1
|
Uddin MM, Chowdhury MSR, Hossain MA, Ahsan A, Hossain MT, Barik A, Hossen MA, Amin MF, Abir R, Alam MS, Rahman MH, Hoque MN. Molecular screening and dynamics simulation reveal potential phytocompounds in Swertia chirayita targeting the UspA1 protein of Moraxella catarrhalis for COPD therapy. PLoS One 2025; 20:e0316275. [PMID: 40019889 PMCID: PMC11870343 DOI: 10.1371/journal.pone.0316275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 03/03/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health burden, with Moraxella catarrhalis significantly contributing to acute exacerbations and increased healthcare challenges. This study aimed to identify potential drug candidates in Swertia chirayita, a traditional Himalayan medicinal plant, demonstrating efficacy against the ubiquitous surface protein A1 (UspA1) of M. catarrhalis through an in-silico computational approach. The three-dimensional structures of 46 phytocompounds of S. chirayita were retrieved from the IMPPAT 2.0 database. The structures underwent thorough analysis and screening, emphasizing key factors such as binding energy, molecular docking performance, drug-likeness, and toxicity prediction to assess their therapeutic potential. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five phytocompounds such as beta-amyrin, calendol, episwertenol, kairatenol and swertanone were identified as the inhibitors of the UspA1 in M. catarrhalis. UspA1 demonstrated binding affinities of -9.1 kcal/mol for beta-amyrin, -8.9 kcal/mol for calendol, -9.4 kcal/mol for episwertenol, -9.6 kcal/mol for kairatenol, and -9.0 kcal/mol for swertanone. All of these affinities were stronger than that of the control drug ceftobiprole, which had a binding score of -6.6 kcal/mol. The toxicity analysis confirmed that all five compounds are safe potential therapeutic options, showing no toxicity or carcinogenicity. We also performed a 100 ns molecular dynamics simulation of the phytocompounds to analyze their stability and interactions as protein-ligand complexes. Among the five screened phytocompounds, beta-amyrin and episwertenol exhibited favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations, and consistent radius of gyration values. Throughout the simulations, intermolecular interactions such as hydrogen bonds and hydrophobic contacts were maintained. Additionally, the compounds demonstrated strong affinity, as indicated by negative binding free energy values. Taken together, findings of this study strongly suggest that beta-amyrin and episwertenol have the potential to act as inhibitors against the UspA1 protein of M. catarrhalis, offering promising prospects for the treatment and management of COPD.
Collapse
Affiliation(s)
- Md. Moin Uddin
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Md. Arju Hossain
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanvir Hossain
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdul Barik
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Arif Hossen
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Faisal Amin
- Department of Biochemistry and Molecular Biology, The University of Texas Rio Grande Valley, Edinburg, Texas, United States of America
| | - Rafsan Abir
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Mohammad Shah Alam
- Department of Anatomy and Histology, Gazipur Agricultural University, Gazipur, Bangladesh
| | - Md Habibur Rahman
- Center for Advanced Bioinformatics and Artificial Intelligence Research, Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Gazipur Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Islam MA, Hossain MS, Hasnat S, Shuvo MH, Akter S, Maria MA, Tahcin A, Hossain MA, Hoque MN. In-silico study unveils potential phytocompounds in Andrographis paniculata against E6 protein of the high-risk HPV-16 subtype for cervical cancer therapy. Sci Rep 2024; 14:17182. [PMID: 39060289 PMCID: PMC11282209 DOI: 10.1038/s41598-024-65112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite therapeutic advancements, cervical cancer caused by high-risk subtypes of the human papillomavirus (HPV) remains a leading cause of cancer-related deaths among women worldwide. This study aimed to discover potential drug candidates from the Asian medicinal plant Andrographis paniculata, demonstrating efficacy against the E6 protein of high-risk HPV-16 subtype through an in-silico computational approach. The 3D structures of 32 compounds (selected from 42) derived from A. paniculata, exhibiting higher binding affinity, were obtained from the PubChem database. These structures underwent subsequent analysis and screening based on criteria including binding energy, molecular docking, drug likeness and toxicity prediction using computational techniques. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five compounds-stigmasterol, 1H-Indole-3-carboxylic acid, 5-methoxy-, methyl ester (AP7), andrographolide, apigenin and wogonin-were selected as the potential inhibitors against the E6 protein of HPV-16. We also performed 200 ns molecular dynamics simulations of the compounds to analyze their stability and interactions as protein-ligand complexes using imiquimod (CID-57469) as a control. Screened compounds showed favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations and consistent radius of gyration values. Intermolecular interactions, such as hydrogen bonds and hydrophobic contacts, were sustained throughout the simulations. The compounds displayed potential affinity, as indicated by negative binding free energy values. Overall, findings of this study suggest that the selected compounds have the potential to act as inhibitors against the E6 protein of HPV-16, offering promising prospects for the treatment and management of CC.
Collapse
Affiliation(s)
- Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh.
| | - Md Shohel Hossain
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Soharth Hasnat
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahmudul Hasan Shuvo
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Shilpy Akter
- Department of Pharmacy, Comilla University, Shalmanpur, Bangladesh
| | - Mustary Anjum Maria
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Anika Tahcin
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Dhaka, 1213, Bangladesh
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
3
|
Quayum ST, Esha NJI, Siraji S, Abbad SSA, Alsunaidi ZH, Almatarneh MH, Rahman S, Alodhayb AN, Alibrahim KA, Kawsar SM, Uddin KM. Exploring the effectiveness of flavone derivatives for treating liver diseases: Utilizing DFT, molecular docking, and molecular dynamics techniques. MethodsX 2024; 12:102537. [PMID: 38299040 PMCID: PMC10828815 DOI: 10.1016/j.mex.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
In exploring nature's potential in addressing liver-related conditions, this study investigates the therapeutic capabilities of flavonoids. Utilizing in silico methodologies, we focus on flavone and its analogs (1-14) to assess their therapeutic potential in treating liver diseases. Molecular change calculations using density functional theory (DFT) were conducted on these compounds, accompanied by an evaluation of each analog's physiochemical and biochemical properties. The study further assesses these flavonoids' binding effectiveness and locations through molecular docking studies against six target proteins associated with human cancer. Tropoflavin and taxifolin served as reference drugs. The structurally modified flavone analogs (1-14) displayed a broad range of binding affinities, ranging from -7.0 to -9.4 kcal mol⁻¹, surpassing the reference drugs. Notably, flavonoid (7) exhibited significantly higher binding affinities with proteins Nrf2 (PDB:1 × 2 J) and DCK (PDB:1 × 2 J) (-9.4 and -8.1 kcal mol⁻¹) compared to tropoflavin (-9.3 and -8.0 kcal mol⁻¹) and taxifolin (-9.4 and -7.1 kcal mol⁻¹), respectively. Molecular dynamics (MD) simulations revealed that the docked complexes had a root mean square deviation (RMSD) value ranging from 0.05 to 0.2 nm and a root mean square fluctuation (RMSF) value between 0.35 and 1.3 nm during perturbation. The study concludes that 5,7-dihydroxyflavone (7) shows substantial promise as a potential therapeutic agent for liver-related conditions. However, further validation through in vitro and in vivo studies is necessary. Key insights from this study include:•Screening of flavanols and their derivatives to determine pharmacological and bioactive properties using ADMET, molinspiration, and pass prediction analysis.•Docking of shortlisted flavone derivatives with proteins having essential functions.•Analysis of the best protein-flavonoid docked complexes using molecular dynamics simulation to determine the flavonoid's efficiency and stability within a system.
