1
|
Patra J, Arora S, Debnath U, Mahindroo N. In silico studies for improving target selectivity of anti-malarial dual falcipain inhibitors vis-à-vis human cathepsins. J Biomol Struct Dyn 2024:1-20. [PMID: 39552300 DOI: 10.1080/07391102.2024.2427372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/21/2024] [Indexed: 11/19/2024]
Abstract
Dual falcipain-2 (FP-2) and falcipain-3 (FP-3) inhibitors, NM12 and NM15, displayed micromolar inhibitions but they exhibit similar binding affinities for the human cathepsins, thus indicating potential toxicity. The current study aims to develop a model to enhance the selectivity of the falcipain inhibitors vis-à-vis human cathepsins using previously identified dual falcipain 2 and 3 inhibitors, NM12 and NM15. To improve the selectivity of NM12 and NM15, analogs with weaker interactions with the conserved residues in the FPs and hCatK were designed while enhancing the unique interactions for the FPs. In silico analysis was carried out in the S2 subsite of both plasmodium and human proteases which is considered the preferred selective site due to the presence of less conserved residues. The Fasta sequence alignment and active/conserved binding site superimposition show that FPs contain acidic polar residues (Asp234 for FP2 and Glu243 for FP3) while hCatK has a neutral hydrophobic residue (Leu209) at the S2 subsite. Therefore, analogs of NM12 and NM15 were designed to enhance affinity and selectivity by improving interactions with these acidic residues while avoiding interactions with hydrophobic residues in hCatK. Newly designed analogs (NM12H and NM15G) show better selectivity as well as binding affinity towards FPs (ΔG of NM12H: -74.49 kcal/mol for FP2, -70.97 kcal/mol for FP3; ΔG of NM15G: -70.09 kcal/mol for FP2, -74.52 kcal/mol for FP3) as compared to NM12 and NM15. Thus, the selectivity and binding affinity against dual falcipains vis-à-vis human cathepsin were improved using molecular dynamic simulations.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, UPES, Energy Acres, Bidholi, India
| | - Smriti Arora
- School of Health Sciences and Technology, UPES, Energy Acres, Bidholi, India
| | - Utsab Debnath
- School of Health Sciences and Technology, UPES, Energy Acres, Bidholi, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, UPES, Energy Acres, Bidholi, India
- School of Health Sciences and Technology, Vishwanath Karad MIT World Peace University, Kothrud, Pune, India
| |
Collapse
|
2
|
Rahman A, Anjum S, Bhatt JD, Dixit BC, Singh A, Khan S, Fatima S, Patel TS, Hoda N. Sulfonamide based pyrimidine derivatives combating Plasmodium parasite by inhibiting falcipains-2 and falcipains-3 as antimalarial agents. RSC Adv 2024; 14:24725-24740. [PMID: 39114436 PMCID: PMC11304049 DOI: 10.1039/d4ra04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
In this report, we present the design and synthesis of a novel series of pyrimidine-tethered spirochromane-based sulfonamide derivatives aimed at combating drug resistance in malaria. The antimalarial effectiveness of these compounds was assessed in vitro. Structural validation of the synthesized compounds was conducted using mass spectrometry and NMR spectroscopy. Strong antimalarial activity against CQ-sensitive (3D7) and CQ-resistant (W2) strains of Plasmodium falciparum was demonstrated by the majority of the compounds. Notably, compounds SZ14 and SZ9 demonstrated particularly potent effects, with compound SZ14 showing IC50 values of 2.84 μM and SZ9 3.22 μM, indicating single-digit micromolar activity. The compounds exhibiting strong antimalarial activity were assessed through enzymatic tests against the cysteine protease enzymes of P. falciparum, falcipain-2 and falcipain-3. The results indicated that SZ14 and SZ9 inhibited PfFP-2 (IC50 values: 4.1 and 5.4 μM, respectively), and PfFP-3 (IC50 values: 4.9 and 6.3 μM, respectively). To confirm the compounds' specificity towards the parasite, we investigated their cytotoxicity against Vero cell lines, revealing strong selectivity indices and no significant cytotoxic effects. Additionally, in vitro hemolysis testing showed these compounds to be non-toxic to normal human blood cells. Moreover, predicted in silico ADME parameters and physiochemical characteristics demonstrated the drug-likeness of the synthetic compounds. These collective findings suggest that sulfonamide derivatives based on pyrimidine-tethered oxospirochromane could serve as templates for the future development of potential antimalarial drugs.
