse
Affiliation(s)
- Lara McGillewie
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Muthusamy Ramesh
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa.
| |
Collapse
|
24
|
Gueto-Tettay C, Pelaez-Bedoya L, Drosos-Ramirez JC. Population density analysis for determining the protonation state of the catalytic dyad in BACE1-tertiary carbinamine-based inhibitor complex. J Biomol Struct Dyn 2017; 36:3557-3574. [DOI: 10.1080/07391102.2017.1393461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carlos Gueto-Tettay
- Grupo de Química Bioorgánica, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Luis Pelaez-Bedoya
- Grupo de Química Bioorgánica, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | |
Collapse
|
25
|
Gueto-Tettay C, Martinez-Consuegra A, Zuchniarz J, Gueto-Tettay LR, Drosos-Ramírez JC. A PM7 dynamic residue-ligand interactions energy landscape of the BACE1 inhibitory pathway by hydroxyethylamine compounds. Part I: The flap closure process. J Mol Graph Model 2017; 76:274-288. [PMID: 28746905 DOI: 10.1016/j.jmgm.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
BACE1 is an enzyme of scientific interest because it participates in the progression of Alzheimer's disease. Hydroxyethylamines (HEAs) are a family of compounds which exhibit inhibitory activity toward BACE1 at a nanomolar level, favorable pharmacokinetic properties and oral bioavailability. The first step in the inhibition of BACE1 by HEAs consists of their entrance into the protease active site and the resultant conformational change in the protein, from Apo to closed form. These two conformations differ in the position of an antiparallel loop (called the flap) which covers the entrance to the catalytic site. For BACE1, closure of this flap is vital to its catalytic activity and to inhibition of the enzyme due to the new interactions thereby formed with the ligand. In the present study a dynamic energy landscape of residue-ligand interaction energies (ReLIE) measured for 112 amino acids in the BACE1 active site and its immediate vicinity during the closure of the flap induced by 8 HEAs of different inhibitory power is presented. A total of 6.272 million ReLIE calculations, based on the PM7 semiempirical method, provided a deep and quantitative view of the first step in the inhibition of the aspartyl protease. The information suggests that residues Asp93, Asp289, Thr292, Thr293, Asn294 and Arg296 are anchor points for the ligand, accounting for approximately 45% of the total protein-ligand interaction. Additionally, flap closure improved the BACE1-HEA interaction by around 25%. Furthermore, the inhibitory activity of HEAs could be related to the capacity of these ligands to form said anchor point interactions and maintain them over time: the lack of some of these anchor interactions delayed flap closure or impeded it completely, or even caused the flap to reopen. The methodology employed here could be used as a tool to evaluate future structural modifications which lead to improvements in the favorability and stability of BACE1-HEA ReLIEs, aiding in the design of better inhibitors.
Collapse
Affiliation(s)
- Carlos Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.
| | - Alejandro Martinez-Consuegra
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Joshua Zuchniarz
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Luis Roberto Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Juan Carlos Drosos-Ramírez
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.
| |
Collapse
|
26
|
Di Pietro O, Juárez-Jiménez J, Muñoz-Torrero D, Laughton CA, Luque FJ. Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors. PLoS One 2017; 12:e0177683. [PMID: 28505196 PMCID: PMC5432175 DOI: 10.1371/journal.pone.0177683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/01/2017] [Indexed: 12/30/2022] Open
Abstract
The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer's disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challenging. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments-huprine and rhein-that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8-14, 154-169 and 307-318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable "floppy" pocket would enable the binding of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligomethylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications introduced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors.