Collapse
Affiliation(s)
- Syeda Tasnim Quayum
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Nusrat Jahan Ikbal Esha
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Siam Siraji
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Sanaa S. Al Abbad
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zainab H.A. Alsunaidi
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N. Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department of Chemistry, Princess Nora bint Abdulrahman University, College of Science, Riyadh, Al Riyadh, 11671, Saudi Arabia
| | - Sarkar M.A. Kawsar
- Lab of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | - Kabir M. Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| |
Collapse
|
4
|
Rahman MM, Afrin MF, Zong C, Ichihara G, Kimura Y, Haque MA, Wahed MII. Modification of ibuprofen to improve the medicinal effect; structural, biological, and toxicological study. Heliyon 2024; 10:e27371. [PMID: 38486777 PMCID: PMC10937700 DOI: 10.1016/j.heliyon.2024.e27371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Ibuprofen is classified as a non-steroidal anti-inflammatory drug (NSAID) that is employed as an initial treatment option for its non-steroidal anti-inflammatory, pain-relieving, and antipyretic properties. However, Ibuprofen is linked to specific well-known gastrointestinal adverse effects like ulceration and gastrointestinal bleeding. It has been linked to harmful effects on the liver, kidney, and heart. The purpose of the study is to create novel and potential IBU analogue with reduced side effects with the enhancement of their medicinal effects, so as to advance the overall safety profile of the drug. The addition of some novel functional groups including CH3, F, CF3, OCF3, Cl, and OH at various locations in its core structure suggestively boost the chemical as well as biological action. The properties of these newly designed structures were analyzed through chemical, physical, and spectral calculations using Density Functional Theory (DFT) and time-dependent DFT through B3LYP/6-31 g (d,p) basis set for geometry optimization. Molecular docking and non-bonding interaction studies were conducted by means of the human prostaglandin synthase protein (PDB ID: 5F19) to predict binding affinity, interaction patterns, and the stability of the protein-drug complex. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and PASS (Prediction of Activity Spectra for Substances) predictions were employed to evaluate the pharmacokinetic and toxicological properties of these structures. Importantly, most of the analogues displayed reduced hepatotoxicity, nephrotoxicity, and carcinogenicity in comparison to the original drug. Moreover, molecular docking analyses indicated improved medicinal outcomes, which were further supported by pharmacokinetic calculations. Together, these findings suggest that the modified structures have reduced adverse effects along with improved therapeutic action compared to the parent drug.
Collapse
Affiliation(s)
- Mst Mahfuza Rahman
- Department of Pharmacy, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Mst Farhana Afrin
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Md Anamul Haque
- Department of Pharmacy, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh
| | - Mir Imam Ibne Wahed
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
5
|
Atmaca U, Aksoy M, Öztekin A. A safe alternative synthesis of primary carbamates from alcohols; in vitro and in silico assessments as an alternative acetylcholinesterase inhibitors. J Biomol Struct Dyn 2023; 41:8191-8200. [PMID: 36224670 DOI: 10.1080/07391102.2022.2134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
Carbamates are important molecules because they are used in various biochemical processes. In this study, effective alternative method for the synthesis of primary carbamates from alcohols was developed in the presence of chlorosulfonyl isocyanate (CSI) in pyridine at room temperature in mild conditions. The primary carbamates were synthesized excellent yield. This method is easy, practical, and inexpensive without any additive, metal, or catalyst. Alzheimer's disease (AD) is a neurodegenerative disease and has been reported to affect approximately 50 million people worldwide in 2020. Drugs that reversibly inhibit the acetylcholinesterase (AChE) activity are used for the treatment of AD. For this reason, there is a growing interest in developing alternative AChE inhibitors. Concordantly, Anti-anticholinesterase activity of synthesized carbamate derivatives was investigated as an alternative AChE inhibitors. In order to determine the inhibitory effect of these molecules, IC50, and Ki values and inhibition types were determined. According to the Ki results, the most effective inhibitors were 3 b and 3e with the Ki values of 22 and 38 µM, respectively. It was found that all molecules showed competitive inhibition type. For clarify the inhibitors-enzyme interactions, molecular docking studies were performed and possible binding interactions between the synthesized molecules and AChE were determined. Additionally, the pharmacokinetic and properties of the synthesized molecules were evaluated in silico.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ufuk Atmaca
- Oltu Vocational School, Atatürk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mine Aksoy
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Aykut Öztekin
- Medical Services and Techniques Department, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
6
|
Jin J, Chowdhury MHU, Das T, Biswas S, Wang K, Rahman MH, Choi KY, Adnan M. Chemico-biological interaction unraveled the potential mechanistic pathway of Ixeridium dentatum compounds against atopic dermatitis. Comput Biol Chem 2023; 106:107933. [PMID: 37536229 DOI: 10.1016/j.compbiolchem.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
This study aims to investigate the potential therapeutic application of Ixeridium dentatum (ID) in treating atopic dermatitis (AD) through network pharmacology, molecular docking, and molecular dynamic simulation. We employed GC-MS techniques and identified 40 bioactive compounds present in the ID and determined their targets by accessing public databases. The convergence of compounds and dermatitis related targets led to the identification of 32 common genes. Among them, IL1B, PTGS2, IL6, IL2, and RELA, were found to be significant targets which were analyzed using Cytoscape network topology. The KEGG pathway evaluation revealed that these targets were significantly enriched in the C-type lectin receptor signaling pathway. The therapeutic efficacy of Stigmasta-5,22-dien-3-ol, Urea, n-Heptyl-, and 3-Epimoretenol was demonstrated in molecular docking assay, as evidenced by their presence in the core compounds of the compound-target network. Furthermore, these compounds exhibited significant kinetic stability and chemical reactivity in DFT quantum analysis when compared to their co-crystallized ligands and reference drug, indicating their potential as key targets for future research. Among the top three docking complexes, namely IL6-3-Epimoretenol, and IL2- Stigmasta-5,22-dien-3-ol, both demonstrated exceptional dynamic characteristics in molecular dynamics simulations at 100 ns. The feasibility of these compounds could be attributed to the prior traditional interrelationship between ID and AD. Overall, this research elucidates the interplay between AD-associated signaling pathways and target receptors with the bioactive ID. The proposal posits the utilization of antecedent compounds as a substitute for the customary pharmaceutical intervention that obstructs the discharge of cytokines, which incite dermal inflammation in the C-type lectin receptor signaling pathway of atopic dermatitis.