Collapse
Affiliation(s)
- Abdur Rahman
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Shazia Anjum
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Jaimin D Bhatt
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388120 Gujarat India +91-2692-230011#31
| | - Bharat C Dixit
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388120 Gujarat India +91-2692-230011#31
| | - Anju Singh
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Sabiha Khan
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Sadaf Fatima
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Tarosh S Patel
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University Vallabh Vidyanagar 388120 Gujarat India +91-2692-230011#31
| | - Nasimul Hoda
- Drug Design and Synthesis Lab., Department of Chemistry Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| |
Collapse
|
3
|
Uddin A, Gupta S, Shoaib R, Aneja B, Irfan I, Gupta K, Rawat N, Combrinck J, Kumar B, Aleem M, Hasan P, Joshi MC, Chhonker YS, Zahid M, Hussain A, Pandey K, Alajmi MF, Murry DJ, Egan TJ, Singh S, Abid M. Blood-stage antimalarial activity, favourable metabolic stability and in vivo toxicity of novel piperazine linked 7-chloroquinoline-triazole conjugates. Eur J Med Chem 2024; 264:115969. [PMID: 38039787 DOI: 10.1016/j.ejmech.2023.115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rumaisha Shoaib
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Kanika Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Rawat
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jill Combrinck
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Bhumika Kumar
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; National Institute of Malaria Research, New Delhi, 110077, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mukesh C Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science College of Pharmacy, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kailash Pandey
- National Institute of Malaria Research, New Delhi, 110077, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Daryl J Murry
- Department of Pharmacy Practice and Science College of Pharmacy, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
4
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Akash S, Abdelkrim G, Bayil I, Hosen ME, Mukerjee N, Shater AF, Saleh FM, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Tok TT. Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach. J Cell Mol Med 2023; 27:3168-3188. [PMID: 37724615 PMCID: PMC10568677 DOI: 10.1111/jcmm.17940] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of PharmacyFaculty of Allied Health Sciences, Daffodil International, UniversityDhakaBangladesh
| | - Guendouzi Abdelkrim
- Laboratory of Chemistry, Synthesis, Properties and Applications. (LCSPA)University of SaidaSaïdaAlgeria
| | - Imren Bayil
- Department of Bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| | - Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Nobendu Mukerjee
- Department of MicrobiologyWest Bengal State UniversityKolkataIndia
- Department of Health SciencesNovel Global Community Educational FoundationHebershamAustralia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesUniversity of TabukTabukSaudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of MedicineUniversity of TabukTabukSaudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Tuğba Taşkin Tok
- Department of Bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| |
Collapse
|
6
|
Verma K, Lahariya AK, Verma G, Kumari M, Gupta D, Maurya N, Verma AK, Mani A, Schneider KA, Bharti PK. Screening of potential antiplasmodial agents targeting cysteine protease-Falcipain 2: a computational pipeline. J Biomol Struct Dyn 2023; 41:8121-8164. [PMID: 36218071 DOI: 10.1080/07391102.2022.2130984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