Collapse
Affiliation(s)
- Ornella Di Pietro
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine, Campus Torribera, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Charles A. Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University Park, Nottingham, United Kingdom
- * E-mail: (CAL); (FJL)
| | - F. Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine, Campus Torribera, University of Barcelona, Santa Coloma de Gramenet, Spain
- * E-mail: (CAL); (FJL)
| |
Collapse
|
27
|
Fakhar Z, Govender T, Maguire GEM, Lamichhane G, Walker RC, Kruger HG, Honarparvar B. Differential flap dynamics in l,d-transpeptidase2 from mycobacterium tuberculosis revealed by molecular dynamics. MOLECULAR BIOSYSTEMS 2017; 13:1223-1234. [PMID: 28480928 DOI: 10.1039/c7mb00110j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the advances in tuberculosis treatment, TB is still one the most deadly infectious diseases and remains a major global health quandary. Mycobacterium tuberculosis (Mtb) is the only known mycobacterium with a high content of 3→3 crosslinks in the biosynthesis of peptidoglycan, which is negligible in most bacterial species. An Mtb lacking LdtMt2 leads to alteration of the colony morphology and loss of virulence which makes this enzyme an attractive target. Regardless of the vital role of LdtMt2 for cell wall survival, the impact of ligand binding on the dynamics of the β-hairpin flap is still unknown. Understanding the structural and dynamical behaviour of the flap regions provides clear insight into the design of the effective inhibitors against LdtMt2. Carbapenems, an specific class of β-lactam family, have been shown to inactivate this enzyme. Herein a comprehensive investigation of the flap dynamics of LdtMt2 complex with substrate and three carbapenems namely, ertapenem, imipenem and meropenem is discussed and analyzed for the first account using 140 ns molecular dynamics simulations. The structural features (RMSD, RMSF and Rg) derived by MD trajectories were analyzed. Distance analysis, particularly tip-tip SER135-ASN167 index, identified conformational changes in terms of flap opening and closure within binding process. Principal component analysis (PCA) was employed to qualitatively understand the divergent effects of different inhibitors on the dominant motion of each residue. To probe different internal dynamics induced by ligand binding, dynamic cross-correlation marix (DCCM) analysis was used. The binding free energies of the selected complexes were assessed using MM-GBSA method and per residue free energy decomposition analysis were performed to characterize the contribution of the key residues to the total binding free energies.
Collapse
Affiliation(s)
- Zeynab Fakhar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa. and School of Chemistry and Physics, University of KwaZulu-Natal, 4001, Durban, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ross C Walker
- GlaxoSmithKline PLC, 1250 S. Collegeville Rd., Collegeville, PA 19426, USA and Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
28
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
29
|
Gueto-Tettay C, Zuchniarz J, Fortich-Seca Y, Gueto-Tettay LR, Drosos-Ramirez JC. A molecular dynamics study of the BACE1 conformational change from Apo to closed form induced by hydroxyethylamine derived compounds. J Mol Graph Model 2016; 70:181-195. [PMID: 27750187 DOI: 10.1016/j.jmgm.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
BACE1 is an aspartyl protease which is a therapeutic target for Alzheimer's disease (AD) because of its participation in the rate-limiting step in the production of Aβ-peptide, the accumulation of which produces senile plaques and, in turn, the neurodegenerative effects associated with AD. The active site of this protease is composed in part by two aspartic residues (Asp93 and Asp289). Additionally, the catalytic site has been found to be covered by an antiparallel hairpin loop called the flap. The dynamics of this flap are fundamental to the catalytic function of the enzyme. When BACE1 is inactive (Apo), the flap adopts an open conformation, allowing a substrate or inhibitor to access the active site. Subsequent interaction with the ligand induces flap closure and the stabilization of the macromolecular complex. Further, the protonation state of the aspartic dyad is affected by the chemical nature of the species entering the active site, so that appropriate selection of protonation states for the ligand and the catalytic residues will permit the elucidation of the inhibitory pathway for BACE1. In the present study, comparative analysis of different combinations of protonation states for the BACE1-hydroxyethylamine (HEA) system is reported. HEAs are potent inhibitors of BACE1 with favorable pharmacological and kinetic properties, as well as oral bioavailability. The results of Molecular Dynamics (MD) simulations and population density calculations using 8 different parameters demonstrate that the LnAsp289 configuration (HEA with a neutral amine and the Asp289 residue protonated) is the only one which permits the expected conformational change in BACE1, from apo to closed form, after flap closure. Additionally, differences in their capacities to establish and maintain interactions with residues such as Asp93, Gly95, Thr133, Asp289, Gly291, and Asn294 during this step allow differentiation among the inhibitory activities of the HEAs. The results and methodology here reported will serve to elucidate the inhibitory pathway of other families of compounds that act as BACE1 inhibitors, as well as the design of better leader compounds for the treatment of AD.
Collapse
Affiliation(s)
- Carlos Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia
| | - Joshua Zuchniarz
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia
| | - Yeyson Fortich-Seca
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia
| | - Luis Roberto Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia
| | - Juan Carlos Drosos-Ramirez
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Colombia.
| |
Collapse
|
30
|
Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors. Sci Rep 2016; 6:31420. [PMID: 27531685 PMCID: PMC4987639 DOI: 10.1038/srep31420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/20/2016] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV.
Collapse
|
31
|
Kumalo HM, Soliman ME. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. J Recept Signal Transduct Res 2016; 36:505-14. [PMID: 26804314 DOI: 10.3109/10799893.2015.1130058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed "twisting" motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer's disease therapies.
Collapse
Affiliation(s)
- H M Kumalo
- a Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| | - Mahmoud E Soliman
- a Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| |
Collapse
|