Collapse
Affiliation(s)
- Juri Jin
- Division of Future Agriculture Convergence, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Md Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sourav Biswas
- Department of Chemistry, Clemson University, SC 29634, USA
| | - Ke Wang
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Md Hafizur Rahman
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki Young Choi
- Division of Future Agriculture Convergence, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Md Adnan
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA; Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
7
|
Aleksandrova Y, Munkuev A, Mozhaitsev E, Suslov E, Tsypyshev D, Chaprov K, Begunov R, Volcho K, Salakhutdinov N, Neganova M. Elaboration of the Effective Multi-Target Therapeutic Platform for the Treatment of Alzheimer's Disease Based on Novel Monoterpene-Derived Hydroxamic Acids. Int J Mol Sci 2023; 24:ijms24119743. [PMID: 37298694 DOI: 10.3390/ijms24119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Novel monoterpene-based hydroxamic acids of two structural types were synthesized for the first time. The first type consisted of compounds with a hydroxamate group directly bound to acyclic, monocyclic and bicyclic monoterpene scaffolds. The second type included hydroxamic acids connected with the monoterpene moiety through aliphatic (hexa/heptamethylene) or aromatic linkers. An in vitro analysis of biological activity demonstrated that some of these molecules had powerful HDAC6 inhibitory activity, with the presence of a linker area in the structure of compounds playing a key role. In particular, it was found that hydroxamic acids containing a hexa- and heptamethylene linker and (-)-perill fragment in the Cap group exhibit excellent inhibitory activity against HDAC6 with IC50 in the submicromolar range from 0.56 ± 0.01 µM to 0.74 ± 0.02 µM. The results of the study of antiradical activity demonstrated the presence of moderate ability for some hydroxamic acids to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2ROO• radicals. The correlation coefficient between the DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC) value was R2 = 0.8400. In addition, compounds with an aromatic linker based on para-substituted cinnamic acids, having a monocyclic para-menthene skeleton as a Cap group, 35a, 38a, 35b and 38b, demonstrated a significant ability to suppress the aggregation of the pathological β-amyloid peptide 1-42. The 35a lead compound with a promising profile of biological activity, discovered in the in vitro experiments, demonstrated neuroprotective effects on in vivo models of Alzheimer's disease using 5xFAD transgenic mice. Together, the results obtained demonstrate a potential strategy for the use of monoterpene-derived hydroxamic acids for treatment of various aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Aldar Munkuev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Mozhaitsev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Suslov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Roman Begunov
- Biology and Ecology Faculty of P. G. Demidov Yaroslavl State University, Matrosova Ave., 9, Yaroslavl 150003, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| |
Collapse
|
8
|
Shafiq N, Shahzad N, Rida F, Ahmad Z, Nazir HA, Arshad U, Zareen G, Attiq N, Parveen S, Rashid M, Ali B. One-pot multicomponent synthesis of novel pyridine derivatives for antidiabetic and antiproliferative activities. Future Med Chem 2023; 15:1069-1089. [PMID: 37503685 DOI: 10.4155/fmc-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Due to the close relationship of diabetes with hypertension reported in various research, a set of pyridine derivatives with US FDA-approved drug cores were designed and integrated by artificial intelligence. Methods: Novel pyridines were designed and synthesized. Compounds MNS-1-MNS-4 were evaluated for their structure and were screened for their in vitro antidiabetic (α-amylase) activity and anticancer (HepG2) activity by methyl thiazolyl tetrazolium assay. Comparative 3D quantitative structure-activity relationship analysis and pharmacophore generation were carried out. Results: The study revealed MNS-1 and MNS-4 as good alternatives to acarbose as antidiabetic agents, and MNS-2 as a more viable, better alternative to doxorubicin in the methyl thiazolyl tetrazolium assay. Conclusion: This combination of studies identifies new and more active analogs of existing FDA-approved drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Nabeel Shahzad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Fatima Rida
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Zaheer Ahmad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Hafiza Ayesha Nazir
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Gul Zareen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Naila Attiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Basharat Ali
- Department of Chemistry, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| |
Collapse
|
9
|
Montero-Cosme TG, Pascual-Mathey LI, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Aranda-Abreu GE. Potential drugs for the treatment of Alzheimer's disease. Pharmacol Rep 2023; 75:544-559. [PMID: 37005970 DOI: 10.1007/s43440-023-00481-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
It is well known that amyloid precursor protein (APP), the enzyme β-secretase 1 (BACE1), cyclooxygenase 2 (COX-2), nicastrin (NCT), and hyperphosphorylated tau protein (p-tau) are closely related to the development of Alzheimer's disease (AD). In addition, recent evidence shows that neuroinflammation also contributes to the pathogenesis of AD. Although the mechanism is not clearly known, such inflammation could alter the activity of the aforementioned molecules. Therefore, the use of anti-inflammatory agents could slow the progression of the disease. Nimesulide, resveratrol, and citalopram are three anti-inflammatory agents that could contribute to a decrease in neuroinflammation and consequently to a decrease in the overexpression of APP, BACE1, COX-2, NCT, and p-Tau, as they possess anti-inflammatory effects that could regulate the expression of APP, BACE1, COX-2, NCT, and p-Tau of potent pro-inflammatory markers indirectly involved in the expression of APP, BACE1, NCT, COX-2, and p-Tau; therefore, their use could be beneficial as preventive treatment as well as in the early stages of AD.
Collapse
Affiliation(s)
| | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | | |
Collapse
|
10
|
Gopikrishnan M, George Priya Doss C. Molecular docking and dynamic approach to screen the drug candidate against the Imipenem-resistant CarO porin in Acinetobacter baumannii. Microb Pathog 2023; 177:106049. [PMID: 36858184 DOI: 10.1016/j.micpath.2023.106049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
The multidrug-resistant Acinetobacter baumannii is an emerging nosocomial pathogen in the healthcare sector. Intrinsic resistance in A. baumannii is a significant problem framing a perfect treatment regimen. Also, this organism showed more resistance towards the carbapenem antibiotics, especially for imipenem and meropenem. The development of carbapenem-resistant Acinetobacter baumannii is mainly due to the alteration or loss of the porin region in the outer membrane. The most well-known porin in Acinetobacter baumannii is CarO (carbapenem-associated outer membrane protein). The CarO protein, which functions as a porin channel for carbapenem inflow, may contribute to carbapenem resistance. The current study identifies a potent drug candidate with a better binding affinity to the carbapenem-resistant outer membrane protein. We investigated the specificity of carbapenems such as imipenem, meropenem, ertapenem, biapenem, doripenem, and fluoroquinolone drugs such as sitafloxacin against the imipenem-resistant CarO protein was demonstrated using the computational approaches molecular docking and dynamic simulation for 50 ns. As a result, the high to low enzyme-ligand complex's binding affinity exhibited a greater binding affinity for ertapenem -7.76 kcal·mol-1 and sitafloxacin -7.75 kcal·mol-1 than biapenem, doripenem, meropenem, and imipenem. The molecular dynamic simulation and the MMPBSA analysis depicted ertapenem -55.431±25.908 kJ/mol and sitafloxacin -47.154 ± 11.052 kJ/mol with better binding affinity and more stability against the imipenem resistant CarO protein when it compared to other antibiotics.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Imtiaz F, Islam M, Saeed H, Ahmed A. Phenolic compounds from Tradescantia pallida ameliorate diabetes by inhibiting enzymatic and non-enzymatic pathways. J Biomol Struct Dyn 2023; 41:11872-11888. [PMID: 36597930 DOI: 10.1080/07391102.2022.2164059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Diabetes is a chronic metabolic disorder marked by postprandial hyperglycemia due to several etiologies including abnormal carbohydrate digestion and glycation of hemoglobin. The prolong use of synthetic drugs results in characteristic side effects which necessitates the discovery of safe and cost-effective substitutes. The aim of the current study is to isolate and evaluate the antidiabetic potential of the phenolic compounds from the leaves of Tradescantia pallida. Syringic acid, p-coumaric acid, morin and catechin (compounds 1-4) were isolated and characterized from Tradescantia pallida leaves using column chromatography and spectroscopic techniques. The in vitro antidiabetic potential of the phenolic compounds were assessed using α-amylase and non-enzymatic glycosylation of hemoglobin protein assays. A mechanistic insight of interactions between phenolic compounds and human α-amylase and hemoglobin protein were scrutinized by employing molecular docking method. Prime Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations were carried out to find the binding energies of the ligand-protein complexes. Morin and catechin were further analyzed to find the dynamic and thermodynamic constraints of the complexes under specific biological conditions using molecular dynamic simulation trajectories. The stability and flexibility of the complexes were justified by fluctuation of α-carbon chain, Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and type of interactions involved which authenticated the in vitro inhibitory potential of morin and catechin against enzymatic and non-enzymatic pathways. The current study could be fruitful in rational designing of safe antidiabetic drugs of natural origin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
12
|
Hasan MK, Akhter S, Fatema K, Hossain MR, Sultana T, Uzzaman M. Selective modification of diclofenac to reduce the adverse effects; A computer-aided drug design approach. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