The spread of antimalarial drug resistance is a substantial challenge in achieving global malaria elimination. Consequently, the identification of novel therapeutic candidates is a global health priority. Malaria parasite necessitates hemoglobin degradation for its survival, which is mediated by Falcipain 2 (FP2), a promising antimalarial target. In particular, FP2 is a key enzyme in the erythrocytic stage of the parasite's life cycle. Here, we report the screening of approved drugs listed in DrugBank using a computational pipeline that includes drug-likeness, toxicity assessments, oral toxicity evaluation, oral bioavailability, docking analysis, maximum common substructure (MCS) and molecular dynamics (MD) Simulations analysis to identify capable FP2 inhibitors, which are hence potential antiplasmodial agents. A total of 45 drugs were identified, which have positive drug-likeness, no toxic features and good bioavailability. Among these, six drugs showed good binding affinity towards FP2 compared to E64, an epoxide known to inhibit FP2. Notably, two of them, Cefalotin and Cefoxitin, shared the highest MCS with E64, which suggests that they possess similar biological activity as E64. In an investigation using MD for 100 ns, Cefalotin and Cefoxitin showed adequate protein compactness as well as satisfactory complex stability. Overall, these computational approach findings can be applied for designing and developing specific inhibitors or new antimalarial agents for the treatment of malaria infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ayush Kumar Lahariya
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Garima Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- School of Studies in Microbiology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Monika Kumari
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Biotechnology, St. Aloysius' (Autonomous) College, Affiliated to Rani Durgawati University, Jabalpur, Madhya Pradesh, Jabalpur, India
| | - Divanshi Gupta
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Biological Sciences, Rani Durgawati University, Jabalpur, Madhya Pradesh, India
| | - Neha Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Anil Kumar Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | | | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
- Department of Parasite Host Biology, National Institute of Malaria Research, Delhi, India
| |
Collapse
|
7
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
8
|
Hu Y, Wang Z, Shen C, Jiang C, Zhu Z, Liang P, Li H, Zeng Q, Xue Y, Wu Y, Wang Y, Liu L, Zhu H, Yi Y, Liu Q. Influence of the pK a value on the antioxidant activity of licorice flavonoids under solvent-mediated effects. Arch Pharm (Weinheim) 2023; 356:e2200470. [PMID: 36707412 DOI: 10.1002/ardp.202200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/29/2023]
Abstract
Licorice flavonoids (LCFs) have been widely used in food care and medical treatment due to their significant antioxidant activities. However, the molecular mechanism of their antioxidant activity remains unclear. Therefore, network pharmacology, ADMET, density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation were employed to explore the molecular mechanism of the antioxidant effects of LCF. The network pharmacology and ADMET studies showed that the active molecules of kumatakenin (pKa = 6.18), licoflavonol (pKa = 6.86), and topazolin (pKa = 6.21) in LCF are key antioxidant components and have good biosafety. Molecular docking and MD simulation studies demonstrated that active molecules interacted with amino acid residues in target proteins to form stable protein-ligand complexes and exert their antioxidant effects. DFT studies showed that the antioxidant activity of LCF could be significantly modulated under the solvent-mediated effect. In addition, based on the derivation of the Henderson-Hasselbalch and van't Hoff formulas, the functional relationships between the reaction-free energy (ΔG) of LCF and the pH and pKa values were established. The results showed that active molecules with larger pKa values will be more conducive to the improvement of their antioxidant activity under solvent-mediated effects. In conclusion, this study found that increasing the pKa value of LCF would be an effective strategy to improve their antioxidant activity under the effect of solvent mediation. The pKa value of an LCF will be a direct standard to evaluate its solvent-mediated antioxidant activity. This study will provide theoretical guidance for the development of natural antioxidants.