Koyambo-Konzapa SJ, Mbesse Kongbonga GY, R P, Ramlina Vamhindi BSD, Nsangou M, Franklin Benial AM. Spectroscopic, quantum chemical, molecular docking and molecular dynamics investigations of hydroxylic indole-3-pyruvic acid: a potent candidate for nonlinear optical applications and Alzheimer's drug. J Biomol Struct Dyn 2022; 40:10651-10664. [PMID: 34263703 DOI: 10.1080/07391102.2021.1947380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this paper, a complete theoretical investigation of hydroxylic indole-3-pyruvic acid (HIPyA) molecule was performed using the DFT quantum chemical, molecular docking and molecular dynamics calculations. The conformational analysis of HIPyA molecule was carried out using density functional theory quantum chemical calculations. The most stable structure of the studied molecule was predicted by means of DFT/B3LYP method with cc-pVTZ basis set. The simulated vibrational frequencies were assigned and proved to be in agreement with the available experimental FT-IR data. The effects of gas phase and solvents on UV-visible spectra of HIPyA molecule were simulated using TD-DFT/B3LYP method with cc-pVTZ basis set. The analysis of the density of states spectrum validates the frontier molecular orbitals results, which reveals the charge transfer interaction in HIPyA molecule. The molecular electrostatic potential surface confirms the electrophilic and nucleophilic reactive sites of the studied molecule. The natural bond orbital analysis evidences the bioactivity of the studied molecule. The obtained first order hyperpolarizability value is 33.596 times greater than urea, which confirms the nonlinear optical activity of HIPyA molecule. The molecular docking analysis reveals that the studied molecule under interest can act as a potent inhibitor against the amyloid β-protein (Aβ) enzyme, which causes the Alzheimer's disease. The molecular dynamics analysis confirms the reliability of the docking results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Premkumar R
- PG and Research Department of Physics, N. M. S. S. V. N College, Madurai, Tamil Nadu, India
| | | | - Mama Nsangou
- Departement of Physics, Faculty of Science, The University of Ngaoundere, Ngaoundere, Cameroon.,Higher Teacher's Training College, The University of Maroua, Maroua, Cameroon
| | | |
Collapse
|
14
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
15
|
Prediction of α-Glucosidase Inhibitory Activity of LC-ESI-TQ-MS/MS-Identified Compounds from Tradescantia pallida Leaves. Pharmaceutics 2022; 14:pharmaceutics14122578. [PMID: 36559071 PMCID: PMC9783651 DOI: 10.3390/pharmaceutics14122578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes is a chronic disease that leads to abnormal carbohydrate digestion and hyperglycemia. The long-term use of marketed drugs results in secondary infections and side effects that demand safe and natural substitutes for synthetic drugs. The objective of this study is to evaluate the antidiabetic potential of compounds from the leaves of Tradescantia pallida. Thirteen phenolic compounds were identified from the ethyl acetate fraction of leaves of Tradescantia pallida using liquid chromatography-mass spectrometry. The compounds were then studied for the type of interactions between polyphenols and human α-glucosidase protein using molecular docking analysis. Prime Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations were performed to measure the binding free energies responsible for the formation of ligand-protein complexes. The compounds were further investigated for the thermodynamic constraints under a specified biological environment using molecular dynamic simulations. The flexibility of the ligand-protein systems was verified by Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and molecular interactions. The results authenticated the antidiabetic potential of polyphenols identified from the leaves of Tradescantia pallida. Our investigations could be helpful in the design of safe antidiabetic agents, but further in vitro and in vivo investigations are required.
Collapse
|
16
|
Ahsan MJ, Choudhary K, Ali A, Ali A, Azam F, Almalki AH, Santali EY, Bakht MA, Tahir A, Salahuddin. Synthesis, DFT Analyses, Antiproliferative Activity, and Molecular Docking Studies of Curcumin Analogues. PLANTS (BASEL, SWITZERLAND) 2022; 11:2835. [PMID: 36365289 PMCID: PMC9655326 DOI: 10.3390/plants11212835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023]
Abstract
With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin’s promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a−c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a−c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a−c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Kavita Choudhary
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah 51911, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Abu Tahir
- Department of Pharmacology, Hakikullah Choudhary College of Pharmacy, Ghari Ghat 271 312, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, Uttar Pradesh, India
| |
Collapse
|
17
|
Sedzro DM, Idris MO, Durojaye OA, Yekeen AA, Fadahunsi AA, Alakanse SO. Identifying Potential p53‐MDM2 Interaction Antagonists: An Integrated Approach of Pharmacophore‐Based Virtual Screening, Interaction Fingerprinting, MD Simulation and DFT Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Divine Mensah Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230027 China
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
| | - Mukhtar Oluwaseun Idris
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230027 China
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
- Department of Chemical Sciences Coal City University, Emene Enugu State Nigeria
- ACAII BIOHEALTH LTD, Ikotun Lagos State Nigeria
| | - Abeeb Abiodun Yekeen
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
| | - Adeola Abraham Fadahunsi
- Graduate School of Biomedical Engineering (GSBSE) University of Maine Orono ME 04469 USA
- Department of Oncology the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
- School of Information Science and Technology University of Science and Technology of China Hefei Anhui 230027 China
| | - Suleiman Oluwaseun Alakanse
- School of Life Sciences University of Science and Technology of China Hefei Anhui 230027 China
- Department of Biochemistry Faculty of Life Sciences University of Ilorin Ilorin Kwara State Nigeria
| |
Collapse
|
18
|
Tatheer A, Murtaza S, Kausar N, Altaf AA, Kausar S, Ahmed S, Muhammad S, Hussain A. Synthesis, theoretical investigations and biological evaluation of ibuprofen drug hybrids. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Aziz M, Ejaz SA, Rehman HM, Alsubaie ASA, Mahmoud KH, Siddique F, Al-Buriahi MS, Alrowaili ZA. Identification of NEK7 inhibitors: structure based virtual screening, molecular docking, density functional theory calculations and molecular dynamics simulations. J Biomol Struct Dyn 2022:1-15. [PMID: 35983608 DOI: 10.1080/07391102.2022.2113563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
NEK7 is a NIMA related-protein kinase that plays a crucial role in spindle assembly and cell division. Dysregulation of NEK7 protein leads to development and progression of different types of malignancies including colon and breast cancers. Therefore, NEK7 could be considered as an attractive target for anti-cancer drug discovery. However, few efforts have been made for the development of selective inhibitors of NIMA-related kinase but still no FDA approved drug is known to selectively inhibit the NEK7 protein. Dacomitinib and Neratinib are two Enamide derivatives that were approved for treatment against non-small cell lung cancer and breast cancer respectively. Drug repurposing is a time and cost-efficient method for re-evaluating the activities of previously authorized medications. Thus, the present research involves the repurposing of two FDA-approved medications via comprehensive in silico approach including Density functional theory (DFTs) studies which were conducted to determine the electronic properties of the Dacomitinib and Neratinib. Afterward, binding orientation of selected drugs inside NEK7 activation loop was evaluated through molecular docking approach. Selected drugs exhibited potential molecular interactions engaging important amino acid residues of active site. The docking score of Dacomitinib and Neratinib was -30.77 and -26.78 kJ/mol, respectively. The top ranked pose obtained from molecular docking was subjected to Molecular Dynamics (MD) Simulations for investigating the stability of protein-ligand complex. The RMSD pattern revealed the stability of protein-ligand complex throughout simulated trajectory. In conclusion, both drugs displayed inhibitory efficacy against NEK7 protein and provide a prospective therapy option for malignant malignancies linked with NEK7. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan.,Alnoorians Group of Institutes, Lahore, Pakistan
| | - A S A Alsubaie
- Department of Physics, College of Khurma University College, Taif University, Taif, Saudi Arabia
| | - K H Mahmoud
- Department of Physics, College of Khurma University College, Taif University, Taif, Saudi Arabia
| | - Farhan Siddique
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan, Pakistan.,Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| | - M S Al-Buriahi
- Department of Physics, Sakarya University, Sakarya, Turkey
| | - Z A Alrowaili
- Department of Physics, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
20
|
Aydin N, Turkez H, Tozlu OO, Arslan ME, Yavuz M, Sonmez E, Ozpolat OF, Cacciatore I, Di Stefano A, Mardinoglu A. Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles against Beta Amyloid Induced Neurotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152690. [PMID: 35957121 PMCID: PMC9370266 DOI: 10.3390/nano12152690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Alzheimer’s disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (Aβ) deposition is a hallmark of AD. The options based on degradation and clearance of Aβ are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0−500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (Aβ1-42) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Aβ1-42-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to Aβ1-42 significantly decreased the rates of viable cells which was accompanied by elevated TOS level. Aβ1-42 induced both apoptotic and necrotic cell death. Aβ exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-α genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the Aβ1-42-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for Aβ following exposure to Aβ1-42 for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by Aβ. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.