Collapse
Affiliation(s)
- Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - CuiPing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Identification of promising inhibitors for Plasmodium haemoglobinase Falcipain-2, using virtual screening, molecular docking, and MD Simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Boateng RA, Tastan Bishop Ö, Musyoka TM. Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study. Malar J 2020; 19:442. [PMID: 33256744 PMCID: PMC7756947 DOI: 10.1186/s12936-020-03512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodial transketolase (PTKT) enzyme is one of the novel pharmacological targets being explored as potential anti-malarial drug target due to its functional role and low sequence identity to the human enzyme. Despite this, features contributing to such have not been exploited for anti-malarial drug design. Additionally, there are no anti-malarial drugs targeting PTKTs whereas the broad activity of these inhibitors against PTKTs from other Plasmodium spp. is yet to be reported. This study characterises different PTKTs [Plasmodium falciparum (PfTKT), Plasmodium vivax (PvTKT), Plasmodium ovale (PoTKT), Plasmodium malariae (PmTKT) and Plasmodium knowlesi (PkTKT) and the human homolog (HsTKT)] to identify key sequence and structural based differences as well as the identification of selective potential inhibitors against PTKTs. METHODS A sequence-based study was carried out using multiple sequence alignment, phylogenetic tree calculations and motif discovery analysis. Additionally, TKT models of PfTKT, PmTKT, PoTKT, PmTKT and PkTKT were modelled using the Saccharomyces cerevisiae TKT structure as template. Based on the modelled structures, molecular docking using 623 South African natural compounds was done. The stability, conformational changes and detailed interactions of selected compounds were accessed viz all-atom molecular dynamics (MD) simulations and binding free energy (BFE) calculations. RESULTS Sequence alignment, evolutionary and motif analyses revealed key differences between plasmodial and the human TKTs. High quality homodimeric three-dimensional PTKTs structures were constructed. Molecular docking results identified three compounds (SANC00107, SANC00411 and SANC00620) which selectively bind in the active site of all PTKTs with the lowest (better) binding affinity ≤ - 8.5 kcal/mol. MD simulations of ligand-bound systems showed stable fluctuations upon ligand binding. In all systems, ligands bind stably throughout the simulation and form crucial interactions with key active site residues. Simulations of selected compounds in complex with human TKT showed that ligands exited their binding sites at different time steps. BFE of protein-ligand complexes showed key residues involved in binding. CONCLUSIONS This study highlights significant differences between plasmodial and human TKTs and may provide valuable information for the development of novel anti-malarial inhibitors. Identified compounds may provide a starting point in the rational design of PTKT inhibitors and analogues based on these scaffolds.
Collapse
Affiliation(s)
- Rita Afriyie Boateng
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| | - Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
11
|
Hernández González JE, Hernández Alvarez L, Leite VBP, Pascutti PG. Water Bridges Play a Key Role in Affinity and Selectivity for Malarial Protease Falcipain-2. J Chem Inf Model 2020; 60:5499-5512. [PMID: 32634311 DOI: 10.1021/acs.jcim.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Falcipain-2 (FP-2) is hemoglobinase considered an attractive drug target of Plasmodium falciparum. Recently, it has been shown that peptidomimetic nitriles containing a 3-pyridyl (3Pyr) moiety at P2 display high affinity and selectivity for FP-2 with respect to human cysteine cathepsins (hCats), outperforming other P2-Pyr isomers and analogs. Further characterization demonstrated that certain P3 variants of these compounds possess micromolar inhibition of parasite growth in vitro and no cytotoxicity against human cell lines. However, the structural determinants underlying the selectivity of the 3Pyr-containing nitriles for FP-2 remain unknown. In this work, we conduct a thorough computational study combining MD simulations and free energy calculations to decipher the bases of the selectivity of the aforementioned nitriles. Our results reveal that water bridges involving the nitrogen and one carboxyl oxygen of I85 and D234 of FP-2, respectively, and the nitrogen of the neutral 3Pyr moiety, which are either less prevalent or nonexistent in the other complexes, explain the experimental activity profiles. The presence of crystallographic waters close to the bridging water positions in the studied proteases strongly supports the occurrence of such interactions. Overall, our findings suggest that selective FP-2 inhibitors can be designed by promoting water bridge formation at the bottom of the S2 subsite and/or by introducing complementary groups that displace the bridging water.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Lilian Hernández Alvarez
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil.,Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor B P Leite
- Departamento de Fı́sica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão Rio de Janeiro, CEP 21941-902, Brazil
| |
Collapse
|
12
|
Zhu L, Shan L, Zhu J, Li L, Li S, Wang L, Wang J, Zhang S, Zhou H, Zhang W, Li H. Discovery of a natural fluorescent probe targeting the Plasmodium falciparum cysteine protease falcipain-2. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1016-1025. [PMID: 32048162 DOI: 10.1007/s11427-019-1581-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 01/19/2023]
Abstract
The Plasmodium falciparum cysteine protease falcipain-2 (FP-2) is an attractive antimalarial target. Here, we discovered that the natural compound NP1024 is a nonpeptidic inhibitor of FP-2 with an IC50 value of 0.44 μmol L-1. The most exciting finding is that both in vitro and in vivo, NP1024 directly targets FP-2 in malaria parasite-infected erythrocytes as a natural fluorescent probe, thereby paving the way for an integration of malaria diagnosis and treatment.
Collapse
Affiliation(s)
- Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Shan
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Junsheng Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Li
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liyan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shoude Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hongchang Zhou
- School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, 313000, China
| | - Weidong Zhang
- Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
13
|
Simoben CV, Ntie-Kang F, Robaa D, Sippl W. Case studies on computer-based identification of natural products as lead molecules. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe development and application of computer-aided drug design/discovery (CADD) techniques (such as structured-base virtual screening, ligand-based virtual screening and neural networks approaches) are on the point of disintermediation in the pharmaceutical drug discovery processes. The application of these CADD methods are standing out positively as compared to other experimental approaches in the identification of hits. In order to venture into new chemical spaces, research groups are exploring natural products (NPs) for the search and identification of new hits and more efficient leads as well as the repurposing of approved NPs. The chemical space of NPs is continuously increasing as a result of millions of years of evolution of species and these data are mainly stored in the form of databases providing access to scientists around the world to conduct studies using them. Investigation of these NP databases with the help of CADD methodologies in combination with experimental validation techniques is essential to identify and propose new drug molecules. In this chapter, we highlight the importance of the chemical diversity of NPs as a source for potential drugs as well as some of the success stories of NP-derived candidates against important therapeutic targets. The focus is on studies that applied a healthy dose of the emerging CADD methodologies (structure-based, ligand-based and machine learning).
Collapse
Affiliation(s)
- Conrad V. Simoben
- Department of Medicinal Chemistry (AG Sippl), Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120Halle (Saale), Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
- Department of Medicinal Chemistry (AG Sippl), Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry (AG Sippl), Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry (AG Sippl), Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120Halle (Saale), Germany
| |
Collapse
|
14
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
15
|
Identification of antimalarial leads with dual falcipain-2 and falcipain-3 inhibitory activity. Bioorg Med Chem 2020; 28:115155. [DOI: 10.1016/j.bmc.2019.115155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022]
|
16
|
Establishing Computational Approaches Towards Identifying Malarial Allosteric Modulators: A Case Study of Plasmodium falciparum Hsp70s. Int J Mol Sci 2019; 20:ijms20225574. [PMID: 31717270 PMCID: PMC6887781 DOI: 10.3390/ijms20225574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks.