Collapse
Affiliation(s)
- Nursah Aydin
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, Erzurum 25240, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Mehmet Yavuz
- REEM Neuropsychiatry Clinics, İstanbul 34245, Turkey
| | - Erdal Sonmez
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum 25240, Turkey
- Department of Physics, Kazım Karabekir Education Faculty, Atatürk University, Erzurum 25240, Turkey
| | - Ozgur Fırat Ozpolat
- Computer Sciences Research and Application Center, Atatürk University, Erzurum 25240, Turkey
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti Scalo, CH, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti Scalo, CH, Italy
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
21
|
Barati N, Motavallihaghi S, Nikfar B, Chaichian S, Momtazi-Borojeni AA. Potential therapeutic effects of Ivermectin in COVID-19. Exp Biol Med (Maywood) 2022; 247:1388-1396. [PMID: 35686662 PMCID: PMC9442455 DOI: 10.1177/15353702221099579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
COVID-19 is a critical pandemic that affected communities around the world, and there is currently no specific drug treatment for it. The virus enters the human cells via spikes and induces cytokine production and finally arrests the cell cycle. Ivermectin shows therapeutic potential for treating COVID-19 infection based on in vitro studies. Docking studies have shown a strong affinity between Ivermectin and some virulence factors of COVID-19. Notably, clinical evidence has demonstrated that Ivermectin with usual doses is effective by both the prophylactic and therapeutic approaches in all phases of the disease. Ivermectin inhibits both the adhesion and replication of the virus. Local therapy of the lung with Ivermectin or combination therapy may get better results and decrease the dose of the drug.
Collapse
Affiliation(s)
- Nastaran Barati
- Research Center For Molecular
Medicine, Hamadan University of Medical Sciences, Hamadan 9174223425,
Iran
- Medicinal Plants and Natural
Products Research Center, Hamadan University of Medical Sciences, Hamadan
9174223425, Iran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally
Invasive Medical Manners Research Center, Pars Hospital, Iran University of
Medical Sciences, Tehran 1415944911, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally
Invasive Medical Manners Research Center, Pars Hospital, Iran University of
Medical Sciences, Tehran 1415944911, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical
Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences,
Mashhad 8167994434, Iran
| |
Collapse
|
22
|
Amaryllidaceae, Lycopodiaceae Alkaloids and Coumarins—A Comparative Assessment of Safety and Pharmacological Activity. J Clin Med 2022; 11:jcm11154291. [PMID: 35893381 PMCID: PMC9332316 DOI: 10.3390/jcm11154291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The study aimed to evaluate the safety and pharmacological activity Amaryllidaceae, Lycopodiaceae alkaloids and coumarins obtained from Narcissus triandrus L., Lycopodium clavatum L., Lycopodium annotinum L., Huperzia selago L. and Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. In the in vivo studies. The influence of the tested compounds on the central nervous system of rats was assessed in behavioral tests (locomotor activity, Y-maze, passive avoidance). In order to investigate the mechanisms of action, biochemical determinations were performed (AChE activity, BChE activity, IL-1β, IL-6 concentration). In order to assess safety, the concentrations of AST, ALT, GGT and urea and creatinine were determined. The results of the conducted studies indicate a high safety profile of the tested compounds. Behavioral tests showed that they significantly improved rodent memory in a passive avoidance test. The results of biochemical studies showed that by reducing the activity of AChE and BChE and lowering the concentration of IL-1β and IL-6, the coumarin-rich Angelica dahurica extract shows the most promising potential for future therapeutic AD strategies.
Collapse
|
23
|
Aziz M, Ejaz SA, Zargar S, Akhtar N, Aborode AT, A. Wani T, Batiha GES, Siddique F, Alqarni M, Akintola AA. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer. Molecules 2022; 27:4098. [PMID: 35807344 PMCID: PMC9268522 DOI: 10.3390/molecules27134098] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023] Open
Abstract
NIMA-related kinase7 (NEK7) plays a multifunctional role in cell division and NLRP3 inflammasone activation. A typical expression or any mutation in the genetic makeup of NEK7 leads to the development of cancer malignancies and fatal inflammatory disease, i.e., breast cancer, non-small cell lung cancer, gout, rheumatoid arthritis, and liver cirrhosis. Therefore, NEK7 is a promising target for drug development against various cancer malignancies. The combination of drug repurposing and structure-based virtual screening of large libraries of compounds has dramatically improved the development of anticancer drugs. The current study focused on the virtual screening of 1200 benzene sulphonamide derivatives retrieved from the PubChem database by selecting and docking validation of the crystal structure of NEK7 protein (PDB ID: 2WQN). The compounds library was subjected to virtual screening using Auto Dock Vina. The binding energies of screened compounds were compared to standard Dabrafenib. In particular, compound 762 exhibited excellent binding energy of -42.67 kJ/mol, better than Dabrafenib (-33.89 kJ/mol). Selected drug candidates showed a reactive profile that was comparable to standard Dabrafenib. To characterize the stability of protein-ligand complexes, molecular dynamic simulations were performed, providing insight into the molecular interactions. The NEK7-Dabrafenib complex showed stability throughout the simulated trajectory. In addition, binding affinities, pIC50, and ADMET profiles of drug candidates were predicted using deep learning models. Deep learning models predicted the binding affinity of compound 762 best among all derivatives, which supports the findings of virtual screening. These findings suggest that top hits can serve as potential inhibitors of NEK7. Moreover, it is recommended to explore the inhibitory potential of identified hits compounds through in-vitro and in-vivo approaches.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | | | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden;
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ashraf Akintayo Akintola
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
24
|
Wiatrak B, Jawień P, Matuszewska A, Szeląg A, Kubis-Kubiak A. Effect of amyloid-β on the redox system activity in SH-SY5Y cells preincubated with lipopolysaccharide or co-cultured with microglia cells. Biomed Pharmacother 2022; 149:112880. [PMID: 35367762 DOI: 10.1016/j.biopha.2022.112880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid deposits and hyperphosphorylation of the tau protein are still believed to be the two main causes of Alzheimer's disease. However, newer studies show the beneficial (including antiradical and antimicrobial) effects of amyloid at physiological concentrations. Therefore, this study aimed to investigate the impact of three amyloid fragments - 25-35, 1-40, and 1-42 at concentrations close to physiological levels on the oxidative stress induced by the administration of lipopolysaccharide (LPS) or co-culturing with microglia cells. Differentiated SH-SY5Y cells were used, constituting a model of neuronal cells that were preincubated with LPS or supernatant collected from THP-1 cell culture. The cells were treated with amyloid-β fragments at concentrations of 0.001, 0.1, and 1.0 µM, and then biological assays were carried out. The results of the study support the antioxidant properties of Aβ, which may protect neurons from the damaging effects of neuroinflammation. All tested amyloid-β fragments reduced oxidative stress and increased the levels of enzymatic stress parameters - the activity of SOD, GPx and catalase. In addition, the administration of amyloid-β at low physiological concentrations also increased reduced glutathione (GSH) levels and the ratio between reduced and oxidized glutathione (GSH/GSSG), which is considered a good indicator of maintaining cellular redox balance. Furthermore, a stronger antioxidant effect of 1-40 fragment was observed, occurring in a wider range of concentrations, compared to the other tested fragments 25-35 and 1-42.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