Collapse
|
17
|
Musyoka T, Bishop ÖT. South African Abietane Diterpenoids and Their Analogs as Potential Antimalarials: Novel Insights from Hybrid Computational Approaches. Molecules 2019; 24:E4036. [PMID: 31703388 PMCID: PMC6891524 DOI: 10.3390/molecules24224036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
The hemoglobin degradation process in Plasmodium parasites is vital for nutrient acquisition required for their growth and proliferation. In P. falciparum, falcipains (FP-2 and FP-3) are the major hemoglobinases, and remain attractive antimalarial drug targets. Other Plasmodium species also possess highly homologous proteins to FP-2 and FP-3. Although several inhibitors have been designed against these proteins, none has been commercialized due to associated toxicity on human cathepsins (Cat-K, Cat-L and Cat-S). Despite the two enzyme groups sharing a common structural fold and catalytic mechanism, distinct active site variations have been identified, and can be exploited for drug development. Here, we utilize in silico approaches to screen 628 compounds from the South African natural sources to identify potential hits that can selectively inhibit the plasmodial proteases. Using docking studies, seven abietane diterpenoids, binding strongly to the plasmodial proteases, and three additional analogs from PubChem were identified. Important residues involved in ligand stabilization were identified for all potential hits through binding pose analysis and their energetic contribution determined by binding free energy calculations. The identified compounds present important scaffolds that could be further developed as plasmodial protease inhibitors. Previous laboratory assays showed the effect of the seven diterpenoids as antimalarials. Here, for the first time, we demonstrate that their possible mechanism of action could be by interacting with falcipains and their plasmodial homologs. Dynamic residue network (DRN) analysis on the plasmodial proteases identified functionally important residues, including a region with high betweenness centrality, which had previously been proposed as a potential allosteric site in FP-2.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
18
|
Musyoka TM, Njuguna JN, Tastan Bishop Ö. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design. Malar J 2019; 18:159. [PMID: 31053072 PMCID: PMC6500056 DOI: 10.1186/s12936-019-2790-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.
Collapse
Affiliation(s)
- Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Joyce Njoki Njuguna
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
19
|
Amusengeri A, Tastan Bishop Ö. Discorhabdin N, a South African Natural Compound, for Hsp72 and Hsc70 Allosteric Modulation: Combined Study of Molecular Modeling and Dynamic Residue Network Analysis. Molecules 2019; 24:E188. [PMID: 30621342 PMCID: PMC6337312 DOI: 10.3390/molecules24010188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/30/2023] Open
Abstract
The human heat shock proteins (Hsps), predominantly Hsp72 and Hsp90, have been strongly implicated in various critical stages of oncogenesis and progression of human cancers. While drug development has extensively focused on Hsp90 as a potential anticancer target, much less effort has been put against Hsp72. This work investigated the therapeutic potential of Hsp72 and its constitutive isoform, Hsc70, via in silico-based screening against the South African Natural Compounds Database (SANCDB). A comparative modeling approach was used to obtain nearly full-length 3D structures of the closed conformation of Hsp72 and Hsc70 proteins. Molecular docking of SANCDB compounds identified one potential allosteric modulator, Discorhabdin N, binding to the allosteric β substrate binding domain (SBDβ) back pocket, with good binding affinities in both cases. This allosteric region was identified in one of our previous studies. Subsequent all-atom molecular dynamics simulations and free energy calculations exhibited promising protein⁻ligand association characteristics, indicative of strong binding qualities. Further, we utilised dynamic residue network analysis (DRN) to highlight protein regions actively involved in cross-domain communication. Most residues identified agreed with known allosteric signal regulators from literature, and were further investigated for the purpose of deducing meaningful insights into the allosteric modulation properties of Discorhabdin N.
Collapse
Affiliation(s)
- Arnold Amusengeri
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
20
|
Chen W, Yao X, Huang Z, Mao F, Guan L, Tang Y, Jiang H, Li J, Huang J, Jiang L, Zhu J. Novel dual inhibitors against FP-2 and PfDHFR as potential antimalarial agents: Design, synthesis and biological evaluation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2017.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Nizi E, Sferrazza A, Fabbrini D, Nardi V, Andreini M, Graziani R, Gennari N, Bresciani A, Paonessa G, Harper S. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg Med Chem Lett 2018; 28:1540-1544. [PMID: 29615344 DOI: 10.1016/j.bmcl.2018.03.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
Falcipain-2 (FP2) is an essential enzyme in the lifecycle of malaria parasites such as Plasmodium falciparum, and its inhibition is viewed as an attractive mechanism of action for new anti-malarial agents. Selective inhibition of FP2 with respect to a family of human cysteine proteases (that include cathepsins B, K, L and S) is likely to be required for the development of agents targeting FP2. Here we describe a series of P2-modified aminonitrile based inhibitors of FP2 that provide a clear strategy toward addressing selectivity for the P. falciparum and show that it can provide potent FP2 inhibitors with strong selectivity against all four of these human cathepsin isoforms.
Collapse
Affiliation(s)
- Emanuela Nizi
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy.
| | - Alessio Sferrazza
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Danilo Fabbrini
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Valentina Nardi
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Matteo Andreini
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Rita Graziani
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Nadia Gennari
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Alberto Bresciani
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Giacomo Paonessa
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Steven Harper
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| |
Collapse
|
22
|
Chen W, Huang Z, Wang W, Mao F, Guan L, Tang Y, Jiang H, Li J, Huang J, Jiang L, Zhu J. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg Med Chem 2017; 25:6467-6478. [DOI: 10.1016/j.bmc.2017.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023]
|
23
|
Hernández González JE, Hernández Alvarez L, Pascutti PG, Valiente PA. Predicting binding modes of reversible peptide-based inhibitors of falcipain-2 consistent with structure-activity relationships. Proteins 2017; 85:1666-1683. [DOI: 10.1002/prot.25322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho; Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto São Paulo CEP 15054-000 Brazil
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana; Calle 25 No. 455, entre J e I, Vedado, Plaza de la Revolución La Habana CP 10400 Cuba
| | - Lilian Hernández Alvarez
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho; Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto São Paulo CEP 15054-000 Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Dinâmica e Modelagem Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão; Rio de Janeiro CEP 21941-902 Brazil
| | - Pedro A. Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana; Calle 25 No. 455, entre J e I, Vedado, Plaza de la Revolución La Habana CP 10400 Cuba
| |
Collapse
|
24
|
Brown DK, Tastan Bishop Ö. Role of Structural Bioinformatics in Drug Discovery by Computational SNP Analysis: Analyzing Variation at the Protein Level. Glob Heart 2017; 12:151-161. [PMID: 28302551 DOI: 10.1016/j.gheart.2017.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
With the completion of the human genome project at the beginning of the 21st century, the biological sciences entered an unprecedented age of data generation, and made its first steps toward an era of personalized medicine. This abundance of sequence data has led to the proliferation of numerous sequence-based techniques for associating variation with disease, such as genome-wide association studies and candidate gene association studies. However, these statistical methods do not provide an understanding of the functional effects of variation. Structure-based drug discovery and design is increasingly incorporating structural bioinformatics techniques to model and analyze protein targets, perform large scale virtual screening to identify hit to lead compounds, and simulate molecular interactions. These techniques are fast, cost-effective, and complement existing experimental techniques such as high throughput sequencing. In this paper, we discuss the contributions of structural bioinformatics to drug discovery, focusing particularly on the analysis of nonsynonymous single nucleotide polymorphisms. We conclude by suggesting a protocol for future analyses of the structural effects of nonsynonymous single nucleotide polymorphisms on proteins and protein complexes.
Collapse
Affiliation(s)
- David K Brown
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
25
|
Structure Based Docking and Molecular Dynamic Studies of Plasmodial Cysteine Proteases against a South African Natural Compound and its Analogs. Sci Rep 2016; 6:23690. [PMID: 27030511 PMCID: PMC4814779 DOI: 10.1038/srep23690] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/09/2016] [Indexed: 11/09/2022] Open
Abstract
Identification of potential drug targets as well as development of novel antimalarial chemotherapies with unique mode of actions due to drug resistance by Plasmodium parasites are inevitable. Falcipains (falcipain-2 and falcipain-3) of Plasmodium falciparum, which catalyse the haemoglobin degradation process, are validated drug targets. Previous attempts to develop peptide based drugs against these enzymes have been futile due to the poor pharmacological profiles and susceptibility to degradation by host enzymes. This study aimed to identify potential non-peptide inhibitors against falcipains and their homologs from other Plasmodium species. Structure based virtual docking approach was used to screen a small non-peptidic library of natural compounds from South Africa against 11 proteins. A potential hit, 5α-Pregna-1,20-dien-3-one (5PGA), with inhibitory activity against plasmodial proteases and selectivity on human cathepsins was identified. A 3D similarity search on the ZINC database using 5PGA identified five potential hits based on their docking energies. The key interacting residues of proteins with compounds were identified via molecular dynamics and free binding energy calculations. Overall, this study provides a basis for further chemical design for more effective derivatives of these compounds. Interestingly, as these compounds have cholesterol-like nuclei, they and their derivatives might be well tolerated in humans.