25
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
26
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Topological Coindices and Quantitative Structure-Property Analysis of Antiviral Drugs Investigated in the Treatment of COVID-19. J CHEM-NY 2022. [DOI: 10.1155/2022/3036655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a new strain of coronavirus family that has never been previously detected in humans. This has grown into a huge public health issue that has affected people all around the world. Presently, there is no specific antiviral treatment for COVID-19. To tackle the outbreak, a number of drugs are being explored or have been utilized based on past experience. A molecular descriptor (or topological index) is a numerical value that describes a compound’s molecular structure and has been successfully employed in many QSPR/QSAR investigations to represent several physicochemical attributes. In order to determine topological characteristics of graphs, coindices (topological) take nonadjacent pair of vertices into account. In this study, we introduced CoM-polynomial and numerous degree-based topological coindices for several antiviral medicines such as lopinavir, ritonavir remdesivir, hydroxychloroquine, chloroquine, theaflavin, thalidomide, and arbidol which were studied using the CoM-polynomial approach. In the QSPR model, the linear regression approach is used to analyze the relationships between physicochemical properties and topological coindices. The findings show that the topological coindices under investigation have a substantial relationship with the physicochemical properties of possible antiviral medicines in question. As a result, topological coindices may be effective tools for studying antiviral drugs in the future for QSPR analyses.
Collapse
|
28
|
Bozbey I, Uslu H, Türkmenoğlu B, Özdemir Z, Karakurt A, Levent S. Conventional and microwave prompted synthesis of aryl(alkyl)azole oximes, 1H-NMR spectroscopic determination of E/Z isomer ratio and HOMO-LUMO analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Adnan M, Jeon BB, Chowdhury MHU, Oh KK, Das T, Chy MNU, Cho DH. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life (Basel) 2022; 12:277. [PMID: 35207564 PMCID: PMC8880704 DOI: 10.3390/life12020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein-protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein-protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM.
Collapse
Affiliation(s)
- Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Byeong-Bae Jeon
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh;
| | - Ki-Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh;
| | - Md. Nazim Uddin Chy
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| |
Collapse
|
30
|
Nasir Uddin M, Samina Ahmed S, Uzzaman M, Nazmul Hassan Knock M, Shumi W, Fazal Md Sanaullah A, Hossain Bhuyain MM. Characterization, molecular modeling and pharmacology of some 2́-hydroxychalcone derivatives as SARS-CoV-2 inhibitor. RESULTS IN CHEMISTRY 2022; 4:100329. [PMID: 35313614 PMCID: PMC8925283 DOI: 10.1016/j.rechem.2022.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
This work presented the microwave assisted synthesis of six new 2́-hydroxychalcones and their characterization based on FTIR, UV-Vis, 1H NMR, and mass spectral analysis. Quantum chemical studies confirmed the structures of prepared chalcones. Antioxidant, in vitro antimicrobial and in silico antiviral studies have been performed to evaluate their biological performance. Results of molecular docking of prepared 2́-hydroxychalcones against SARS-CoV-2 (7BQY) main protease disclosed their inhibition which is comparable to standard, remdesivir and better than hydroxychloroquine (HCQ). ADMET prediction revealed them to be non-carcinogenic and relatively safe.
Collapse
Affiliation(s)
| | - Sayeda Samina Ahmed
- Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | - Monir Uzzaman
- Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | | | - Wahhida Shumi
- Department of Microbiology, University of Chittagong, Chittagong 4331, Bangladesh
| | | | | |
Collapse
|
31
|
Zhoujin Y, Li Y, Zhang M, Parkin S, Guo J, Li T, Yu F, Long S. Polymorphism and cocrystal salt formation of 2-((2,6-dichlorophenyl)amino)benzoic acid, harvest of a second form of 2-((2,6-dimethylphenyl)amino)benzoic acid, and isomorphism between the two systems. CrystEngComm 2022. [DOI: 10.1039/d1ce01407b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomorphism and isostructurality were observed between form I of 2-((2,6-dimethylphenyl)amino)benzoic acid and its analog 2-((2,6-dichlorophenyl)amino)benzoic acid, which suggests double Cl–CH3 exchange also leads to structural similarity.
Collapse
Affiliation(s)
- Yunping Zhoujin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Yuping Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Mingtao Zhang
- Computational Center for Molecular Science, College of Chemistry, Nankai University, Tianjin, China
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| |
Collapse
|
32
|
|
33
|
Azam F, Eid EEM, Almutairi A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J Mol Struct 2021; 1246:131124. [PMID: 34305175 PMCID: PMC8286173 DOI: 10.1016/j.molstruc.2021.131124] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
First emerged in late December 2019, the outbreak of novel severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) pandemic has instigated public-health emergency around the globe. Till date there is no specific therapeutic agent for this disease and hence, the world is craving to identify potential antiviral agents against SARS-CoV-2. The main protease (MPro) is considered as an attractive drug target for rational drug design against SARS-CoV-2 as it is known to play a crucial role in the viral replication and transcription. Teicoplanin is a glycopeptide class of antibiotic which is regularly used for treating Gram-positive bacterial infections, has shown potential therapeutic efficacy against SARS-CoV-2 in vitro. Therefore, in this study, a mechanistic insight of intermolecular interactions between teicoplanin and SARS-CoV-2 MPro has been scrutinized by molecular docking. Both monomeric and dimeric forms of MPro was used in docking involving blind as well as defined binding site based on the known inhibitor. Binding energies of teicoplanin-MPro complexes were estimated by Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) computations from docking and simulated trajectories. The dynamic and thermodynamics constraints of docked drug in complex with target proteins under specific physiological conditions was ascertained by all-atom molecular dynamics simulation of 100 ns trajectory. Root mean square deviation and fluctuation of carbon α chain justified the stability of the bound complex in biological environments. The outcomes of current study are supposed to be fruitful in rational design of antiviral drugs against SARS-CoV-2.
Collapse
|
34
|
DFT Based Comparative Studies of Some Glucofuranose and Glucopyranoside Esters and Ethers. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3786.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbohydrate-based molecular scaffolding received significant interest due to its impact on the drug discovery and development in synthetic carbohydrate chemistry during the last couple of decades. In this respect, four glucose compounds in the furanose and pyranose forms with ester and ether functionality were selected for their structural, thermodynamic and chemical reactivity studies. PASS predication indicated that the glucose in the six-membered pyranose form was more prone to biological properties compared to their five-membered furanose form. Also, in the pyranose form acetate ester (3) had more potentiality than the ethyl ether (4). The HOMO-LUMO energy gaps were almost similar for both monosubstituted furanose and pyranose glucose indicating their almost similar reactivities. It was also inferred that these 6-O-substituted compounds followed Lipinski’s rule with the acceptable range of ADMET levels, and hence, safe from lethal proarrhythmic risks. Hopefully, these results can be used in the near future for their probable pharmaceutical use without any remarkable toxicity.