Collapse
|
26
|
Mulder NJ, Adebiyi E, Alami R, Benkahla A, Brandful J, Doumbia S, Everett D, Fadlelmola FM, Gaboun F, Gaseitsiwe S, Ghazal H, Hazelhurst S, Hide W, Ibrahimi A, Jaufeerally Fakim Y, Jongeneel CV, Joubert F, Kassim S, Kayondo J, Kumuthini J, Lyantagaye S, Makani J, Mansour Alzohairy A, Masiga D, Moussa A, Nash O, Ouwe Missi Oukem-Boyer O, Owusu-Dabo E, Panji S, Patterton H, Radouani F, Sadki K, Seghrouchni F, Tastan Bishop Ö, Tiffin N, Ulenga N. H3ABioNet, a sustainable pan-African bioinformatics network for human heredity and health in Africa. Genome Res 2015; 26:271-7. [PMID: 26627985 PMCID: PMC4728379 DOI: 10.1101/gr.196295.115] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/25/2015] [Indexed: 11/24/2022]
Abstract
The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet.
Collapse
Affiliation(s)
- Nicola J Mulder
- Computational Biology Group, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa 7925
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe) and Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria, P.M.B. 1023
| | - Raouf Alami
- Centre National de Transfusion Sanguine, Rabat, Morocco 10100
| | | | - James Brandful
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana, LG
| | - Seydou Doumbia
- University of Sciences, Techniques and Technology of Bamako, Bamako, Mali BPE 3206
| | - Dean Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi, 3/Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Faisal M Fadlelmola
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum/Future University of Sudan, Khartoum, Sudan 11115
| | - Fatima Gaboun
- Institut National de Recherche Agronomique, Rabat, Morocco 10000
| | | | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa 2193
| | - Winston Hide
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA/Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Azeddine Ibrahimi
- Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V Souissi, Rabat, Morocco 10100
| | | | - C Victor Jongeneel
- National Center for Supercomputing Applications and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Fourie Joubert
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa 0083
| | - Samar Kassim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt 11566
| | | | - Judit Kumuthini
- Centre for Proteomic and Genomic Research, Cape Town, South Africa 7925
| | | | - Julie Makani
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania 00255
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya 00100
| | - Ahmed Moussa
- Abdelmalek Essaadi University, ENSA, Tangier, Morocco 90000
| | - Oyekanmi Nash
- National Biotechnology Development Agency, Abuja, Nigeria 10099
| | | | - Ellis Owusu-Dabo
- Kumasi Centre for Collaborative Research in Tropical Medicine/Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, PMB
| | - Sumir Panji
- Computational Biology Group, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa 7925
| | - Hugh Patterton
- University of the Free State, Bloemfontein, South Africa 9300
| | | | - Khalid Sadki
- Faculty of Sciences of Rabat, University Mohammed V of Rabat, Rabat, Morocco 10000
| | | | - Özlem Tastan Bishop
- Research Unit in Bioinformatics, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa 6140
| | - Nicki Tiffin
- South African National Bioinformatics Institute/Medical Research Council of South Africa Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa 7530
| | - Nzovu Ulenga
- Management and Development for Health, Dar es Salaam, Tanzania, 61
| | | |
Collapse
|