Collapse
|
35
|
Barrach Guerra R, Alves Gálico D, Fernanda de Campos Fraga-Silva T, Aguiar J, Venturini J, Bannach G. Rare-earth complexes with anti-inflammatory drug sulindac: Synthesis, characterization, spectroscopic and in vitro biological studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Novel pyrano-triazolo-pyrimidine derivatives as anti- α-amylase agents: Synthesis, molecular docking investigations and computational analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Elucidation of Teicoplanin Interactions with Drug Targets Related to COVID-19. Antibiotics (Basel) 2021; 10:antibiotics10070856. [PMID: 34356777 PMCID: PMC8300629 DOI: 10.3390/antibiotics10070856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Teicoplanin is a glycopeptide antibiotic effective against several bacterial infections, has exhibited promising therapeutic efficiency against COVID-19 in vitro, and the rationale for its use in COVID-19 is yet to be recognized. Hence, in this study a number of molecular modeling techniques were employed to decrypt the mechanistic insight of teicoplanin interaction with several COVID-19 drug targets. Initially, molecular docking was employed to study the teicoplanin interaction with twenty-five SARS-CoV-2 structural and non-structural proteins which was followed by molecular mechanics/generalized Born surface area (MM/GBSA) computation for binding energy predictions of top ten models from each target. Amongst all macromolecular targets, the N-terminal domain of the nucleocapsid protein displayed the strongest affinity with teicoplanin showing binding energies of −7.4 and −102.13 kcal/mol, in docking and Prime MM/GBSA, respectively. Thermodynamic stability of the teicoplanin-nucleocapsid protein was further probed by molecular dynamics simulations of protein–ligand complex as well as unbounded protein in 100 ns trajectories. Post-simulation MM-GBSA computation of 50 frames extracted from simulated trajectories estimated an average binding energy of −62.52 ± 12.22 kcal/mol. In addition, conformational state of protein in complex with docked teicoplanin displayed stable root-mean-square deviation/fluctuation. In conclusion, computational investigation of the potential targets of COVID-19 and their interaction mechanism with teicoplanin can guide the design of novel therapeutic armamentarium for the treatment of SARS-CoV-2 infection. However, additional studies are warranted to establish the clinical use or relapses, if any, of teicoplanin in the therapeutic management of COVID-19 patients.
Collapse
|
38
|
Maleki R, Khedri M, Rezvantalab S, Afsharchi F, Musaie K, Shafiee S, Shahbazi M. β-Amyloid Targeting with Two-Dimensional Covalent Organic Frameworks: Multi-Scale In-Silico Dissection of Nano-Biointerface. Chembiochem 2021; 22:2306-2318. [PMID: 33884725 PMCID: PMC8359851 DOI: 10.1002/cbic.202100075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Cytotoxic aggregation of misfolded β-amyloid (Aβ) proteins is the main culprit suspected to be behind the development of Alzheimer's disease (AD). In this study, Aβ interactions with the novel two-dimensional (2D) covalent organic frameworks (COFs) as therapeutic options for avoiding β-amyloid aggregation have been investigated. The results from multi-scale atomistic simulations suggest that amine-functionalized COFs with a large surface area (more than 1000 m2 /gr) have the potential to prevent Aβ aggregation. Gibb's free energy analysis confirmed that COFs could prevent protofibril self-assembly in addition to inhibiting β-amyloid aggregation. Additionally, it was observed that the amine functional group and high contact area could improve the inhibitory effect of COFs on Aβ aggregation and enhance the diffusivity of COFs through the blood-brain barrier (BBB). In addition, microsecond coarse-grained (CG) simulations with three hundred amyloids reveal that the presence of COFs creates instability in the structure of amyloids and consequently prevents the fibrillation. These results suggest promising applications of engineered COFs in the treatment of AD and provide a new perspective on future experimental research.
Collapse
Affiliation(s)
- Reza Maleki
- Computational Biology and Chemistry Group (CBCG)Universal Scientific Education and Research Network (USERN)19839-63113TehranIran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG)Universal Scientific Education and Research Network (USERN)19839-63113TehranIran
| | - Sima Rezvantalab
- Renewable Energies DepartmentFaculty of Chemical EngineeringUrmia University of Technology57166-419UrmiaIran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
| | - Sepehr Shafiee
- School of MedicineShahid Beheshti University of Medical Sciences19839-63113TehranIran
| | - Mohammad‐Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki00014HelsinkiFinland
| |
Collapse
|
39
|
Jani V, Sonavane U, Joshi R. Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study. RSC Adv 2021; 11:23557-23573. [PMID: 35479797 PMCID: PMC9036544 DOI: 10.1039/d1ra03609b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease is characterized by amyloid-β aggregation. Currently, all the approved medications are to treat the symptoms but there is no clinically approved treatment for the cure or to prevent the progression of Alzheimer's disease (AD). Earlier reports suggest the use of small molecules and peptides to target and destabilize the amyloid fibril. The use of Beta Sheet Breaker (BSB) peptides seems to be a promising and attractive therapeutic approach as it can strongly bind and destabilize the preformed amyloid fibril. There are experimental studies describing the destabilization role of various BSB peptides, but the exact mechanism remains elusive. In the current work, an attempt is made to study the destabilization mechanism of different BSB peptides on preformed amyloid protofibril using molecular docking and simulations. Molecular docking of eight different BSB peptides of varying length (5-mer to 10-mer) on the Abeta protofibril was done. Docking was followed by multiple sets of molecular simulations for the Abeta protofibril–BSB peptide complex for each of the top ranked poses of the eight BSB peptides. As a control, multiple sets of simulations for the Abeta protofibril (APO) were also carried out. An increase in the RMSD, decrease in the number of interchain hydrogen bonds, destabilization of important salt bridge interactions (D23–K28), and destabilization of interchain hydrophobic interactions suggested the destabilization of Abeta protofibril by BSB peptides. The MM-GBSA free energy of binding for each of the BSB peptides was calculated to measure the binding affinity of BSB peptides to Abeta protofibril. Further residue wise contribution of free energy of binding was also calculated. The study showed that 7-mer peptides tend to bind strongly to Abeta protofibril as compared to other BSB peptides. The KKLVFFA peptide showed better destabilization potential as compared to the other BSB peptides. The details about the destabilization mechanism of BSB peptides will help in the design of other peptides for the therapeutic intervention for AD. Destabilzation of Abeta protofibril by Beta Sheet Breaker (BSB) peptides.![]()
Collapse
Affiliation(s)
- Vinod Jani
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Uddhavesh Sonavane
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Rajendra Joshi
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| |
Collapse
|
40
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
41
|
DFT Based Pharmacokinetic, Molecular Docking, and ADMET Studies of Some Glucopyranoside Esters. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.2940.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monosaccharide esters (MEs) are getting more attention from bioorganic chemists due to their biodegradable and drug-likeness properties. As a consequence, carbohydrate derivatives (sugar-based esters, SEs) are an essential part of medicinal chemistry. In this context, density functional theory (DFT) with B3LYP/ 3-21G has been employed to optimize the methyl 4,6-O-benzylidene-α-D-glucopyranoside (3) of methyl α-D-glucopyranoside (2) and its protected acyl esters 4-6. The prediction of activity spectra for substances (PASS) of these compounds showed better antifungal functionalities than the antibacterial potentiality. Thermodynamic properties and molecular electrostatic potential (MEP) of these MEs indicated their stability and both the electrophilic and nucleophilic attack sites. Due to their better antifungal potentiality, molecular docking was conducted against fungal protein lanosterol 14α-demethylase (3JUS), and SARS-CoV-2 main protease (6LU7) along with absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies. The study indicated a better binding affinity of some esters compared to the standard antifungal and COVID-19 related drug hydroxychloroquine (HCQ).
Collapse
|
42
|
Liu C, Luo X. Potential molecular and graphene oxide chelators to dissolve amyloid-β plaques in Alzheimer's disease: a density functional theory study. J Mater Chem B 2021; 9:2736-2746. [PMID: 33688880 DOI: 10.1039/d0tb02985h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The onset of Alzheimer's disease (AD) is caused by amyloid-β (Aβ) aggregation. Elevated levels of metals, specifically copper, zinc, iron, and aluminum, accumulate in senile Aβ; plaque deposits, disrupting normal brain homeostasis and cognitive functions. In this investigation, we studied the potential of several molecular and graphene oxide chelators to be used for future AD research and chelation therapy. To understand the interactions between selected metals (Cu, Zn, Fe, and Al), the Aβ peptide, and various potential metal chelating compounds, we implemented the density functional theory (DFT) method to calculate the binding energies of each metal-molecule complex. The binding energy of each metal-chelator complex was compared with that of the metal-Aβ compound to determine the chelation potential of the selected chelator. The potential chelating agents studied were 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone (INNHQ), 8-hydroxyquinoline-2-carboxaldehyde 2-furoyl hydrazone (HQFUH), quercetin, and graphene oxide (GO). Our calculated binding energies revealed that the HQFUH molecule holds direct ability to chelate copper, zinc, iron, and aluminum. In addition, the GO complex with a 12.5% oxygen concentration demonstrates aluminum chelation ability. Our results demonstrate that HQFUH and GO can be used in future AD drug development research and therapy to target toxic metal-Aβ interactions and reduce Aβ aggregation.
Collapse
Affiliation(s)
- Christina Liu
- National Graphene Research and Development Center, Springfield, Virginia 22151, USA.
| | | |
Collapse
|
43
|
Structure-based design of new diclofenac: Physicochemical, spectral, molecular docking, dynamics simulation and ADMET studies. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
44
|
Uzzaman M, Hasan MK, Mahmud S, Yousuf A, Islam S, Uddin MN, Barua A. Physicochemical, spectral, molecular docking and ADMET studies of Bisphenol analogues; A computational approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
45
|
Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128821] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Azam F, Taban IM, Eid EEM, Iqbal M, Alam O, Khan S, Mahmood D, Anwar MJ, Khalilullah H, Khan MU. An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin α. J Biomol Struct Dyn 2020; 40:2851-2864. [PMID: 33131430 PMCID: PMC7643422 DOI: 10.1080/07391102.2020.1841028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ivermectin (IVM) is a broad-spectrum antiparasitic agent, having inhibitory potential against wide range of viral infections. It has also been found to hamper SARS-CoV-2 replication in vitro, and its precise mechanism of action against SARS-CoV-2 is yet to be understood. IVM is known to interact with host importin (IMP)α directly and averts interaction with IMPβ1, leading to the prevention of nuclear localization signal (NLS) recognition. Therefore, the current study seeks to employ molecular docking, molecular mechanics generalized Born surface area (MM-GBSA) analysis and molecular dynamics simulation studies for decrypting the binding mode, key interacting residues as well as mechanistic insights on IVM interaction with 15 potential drug targets associated with COVID-19 as well as IMPα. Among all COVID-19 targets, the non-structural protein 9 (Nsp9) exhibited the strongest affinity to IVM showing -5.30 kcal/mol and -84.85 kcal/mol binding energies estimated by AutoDock Vina and MM-GBSA, respectively. However, moderate affinity was accounted for IMPα amounting -6.9 kcal/mol and -66.04 kcal/mol. Stability of the protein-ligand complexes of Nsp9-IVM and IMPα-IVM was ascertained by 100 ns trajectory of all-atom molecular dynamics simulation. Structural conformation of protein in complex with docked IVM exhibited stable root mean square deviation while root mean square fluctuations were also found to be consistent. In silico exploration of the potential targets and their interaction profile with IVM can assist experimental studies as well as designing of COVID-19 drugs.
Collapse
Affiliation(s)
- Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Ismail M Taban
- School of Biosciences, Cardiff University, Cardiff, U.K.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misurata University, Misurata, Libya
| | - Eltayeb E M Eid
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shamshir Khan
- Department of Pharmaceutical Chemistry, Dentistry and Pharmacy College, Buraydah Private Colleges, Buraydah, Al-Qassim
| | - Danish Mahmood
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - M U Khan
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| |
Collapse
|
47
|
Amul B, Muthu S, Raja M, Sevvanthi S. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV-VIS), chemical reactivity and biological examinations of Ketorolac. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Wakulik K, Wiatrak B, Szczukowski Ł, Bodetko D, Szandruk-Bender M, Dobosz A, Świątek P, Gąsiorowski K. Effect of Novel Pyrrolo[3,4- d]pyridazinone Derivatives on Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci 2020; 21:E2575. [PMID: 32276316 PMCID: PMC7177677 DOI: 10.3390/ijms21072575] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is considered to be one of the potential causes for the development of neurodegenerative diseases, including Alzheimer's disease. In this study, we evaluated the effect of four newly synthesized pyrrolo[3,4-d]pyridazinone derivatives on the neuron-like PC12 cells under simulated inflammation conditions by preincubation with lipopolysaccharide (LPS). Our novel derivatives are selective cyclooxygenase-2 (COX-2) inhibitors and have similar effects to nonsteroidal anti-inflammatory drugs (NSAIDs). We assessed viability (LDH assay), metabolic activity (MTT assay), DNA damage (number of double-strand breaks measured by fast halo assay), and the neuronal features of cells (average neurite length and neurite outgrowth measured spectrofluorimetrically). DCF-DA and Griess assays were also performed, which allowed determining the impact of the tested compounds on the level of oxygen free radicals and nitrites. LPS administration significantly negatively affected the results in all tests performed, and treatment with the tested derivatives in most cases significantly reduced this negative impact. Multiple-criteria decision analysis indicated that overall, the best results were observed for compounds 2a and 2b at a concentration of 10 µM. The new derivatives showed intense activity against free oxygen radicals and nitrites. Reduced reactive oxygen species level also correlated with a decrease in the number of DNA damage. The compounds improved neuronal features, such as neurite length and outgrowth, and they also increased cell viability and mitochondrial activity. Our results suggest that derivatives 2a and 2b may also act additionally on mechanisms other than 3a and 3b.
Collapse
Affiliation(s)
- Karolina Wakulik
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Ł.S.); (P.Ś.)
| | - Dorota Bodetko
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | | | - Agnieszka Dobosz
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Ł.S.); (P.Ś.)
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| |
Collapse
|
49
|
Guerra RB, de Campos Fraga-Silva TF, Aguiar J, Oshiro PB, Holanda BB, Venturini J, Bannach G. Lanthanum(III) and neodymium(III) complexes with anti-inflammatory drug sulindac: Synthesis, characterization, thermal investigation using coupled techniques TG-FTIR, and in vitro biological studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Uddin MN, Knock MNH, Uzzaman M, Bhuiyan MMH, Sanaullah A, Shumi W, Sadrul Amin HM. Microwave assisted synthesis, characterization, molecular docking and pharmacological activities of some new 2′-hydroxychalcone derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|